English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62805/95882 (66%)
造访人次 : 3993785      在线人数 : 304
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/102184

    题名: 資料採礦於臉書商業模式推薦機制之研究
    其它题名: The study of data mining implements on a recommendation mechanism for Facebook business model
    作者: 何欣容;He, Sin-Rong
    贡献者: 淡江大學管理科學學系碩士班
    廖述賢;Liao, Shu-Hsien
    关键词: 臉書 Facebook;虛擬社群;加值服務;推薦機制;資料採礦;Facebook;Virtual Community;Recommendation Mechanism;Value-added service;Recommendation System;data mining
    日期: 2014
    上传时间: 2015-05-04 09:49:28 (UTC+8)
    摘要: 隨著「無線化」與「行動化」的連網技術日趨成熟,網際網路可以在不受時空的限制下使用,更加速了資訊產業的發展。各式各樣的虛擬商品也更被廣為使用、買賣和散布,人們在虛擬世界中進行互動的需求與商品的交易,是相輔相成的,未來數年應該還能帶來巨大的利潤與成長(王維聰、張文鴻, 2009)。
    故本研究欲以臉書Facebook (FB)的使用者為主體,以資料採礦為方法,歸納使用者接受資訊及購物及加值服務偏好之習慣,探討在社群中,FB使用者、FB社群工具、廠商三者之間的相互關係。
    本研究以839份使用者為樣本,透過集群分析(Clustering analysis)研究結果將分為三個集群,並且運用關聯法則(Association rules )挖掘出有用的資訊和知識且找出相似性的消費特徵,當使用者在FB平台使用工具,利用促銷活動來推薦適合的產品或資訊給予使用者,進而提供企業廠商選擇適當的促銷活動和廣告,以及對使用者於未來FB社群網路平台之加值服務偏好行為,來建議FB社群網站商業模式規劃與操作取向之參考。
    As the technology of “wireless” and “mobility” of networking grows mature, the use of internet can be utilized without the constraint of time and space, which boosts the development of information technology nowadays. A big variety of virtual commodities are used, marketed, and spread in a wider extent. The needs of interaction with people are complementary with the trading of goods in the virtual world. Therefore, a remarkable profit and growth in this industry still can be expected in a couple of years ( Wang & Chang , 2009).
    This study focuses on the analysis of Facebook users to conclude the habits of their information sourcing and shopping preference with a further attempt to discuss the relationship between Facebook users, Facebook networking functions and the business operators in the social community.
    This study adopts 839 users as samples, dividing the research result into three clusters while Association rules are applied to bring out more useful information and knowledge for the finding of smiliar traits and qualities of consumers'' habits. As a consequence, this study result can be taken as a reference for the industries or companies to recommend the best products or information to the users through the promotion activities, as well as a key factor for their decision on the selection of product promotion, advertising, and timing with a reference to the functions of Facebook platform.
    显示于类别:[管理科學學系暨研究所] 學位論文


    档案 大小格式浏览次数



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈