English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 52374/87459 (60%)
造访人次 : 9153989      在线人数 : 301
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/101078

    题名: An Efficient Intra Prediction Algorithm for H.264/AVC High Profile
    作者: Bo Shen;Cheng, Kuo-Hsiang;Yun Liu;Wang, Ying-Hong
    贡献者: 淡江大學資訊工程學系
    关键词: H.264/AVC;block size;prediction mode;rate-distortion optimization
    日期: 2014-04-01
    上传时间: 2015-04-06 09:37:36 (UTC+8)
    出版者: 台北市:中華民國電腦學會
    摘要: A simple, highly efficient intra prediction algorithm to reduce the computational complexity of H.264/AVC High Profile is proposed. The algorithm combines two methods. The first method is a quant-based block-size selection decision that is based on the sum of the quantization AC coefficients among intra 8 × 8 mode predictions, combined with an error adjustment to select either intra 4 × 4 or intra 16 × 16 mode predictions. The second method is a novel direction-based prediction mode decision that is used to reduce the possible prediction modes for the rate-distortion (RD) optimization technique. Our experimental results demonstrate that the proposed algorithm reduces the encoding time by approximately 54% compared with that needed for an exhaustive search using the joint model reference software. The peak signal-to-noise ratio degradation is negligible, and the bit rate increment is minimal. Furthermore, the results show that our algorithm achieves a significant improvement in both computation performance and RD performance as compared with the existing algorithms.
    關聯: 電腦學刊=JOURNAL OF COMPUTERS 25(1),頁56-71
    显示于类别:[資訊工程學系暨研究所] 期刊論文
    [經濟學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    An Efficient Intra Prediction Algorithm ....pdf2550KbAdobe PDF66检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈