English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60861/93638 (65%)
造访人次 : 1108174      在线人数 : 37
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/101014


    题名: Real-time automatic multilevel color video thresholding using a novel class-variance criterion
    作者: Tsai, Chi-Yi;Liu, Tsung-Yen
    贡献者: 淡江大學電機工程學系
    关键词: Multi-object segmentation;Nonparametric multilevel color thresholding;Extended within-class variance;Automatic multi-threshold searching
    日期: 2015-04
    上传时间: 2015-03-19 20:15:01 (UTC+8)
    出版者: Berlin: Springer Berlin Heidelberg
    摘要: Color image segmentation is a crucial preliminary task in robotic vision systems. This paper presents a novel automatic multilevel color thresholding algorithm to address this task efficiently. The proposed algorithm consists of a learning process and a multi-threshold searching process. The learning process learns the color distribution of an input video sequence in HSV color space, and the multi-threshold searching process automatically determines the optimal multiple thresholds to segment all colors-of-interest in the video based on a novel class-variance criterion. For the learning process, a simple and efficient color-distribution learning algorithm operating with a color-pixel extraction method is proposed to learn a color distribution model of all colors-of-interest in the video images, which simplifies the search for optimal thresholds for the colors-of-interest through a conventional multilevel thresholding method. For the multi-threshold searching process, a nonparametric multilevel color thresholding algorithm with an extended within-class variance criterion is proposed to automatically find the optimal upper bound and lower bound threshold values of each color channel. Experimental results validate the performance and computational efficiency of the proposed method by comparing with three existing methods, both visually and quantitatively.
    關聯: Machine Vision and Applications 26(2-3), pp.233-249
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    art%3A10.1007%2Fs00138-014-0655-9.pdf論文2442KbAdobe PDF91检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈