English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7367130      線上人數 : 55
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/100117


    題名: Fingerprint recognition by multi-objective optimization PSO hybrid with SVM
    作者: Hsieh, Ching-Tang;Hu, Chia-Shing
    貢獻者: 淡江大學電機工程學系
    關鍵詞: MOPSO-CD;SVM;fingerprint recognition
    日期: 2014-12
    上傳時間: 2015-01-28 11:08:03 (UTC+8)
    出版者: Mexico: Universidad Nacional Autonoma de Mexico * Centro de Ciencias Aplicadas y Desarrollo Tecnologico
    摘要: Researchers put efforts to discover more efficient ways to classification problems for a period of time. Recent years,the support vector machine (SVM) becomes a well-popular intelligence algorithm developed for dealing this kind of problem. In this paper, we used the core idea of multi-objective optimization to transform SVM into a new form. This form of SVM could help to solve the situation: in tradition, SVM is usually a single optimization equation, and parameters for this algorithm can only be determined by user’s experience, such as penalty parameter. Therefore, our algorithm is developed to help user prevent from suffering to use this algorithm in the above condition. We use multiobjective Particle Swarm Optimization algorithm in our research and successfully proved that user do not need to use trial – and – error method to determine penalty parameter C. Finally, we apply it to NIST-4 database to assess our proposed algorithm feasibility, and the experiment results shows our method can have great results as we expect.
    關聯: Journal of Applied Research and Technology 12(6), pp.1014-1024
    DOI: 10.1016/S1665-6423(14)71662-1
    顯示於類別:[電機工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML131檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋