淡江大學機構典藏:Item 987654321/102506
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62821/95882 (66%)
Visitors : 4011607      Online Users : 942
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/102506


    Title: 酸氣水轉移反應酸氣移除程序之最適化設計與控制
    Other Titles: Optimal design and control of sour-water gas shift reaction/acid gas removal processes
    Authors: 吳宗翰;Wu, Zong-Han
    Contributors: 淡江大學化學工程與材料工程學系碩士班
    陳逸航;Chen, Yih-Hang
    Keywords: 二氧化碳捕捉;物理吸收法;最適化;控制架構;設計;CO2 Capture;Physical absorption;Optimization;Control structure;design
    Date: 2014
    Issue Date: 2015-05-04 09:57:35 (UTC+8)
    Abstract: 對煤炭氣化程序下游之酸氣水轉移轉移反應與酸氣移除程序進行研究,以減少CO2排放及避免硫化物毒化下游製程之觸媒,因此須將合成氣進行酸氣移除,其H2S和CO2之設計回收規格參照 National Energy Laboratory: 99.5%和90.14%。由於此程序操作於高壓環境,因此選擇物理吸收法(SELEXOL)進行酸氣移除。本研究使用Aspen Plus 軟體進行程序模擬並與數據進行驗證。此研究討論酸氣水轉移反應與酸氣移除程序之最適化流程選擇:流程1. 氣化爐出口之合成氣,進行水轉移反應(水轉移反應出口規格H2/CO=3),再進行H2S移除與CO2捕捉程序。流程2. 氣化爐出口之合成氣,先進行H2S移除,再將合成氣送入水轉移反應器中,最後再進行CO2捕捉。流程3. 水轉移反應器出口之合成氣,送入共同捕獲之酸氣移除程序。從靈敏度分析結果,影響三種流程年總成本(TAC)之最適化變數為吸收塔塔板數、氣提塔塔板數、吸收塔塔壓、氣提塔塔壓、氣提塔進料板數以及氣提塔進料溫度。流程1、2以及3之年總本分別為$98,967,790.9、$116,881,378.3、$95,338,636.5。由最適化結果顯示三種不同之流程,以流程3具有最低之年總成本,對流程1與流程3建立控制架構,並進行動態模擬,分析各流程之控制度以及操作度,其結果顯示,流程3在整場控制度以及操作度比流程1來得好。
    In order to facilitate coal cleaning, optimal design and control of coal gasification downstream processes (sour water gas shift reaction/acid gas removal (SWGSR/AGR)) were investigated. In the steady-state design, Aspen Plus software was used to build the SWGSR/AGR processes model and the simulation results were validated by National Energy Laboratory data. Three different process flowsheets are taken into consideration. From the sensitivity analysis result, the optimization variables of these processes were: steam injection flowrate, number of H2S absorber trays, number of stripper trays, stripper feed stage and stripper feed tray temperature. All of which dramatically affected the total annual cost (TAC) of each process flowsheet. SWGSR/AGR processes were designed based on minimum TAC while maintaining product specifications. TACs of flowsheets 1, 2 and 3 are $98,967,790.9, $116,881,378.3, $95,338,636.5, respectively. In the dynamic control, the control structures of FS1 and FS3 were proposed. Autotuning Variation, detune and Tyrens-Luyben tuning rule methods were used to determine the controller parameters. The simulation result shows a faster disturbance rejection rate and a wider operability range using FS3 under throughput and load disturbance changes.
    Appears in Collections:[Graduate Institute & Department of Chemical and Materials Engineering] Thesis

    Files in This Item:

    File SizeFormat
    index.html0KbHTML272View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback