English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 52052/87180 (60%)
造訪人次 : 8893376      線上人數 : 564
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/102214

    題名: 口碑及季節性對於電影票房的影響 : 以美國電影票房為例
    其他題名: The influence of word of mouth and seasonality on box office of motion pictures : evidence from box office of the U.S market
    作者: 黃炳翔;Huang, Ping-Hsiang
    貢獻者: 淡江大學管理科學學系碩士班
    陳怡妃;Chen, I-Fei
    關鍵詞: 多元適應雲形迴歸;票房預測;網路口碑;季節效用;multivariate adaptive regression splines (MARS);box office prediction;Word of Mouth;seasonal
    日期: 2014
    上傳時間: 2015-05-04 09:50:11 (UTC+8)
    摘要: 新上市產品銷售預測為許多公司所重視的課題,銷售預測通常都需要參考過去長時間的歷史資料後,才能精準預測,但新品往往無長時間歷史資料可供使用,因此本篇論文著重於利用現有的資料,於新品上市初期預測銷量。
    New product sales forecasting is a crucial task to many innovative companies. Conventionally, the accuracy of sales forecasting is conditional on long-term, sufficient data of sales history. However, the sales information involved with newly launched products is very limited, unavailable or inaccessible.
    Since virtually all sorts of products are seasonal, the main concept of this study is to propose a seasonal sales forecasting model in the setting of box office for U.S. motion picture market using online open access data, such as critics, comments and ratings, which not only exhibit original interests of different stakeholders in a specific movie but also are available at both pre- and post-released phases.
    The results of this proposed nonlinear model with desired accuracy manifested that the influence influence of online word of mouth and seasonality significant on box office in the U.S market, contrary to those of the movie characteristics and competitions both very insubstantial.
    顯示於類別:[管理科學學系暨研究所] 學位論文


    檔案 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋