淡江大學機構典藏:Item 987654321/100698
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64191/96979 (66%)
造訪人次 : 8446417      線上人數 : 7852
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/100698


    題名: Preliminary Analysis of AASHO Road Test Rigid Pavement Data Using Modern Regression Techniques
    作者: Ker, Hsiang Wei;Lee, Ying Haur;Huang, T.C.;Ke Lin
    貢獻者: 淡江大學土木工程學系
    關鍵詞: AASHO Road Test;Linear Mixed-Effects Models;Modern Regression;Pavement Performance;Prediction Model;Present Serviceability Index;Rigid Pavements
    日期: 2013-08-01
    上傳時間: 2015-03-10 15:07:15 (UTC+8)
    出版者: Pfaffikon: Scientific.Net
    摘要: The normality assumptions with random errors and constant variance were often violated while analyzing multilevel pavement performance data using conventional regression techniques. Because of its hierarchical data structure, multilevel data are often analyzed using Linear Mixed-Effects (LME) models. The exploratory analysis, statistical modeling, and the examination of model-fit of LME models are more complicated than those of standard multiple regressions. A systematic modeling approach using visual-graphical techniques and LME models was proposed and demonstrated using the original AASHO road test rigid pavement data. The basic modeling approach includes: selecting a preliminary mean structure, selecting a random structure, selecting a residual covariance structure, model reduction, and examining the model fit. A goodness of fit plot indicates that the preliminary LME model provides better explanation to the data.
    關聯: Advanced Materials Research 723, pp.869-876
    DOI: 10.4028/www.scientific.net/AMR.723.869
    顯示於類別:[土木工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML279檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋