English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49433/84396 (59%)
Visitors : 7465308      Online Users : 91
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/102156

    Title: 具有隨機效應及測量誤差之對數線性模型的參數估計方法
    Other Titles: The estimation of the log-linear model with measurement errors and random effects
    Authors: 丁怡皓;Ting, Yi-Hao
    Contributors: 淡江大學數學學系碩士班
    Keywords: 測量誤差;隨機效應;對數線性模型;延伸校正QVF估計法;measurement error;Random effect;Log-linear model;Extended corrected QVF score
    Date: 2014
    Issue Date: 2015-05-04 09:48:49 (UTC+8)
    Abstract: 在自變數有測量誤差時,具有隨機效用的廣義線性模式的分析相當困難,主要原因是將隨機效用積分後的分配已不再是廣義線性模式,使得傳統上處理測量誤差的條件分數法或是校正分數法難以應用。本文主要探討對數線性在有測量誤差和隨機效用時的模型中,提出使用延伸校正QVF(quasilikelihood and variance function)的估計法,並與 Naive 、迴歸校正法及部分條件分數法三者作模擬比較。
    There are not many literatures discuss the statistical inference when
    the measurement error and random effect exist in the generalized linear
    model. The main reason is that the distribution after integrating the random
    effect is no longer a generalized linear model, hence the conventional
    conditional score or corrected score are difficult in application. This
    paper discussed the estimation method when measurement error and random
    effect coexist in the log-linear model, the estimation was done by an
    extended corrected QVF score. We compare the efficient of the methods of
    Naive, regression calibration and partially conditional score with the
    proposed method by simulation studies.
    Appears in Collections:[數學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback