English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 52047/87178 (60%)
造訪人次 : 8713991      線上人數 : 280
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/100463


    題名: A new buckling theory for curved beams of solid cross sections derived from rigid body and force equilibrium considerations
    作者: Yang, Y.B.;Kuo, S.R.;Yau, J.D.
    貢獻者: 淡江大學建築學系
    關鍵詞: curved beam;instability potential;rigid body rule;stability
    日期: 2014-01-27
    上傳時間: 2015-03-01 16:52:35 (UTC+8)
    出版者: Abingdon: Taylor & Francis
    摘要: A new method is proposed for deriving the instability potential of initially stressed curved beams based on the rigid body and equilibrium considerations using the updated Lagrangian formulation. Starting from the rigid body rule, the virtual instability potential was derived for a spatially curved beam under real rigid displacements. Next, utilising the equilibrium equations for the boundary forces at the C1 and C2 states, another virtual instability potential was derived for the curved beam under virtual rigid displacements. Comparing the two potentials yields the one in total form for the curved beam. The present approach requires only simple integrations and analogical comparison of related virtual works, thereby avoiding the physically unclear, complicated derivations involved in previous procedures. Based on the first principles of rigid body rule and equilibrium, the derived potential energy is more concise than the conventional approach that requires the consideration of six stress components in the formulation. As an illustration, the present theory was successfully adopted in the buckling analysis of helical curved beams under radial loads.
    關聯: The IES Journal Part A: Civil & Structural Engineering 7(2), pp.63-72
    DOI: 10.1080/19373260.2014.883056
    顯示於類別:[建築學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML174檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋