English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51510/86705 (59%)
Visitors : 8268789      Online Users : 66
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/102475


    Title: 複雜地形之風速風壓實場監測與風洞試驗比較
    Other Titles: Complex terrain of the comparisons between wind velocity and wind pressure in monitoring and wind tunnel test
    Authors: 王冠傑;Wang, Guan-Jie
    Contributors: 淡江大學土木工程學系碩士班
    羅元隆
    Keywords: 實場量測;風洞實驗;無線傳輸;風壓量測;Full scale;Wind tunnel test;wireless transmission;Wind pressure
    Date: 2014
    Issue Date: 2015-05-04 09:56:46 (UTC+8)
    Abstract: 一般超高層建築物對於風力的影響往往大過於其他外力的影響,所以超高層建築須更加注重耐風設計。而國內目前對於超高層建築受風力之行為,建立於風洞實驗,仍需透過實場量測來做為最終驗證,本文主要研究在於風洞實驗與實場量測之比較。
      目前國內實場量測缺乏建築物表面風壓實場量測資料,故本研究首次進行建築物表面風壓實場量測研究,待建立建築物表面風壓實場量測之模式。建築物表面風壓量測須在建築外牆架設量測儀器,若直接於表面進行開孔,則需另外佈線與鑽孔,本文將另研究將無線技術應用於風壓量測上。
      本研究於淡水區淡江大學內進行研究,為了解建築物表面受風之影響,必須量測風向、風速、風壓,先從氣象局歷年風向風速資料繪製風花圖,初步了解淡水區流場特性。接著進行光達(LiDAR)風速剖面量測,建立淡江大學流場特性。同時於建築物安裝儀器,除了無線風壓量測儀器外,尚需安裝風速計同時量測風速及風向,進行季風及颱風數據收集。
      風洞實驗分為二部分,分為流場試驗及風壓試驗,流場試驗除了縮尺地形發展段,也將轉換為粗糙元素發展段,再將二流場實驗結果與LiDAR量測做比較。再利用粗糙元素發展段進行不同風向角建築物表面風壓試驗,最後再將風洞實驗結果與實場量測結果做一比較,了解風洞實驗與實場量測之差異性,以用來改善風洞實驗模擬技術。
      流場方面實場量測與風洞實驗比較是相當吻合,LiDAR所量測到風速剖面與風洞試驗比較,無論是縮尺地形發展段或是轉換成粗糙元素都是相當吻合。
    風速頻譜在颱風部份與vonkarman風速頻譜是相當吻合。但風壓量測部份,可能是因為佈點位置於角隅處,使得模擬與量測比對上有一定困難度。
    Generally, studies on surface wind pressure of a building are established based on wind tunnel tests. Although results from wind tunnel tests provide certain reliability for understanding the basic behavior of some phenomena, engineers still need full scale measurements for verification. In this study, field measurement of surface wind pressure of a building is carried out. Due to the lack of reference on field measurements of surface pressure, a preliminary scheme is designed and necessary instruments are collected. Further, in order to make comparison with other available evidence for the reliability of pressure measurement, LiDAR measurement and ultrasonic anemometers are also equipped on-site.
    The research work is begun with the investigation on target building’s meteorological information. By checking the wind rose charts of recent five years, all the instruments, including the anemometers, LiDAR, and wireless pressure sensor, are well set up in the target building. Then the simulation by wind tunnel is also carried out by picking up the most welcomed wind direction. Therefore, in this study, four kinds of data can be compared for various aerodynamic parameters and they are:
    1. LiDAR: Vertical profile of mean wind speeds
    2. Anemometer: Turbulent wind speed at roof top of the target building
    3. Wireless sensor: Surface wind pressure on the rooftop of the building
    4. Wind tunnel test: All three aforementioned information
    From the comparison results, it is pointed out that wind tunnel tests can generally provide good-fitted information with LiDAR and anemometers; however, comparison on surface pressure may need more modification on the field measurement technique. The preliminary scheme to carry out the surface wind pressure of a building is then modified according to the experience and suggested for the future research work.
    Appears in Collections:[土木工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML95View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback