English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7379354      線上人數 : 47
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/101102


    題名: Significant Correlation Pattern Mining in Smart Homes
    作者: Chen, Yi-Cheng;Peng, Wen-Chih;Huang, Jiun-Long;Lee, Wang-Chien
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: Correlation pattern;smart home;sequential pattern;time interval– based data;usage representation
    日期: 2015-04-06
    上傳時間: 2015-04-11 00:38:42 (UTC+8)
    出版者: ACM
    摘要: Owing to the great advent of sensor technology, the usage data of appliances in a house can be logged and collected easily today. However, it is a challenge for the residents to visualize how these appliances are used. Thus, mining algorithms are much needed to discover appliance usage patterns. Most previous studies on usage pattern discovery are mainly focused on analyzing the patterns of single appliance rather than mining the usage correlation among appliances. In this article, a novel algorithm, namely Correlation Pattern Miner (CoPMiner), is developed to capture the usage patterns and correlations among appliances probabilistically. CoPMiner also employs four pruning techniques and a statistical model to reduce the search space and filter out insignificant patterns, respectively. Furthermore, the proposed algorithm is applied on a real-world dataset to show the practicability of correlation pattern mining.
    關聯: ACM Transactions on Intelligent Systems and Technology 6(3)Article35, pp.1-23
    DOI: 10.1145/2700484
    顯示於類別:[資訊工程學系暨研究所] 期刊論文

    文件中的檔案:

    沒有與此文件相關的檔案.

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋