English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56804/90523 (63%)
造訪人次 : 12096972      線上人數 : 60
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/101189

    題名: Parameter Estimation of the Burr Type XII Distribution with a Progressively Interval-censored Scheme Using Genetic Algorithm
    作者: Tsai, Tzong-Ru;Jiang, Jyun-You;Lio, Yuhlong;Jiang, Nan;Fan, Ya-Yen
    貢獻者: 淡江大學統計學系
    關鍵詞: Burr type XII distribution;Genetic Algorithm;maximum likelihood estimation;Monte Carlo simulation;progressively interval-censored scheme
    日期: 2015-03
    上傳時間: 2015-04-15 15:42:03 (UTC+8)
    摘要: Burr type XII distribution (BXIID) has been widely used to model lifetime data sets. The flexibility of the BXIID is established due to its two shape parameters. To save test time and cost, the BXIID parameters can be inferred by using the maximum likelihood estimation method based on a date set with incomplete lifetime information. But the maximum likelihood estimates (MLEs) of BXIID parameters could have a big bias and mean squared error (MSE) if the sample size is small or the MLEs are evaluated with improper initial parameters. In this study, a progressively interval-censored (PIC) scheme is used to implement the life test, and the Genetic Algorithm (GA) is applied to reduce the bias and MSEs of the MLEs of the BXIID parameters. An extensive Monte Carlo simulation was conducted to evaluate the estimation performance of the typical maximum likelihood estimation method (TMLEM) and GA. Simulation results show that the GA is competitive with the TMLEM in terms of resulting in a smaller bias and MSE in parameter estimation.
    關聯: Proceeding of the 3rd International Conference on Industrial Application Engineering 2015
    顯示於類別:[統計學系暨研究所] 會議論文


    檔案 描述 大小格式瀏覽次數
    ICIAE2015-Tsai-Jiang-Lio-Jiang-Fan-R1.pdf115KbAdobe PDF301檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋