English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51931/87076 (60%)
Visitors : 8481420      Online Users : 74
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/102510

    Title: 薄膜蒸餾傳輸特性之計算流體力學研究
    Other Titles: CFD study of transport characteristics of membrane distillation
    Authors: 許建安;Hsu, Jian-An
    Contributors: 淡江大學化學工程與材料工程學系碩士班
    Keywords: 計算流體力學;薄膜蒸餾;流力;熱傳;粗糙面;間隔物;computational fluid dynamics;Membrane distillation;Hydrodynamics;heat transfer;surface roughness;Spacers
    Date: 2014
    Issue Date: 2015-05-04 09:57:41 (UTC+8)
    Abstract: 本研究利用計算流體力學(Computational Fluid Dynamics, CFD)模擬探討薄膜蒸餾模組內之流力與熱傳特性。本研究使用FLUENT軟體模擬了操作於層流範圍的三種模組,包括使用具粗糙面與具間隔物通道的直接接觸式模組,以及真空式模組。透膜熱質傳是利用使用者定義函數納入模式中。
    In this study, the fluid flow and heat transfer in the membrane distillation (MD) modules are investigated by the computational fluid dynamics (CFD) simulation. The FLUENT software is used to simulate three laminar flow MD modules, including the direct contact type MD (DCMD) modules with roughened-surface and spacer-filled channels as well as the vacuum type MD (VMD). The trans-membrane heat and mass transfer are taken into account using the user-defined-functions in FLUENT.
    In fluid flow, the simulated friction factors of the roughened-surface channels are close to the correlation predictions using constricted hydraulic diameters. For the spacer-filled channels, the flow fields of individual repeated units are similar and the pressure drop increases with the reduction of spacer voidage. For VMD, the fluid side pressure drops are lower than that predicted from correlations.
    In heat transfer, the entrance thermal developing section, which gives higher heat and mass transfer rates, is observed in both roughened-surface channels and the VMD channels. The trans-membrane mass transfer does significantly affect the heat transfer coefficient. For the spacer-filled channels, the local heat transfer coefficients fluctuate with the layout of the spacer filaments.
    Appears in Collections:[化學工程與材料工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback