English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49433/84396 (59%)
造訪人次 : 7469929      線上人數 : 78
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/100156

    題名: Origin of graphitic filaments on improving the electron field emission properties of negative bias-enhanced grown ultrananocrystalline diamond films in CH4/Ar plasma
    作者: K. J. Sankaran;Huang, B. R.;A. Saravanan;Tai, N. H.;Lin, I. N.
    貢獻者: 淡江大學物理學系
    日期: 2014
    上傳時間: 2015-02-03 16:37:42 (UTC+8)
    出版者: College Park: American Institute of Physics
    摘要: Microstructural evolution of bias-enhanced grown (BEG) ultrananocrystalline diamond (UNCD) films has been investigated using microwave plasma enhanced chemical vapor deposition in gas mixtures of CH4 and Ar under different negative bias voltages ranging from −50 to −200 V. Scanning electron microscopy and Raman spectroscopy were used to characterize the morphology, growth rate, and chemical bonding of the synthesized films. Transmission electron microscopic investigation reveals that the application of bias voltage induced the formation of the nanographitic filaments in the grain boundaries of the films, in addition to the reduction of the size of diamond grains to ultra-nanosized granular structured grains. For BEG-UNCD films under −200 V, the electron field emission (EFE) process can be turned on at a field as small as 4.08 V/μm, attaining a EFE current density as large as 3.19 mA/cm2 at an applied field of 8.64 V/μm. But the films grown without bias (0 V) have mostly amorphous carbon phases in the grain boundaries, possessing poorer EFE than those of the films grown using bias. Consequently, the induction of nanographitic filaments in grain boundaries of UNCD films grown in CH4/Ar plasma due to large applied bias voltage of −200 V is the prime factor, which possibly forms interconnected paths for facilitating the transport of electrons that markedly enhance the EFE properties.
    關聯: Journal of Applied Physics 116, 163102(10pages)
    DOI: 10.1063/1.4899245
    顯示於類別:[物理學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋