English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 10720955      線上人數 : 19011
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/102333


    題名: 以脊迴歸法改進稀疏資料下的半參數迴歸
    其他題名: A ridge regression method for improving the semiparametric regression with sparse data
    作者: 吳佳翰;Wu, Jia-Han
    貢獻者: 淡江大學統計學系碩士班
    鄧文舜
    關鍵詞: 半參數迴歸;區域線性迴歸;脊迴歸;交叉驗證法;semiparametric regression;local linear regression;ridge regression;Cross validation
    日期: 2014
    上傳時間: 2015-05-04 09:53:10 (UTC+8)
    摘要: 在無母數迴歸分析中,區域線性估計量同時具有較簡潔的漸進偏誤和較小的漸進變異數;然而,Seifert與Gasser(1996) 指出在有限樣本下,當資料稀疏或取樣點彼此很靠近時,區域線性估計量的條件變異數並沒有上界,估計出來的曲線因而崎嶇不平;為了改善這個問題,Seifert與Gasser(1996)結合了區域線性平滑法和脊迴歸的概念,建構出區域線性脊迴歸估計量。

    本篇論文使用Seifert與Gasser (1996)的區域線性脊迴歸方法來估計同時具有多重線性迴歸式與無母數迴歸函數的半參數迴歸(semiparametric regression)模型,並利用交叉驗證法(cross validation)來選取最佳帶寬(bandwidth)和脊迴歸參數(ridge parameter)。根據模擬結果,當區域線性估計量和區域脊迴歸估計量均各自經由交叉驗證法選取其最適參數時,後者的無母數迴歸函數之估計式有明顯較小的樣本期望積分方差(sample mean integrated square error)並且其多重線性迴歸之參數估計式具有明顯較小的均方差(mean square error)。
    In nonparametric regression analysis, local linear estimator (LLE) enjoys both smaller asymptotic bias and smaller asymptotic variance. However, Seifert and Gasser (1996) pointed out that in finite sample situations, when the design points are sparse or when design points are close to each other, LLE has unbounded conditional variance. The curve that estimated from the LLE has rough appearance accordingly; In order to improve this problem, Seifert and Gasser (1996) combines the local linear smoothing method and ridge regression to construct the local linear ridge regression estimator (LLRRE).

    This thesis use local linear ridge regression method of Seifert and Gasser (1996) to improve the estimation of semiparametric regression which comprises both parametric and nonparametric regression component. A cross-validation method is used to select the optimal bandwidth and ridge regression parameters. According to the simulation results, when LLE and LLRRE both use their respective cross validated parameters, the LLRRE’s nonparametric regression function estimates have significantly smaller sample mean integrated square error than that of the LLE’s. And the latter method’s coefficient estimates of parametric regression component have significantly smaller mean square errors than that of the former’s.
    顯示於類別:[統計學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML360檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋