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Abstract: Pegylated liposomal doxorubicin (PLD) has been widely used to treat cancer. The 

adverse effects of PLD noted in clinical practice, especially hand-foot syndrome (HFS), are 

regarded as unique, and the management methods for them remain limited. This study was aimed 

at developing a feasible experimental model for translational medicine to solve this clinical 

issue by using skin fluorescent transgenic zebrafish. We established an optimal protocol for the 

administration of Lipo-Dox™, a PLD in current clinical use, to the Tg(k18:dsred) zebrafish 

line expressing red fluorescence in keratinocytes. We made use of bodyweight, survival rate, 

gross observation, flssuorescent microscopic assessment, and pathological examination of the 

zebrafish to assess this model. The consecutive administration protocol of PLD resulted in 

growth retardation of the zebrafish embryo and survival impairment, indicating establishment 

of a significant toxicity. We observed fin necrosis and keratinocyte dissociation phenotypes in 

the PLD-treated fish after consecutive administration. The skin toxicity induced by the Lipo-

Dox injection was subsequently reversible, which might be compatible with a clinical course of 

skin recovery after discontinuation of Lipo-Dox administration. Furthermore, we found that the 

number of intestinal goblet cells, an important marker of intestinal inflammation, in the Lipo-

Dox-injected zebrafish was markedly increased, accompanied by impaired mucosal integrity. 

The intestinal inflammation induced by Lipo-Dox resembled the intestinal mucositis the clinical 

patients suffered from after the administration of PLD. In conclusion, we established a zebrafish 

model for PLD-induced HFS. The intestinal mucositis simultaneously noted in the PLD-treated 

zebrafish validated the similarity of clinical courses after administration of PLD. This model 

is easily assessable, efficient, and worthy for use in developing a new therapeutic protocol for 

prevention or treatment of HFS as well as intestinal mucositis. Further clinical investigations 

to validate the correlation between human and zebrafish data are warranted.
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Introduction
Pegylated liposomal doxorubicin (PLD) has been widely used in the treatment of 

various types of cancers including ovarian,1 breast,2 and acquired immunodeficiency 

syndrome (AIDS)-related Kaposi’s sarcoma.3 A Phase III trial for patients with 

platinum-sensitive relapsed/recurrent ovarian cancer demonstrated superiority in 

progression-free survival and a better therapeutic index for a combination of PLD 

with carboplatin in comparison with standard paclitaxel and carboplatin.4

PLD nanoparticles are doxorubicin hydrochloride encapsulated in pegylated 

liposomes. PLD is composed of distearoyl phosphatidylcholine and formulated with 

surface-bound methoxy polyethylene glycol, as for pegylation, to protect liposomes 

from detection by the mononuclear phagocytes and to increase blood circulation time.5 
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PLD displays linear pharmacokinetics over the dose range 

of 10–20 mg/m2 and nonlinear at a dose of 50 mg/m2. The 

plasma clearance of PLD is slow, and the area under the curve 

is approximately two to three orders of magnitude larger than 

a similar dose of free-form doxorubicin.6 The incidence of 

cardiotoxicity may be lower after PLD than after equivalent 

doses of standard doxorubicin.7

Among the adverse effects of PLD, hand-foot syndrome 

(HFS, also known as “palmar-plantar erythrodysesthesia”) 

and intestinal mucositis8–10 often cause infection or severe 

pain, and may induce lethal gastrointestinal bleeding. 

HFS, especially, is the most common side effect which 

compromises patients’ quality of life. The typical pathologi-

cal changes of HFS include reddening, swelling, and desqua-

mation on palms and soles.11 To date, the known protocols 

for prevention or treatment of HFS are limited except for one 

protocol describing that cooling the hands and feet during 

PLD therapy may help relieve the HFS symptoms.12 In this 

regard, establishing an animal model of HFS is an important 

step for developing agents to prevent or treat HFS.

The zebrafish has been accepted as a feasible model 

for toxicological study.13 There are abundant fluorescent 

zebrafish lines available to detect and observe subtle changes 

on tissue level grossly.14,15 For example, a green fluorescent 

kidney [Tg(wt1b:GFP)] and a red fluorescent skin transgenic 

zebrafish line [Tg(k18:dsred)] have been reported to evalu-

ate the toxic effects on kidney and skin.15,16 This advantage 

makes observation for phenotypic alterations of target tissues 

convenient and specific.

In this study, we established a zebrafish model for 

 PLD-induced HFS and intestinal mucositis. The gross 

 feature with quantitation and the pathological changes in skin 

 fluorescent transgenic zebrafish were demonstrated.

Materials and methods
Zebrafish
To investigate the adverse effects of PLD in a zebrafish 

model, we obtained a skin fluorescent transgenic zebrafish 

line established by Professor HJ Tsai,17,18 Tg(k18:dsred), from 

Tsai’s lab and raised them to 0.1–0.2 g (around 35–42 days 

post-fertilization) before the experiment.

chemicals and PlD administration
The PLD used in this study, Lipo-Dox™ (20 mg/10 mL), 

was purchased from TTY Biopharm (Taipei, Taiwan). For 

drug treatment, the Tg(k18:dsred) zebrafish were dosed 

(by  intraperitoneal injection) either without Lipo-Dox 

(buffer only; mock-control group, n=6) or with a buffer 

 containing 40 µg/g of Lipo-Dox (Lipo-Dox-injected group, 

[n=12, #1–#12]). The injection protocol is summarized in 

Figure 1. In brief, we injected Lipo-Dox one dose (40 µg/g) 

at day 0, and subsequently injected one dose per week for 

4 weeks (days 7, 14, 21, and 28), and examined the zebrafish 

 phenotypic defects at each check point (days 10, 17, 24, 31, 

38, 45, and 51).

gross and microscopic assessment  
of phenotype
All of the fish samples were observed under a microscope 

(DM 2500, Leica; Buffalo Grove, NY, USA) equipped with a 

fluorescent DsRed filter cube (Kramer Scientific, Amesbury, 

MA, USA), and we captured pictures of the fish at particular 

stages using a digital camera (Sony, Tokyo, Japan).

Pathological examination
For pathological examination, the zebrafish were fixed in 

formalin and embedded in paraffin. Sections of 5 µm were 

cut, deparaffinized, rehydrated, and stained with hematoxylin 

and eosin Y. A pathologist blinded to which experimental 

group the specimens were from evaluated the slides and 

reported the comparison results.18,19

statistics
The Kaplan–Meier method was used to depict the curves for the 

cumulative survival rates of embryos in the control and Lipo-

Dox-injected groups. To assess the effect of drug on the increase 

of weight, we fitted the following linear regression model: 

weight {initial weight} time group= + + + +β β β β0 1 2 3{ } { }
error ; where b

0
 is the intercept of the model, b

1
 is the 

Tg(k18:dsred) zebrafish

Intraperitoneal
injection

Check points

10 17 24 31 38 45 51 (days)

0 7 14 21 28

Experimental group: injection of Lipo-Dox (40 µg/g)

Mock control group: injection of buffer only

Figure 1 schematic representation of experimental protocols performed in this study.
Notes: Tg(k18:dsred) zebrafish were intraperitoneally injected either with buffer 
only (mock-control group, n=6) or with buffer containing 40 µg/g of lipo-Dox  
(Lipo-Dox™-injected group, n=12, #1–#12). We injected Lipo-Dox one dose (40 
µg/g) at day 0, and subsequently injected one dose per week for 4 weeks (days 7, 
14, 21, and 28), and examined the zebrafish phenotypic defects at each check point 
(days 10, 17, 24, 31, 38, 45, and 51).
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 regression coefficient associated with initial weight (the 

weight at the beginning of the observation period, week 0), 

b
2
 is the regression coefficient associated with time (the weeks 

after exposure to drug), and b
3
 is the regression coefficient 

associated with group (group =1 for the drug group and 0 

for the control group). Note that the measurements on the 

weight from the same embryo are correlated. To account for 

the within-embryo correlation, we applied the generalized 

estimating equation (GEE) analysis20 to estimate the param-

eters in the above model, assuming a normal distribution and a 

first-order autoregressive correlation structure for the data.

Results
gross assessment of hFs and intestinal  
mucositis in zebrafish model
The results showed that the zebrafish receiving no Lipo-Dox 

(mock control) had a smooth belly and a regular-shaped 

caudal fin (Figure 2A–E). The Lipo-Dox-injected zebrafish 

had no apparent phenotypic changes at the first three check 

points (days 10, 17, and 24), but intriguingly, displayed 

abdominal hemorrhage and fin fester, especially in the caudal 

fin regions at day 31 (Figure 2A′–E′). Thus, the most obvious 

Lipo-Dox-induced phenotypes that can be observed grossly 

are abdominal hemorrhage and fin necrosis.

We observed fin necrosis and keratinocyte dis sociation 

phenotypes in another two fish (#5 and #6) in the later stages 

(by days 38, 45, and 51) after discontinuation of Lipo-Dox 

administration (the latest injection was at day 28, Figure 1). 

Extensive fin necrosis at the caudal region was observed 

by day 38, but gradually recovered by days 45 and 51 (Fig-

ure 3A-I versus B-I and C-I; Figure 3D-I  versus E-I and 

F-I; indicated by arrows). Using fluorescent microscopy, 

we found that red fluorescent keratinocytes were aligned 

normally in the control zebrafish (data not shown), but 
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Figure 2 Abdominal hemorrhage and fin necrosis are observed in zebrafish embryos after Lipo-Dox™ injection.
Notes: (A–E) Mock control. (A'–E') Tg(k18:dsred) zebrafish (#2) was injected with buffer containing 40 µg/g of lipo-Dox.
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Tg (k18:dsred)

Check points
(days)

38

A-I D-I

E-I

F-I

A-II

B-II

C-II F-II

E-II

D-II

B-I

C-I

45

51

Epidermis

Lipo-Dox (#5) Lipo-Dox (#6)

Caudal fin

Figure 3 Effects of Lipo-Dox™ on the zebrafish’s caudal fin (I) and epidermis (II).
Notes: Lipo-Dox-injected Tg(k18:dsred) zebrafish (#5 and #6) were observed under microscopy with bright field (A-I–F-I) or an RFP filter (A-II–F-II). Fin necrosis (arrow 
indicates) and keratinocyte dissociation are the evident phenotypes in the Lipo-Dox-injected zebrafish.
Abbreviation: RFP, red fluorescent protein.
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Figure 4 Histological examination of Lipo-Dox™-injected embryos.
Notes: Fish derived from the mock control (A–C) or Lipo-Dox-injected groups (D–F) were transverse sectioned and stained with hematoxylin/eosin Y. (A and C) lateral 
side; (B and E) Ventral region; (C and F) intestine. Yellow star indicates the position of goblet cell. Black arrows indicate the positions of epidermis lesions.
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appeared in a patch-like shape or even invisible on the 

surface (Figure 3A-II versus B-II). Those red fluorescent 

keratinocyte abnormalities gradually recovered by days 45 

and 51 (Figure 3C-II, D-II, E-II, and F-II), compatible with 

the gross finding.

Pathological examination  
of abdominal skin and intestines
We next carried out paraffin sectioning and  hematoxylin/

eosin Y staining experiments to further dissect the 

 Lipo-Dox-induced abdominal hemorrhage phenotypes from 

the histological level. The results showed that several mucosa 

cells appeared in the skin epidermis, but very few goblet 

cells were observed in the intestine region in the mock-

treated control zebrafish (Figure 4A–C). However, missing 

mucosa cells with impaired mucosal integrity, thinner skin 

epidermis, and increased numbers of goblet cells (a marker 

for intestine inflammatory reaction) were observed in the 

Lipo-Dox-injected zebrafish (Figure 4D–F).

Growth retardation of zebrafish
We noticed that the Lipo-Dox-injected zebrafish larvae 

exhibited various degrees of growth retardation and impaired 

survival. For growth retardation, Table 1 displays the analysis 

result by GEE model. It shows that the growth, estimated 

by weight, in the Lipo-Dox-injected group was significantly 

less than the control group (P=0.010). The embryos in the 

Lipo-Dox-injected group tended to have a lower weight of 

0.033 g (with a standard error of 0.013 g) than those in the 

control group, adjusting the time after exposure to Lipo-Dox 

and the initial weight by the GEE method.

Survival analysis of zebrafish
We first applied the Kaplan–Meier method to depict the 

survival curves of embryos in the control and Lipo-Dox-

injected groups. As shown in Figure 5, a 25% death rate 

at the end of study, 7.43 weeks after exposure to drug, in 

the Lipo-Dox-injected group was noted. The mean survival 

time for the Lipo-Dox-injected group was 5.26±0.13 weeks. 

Table 1 generalized linear regression based on the gee method for assessing the effect of lipo-Dox™ on the weight growth rates 
of embryos

Variable Estimate Standard 
error

z-value P-value Lower CL Upper CL

intercept 0.037 0.043 0.877 0.381 -0.046 0.120
initial weight 
group

1.340 
-0.033

0.286 
0.013

4.681 
-2.587

,0.001 
0.010

0.779 
-0.058

1.901 
-0.008

Abbreviations: CL, confidence level; GEE, generalized estimating equation.

0
0 1 2 3 4

Weeks since the first injection

5

Control

× Treatment

6 7

20

40

60

S
u

rv
iv

al
 r

at
e 

(%
)

80

100

Figure 5 Kaplan–Meier estimates of survival curves for the mock control and Lipo-Dox™-injected groups.
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No embryos died in the control group. The log-rank test was 

further utilized to examine the homogeneity of the death rate 

curves for the two groups. The result shows a significant dif-

ference in time to death between the groups (P-value =0.043), 

confirming the Lipo-Dox-injected group had suffered a 

significant harmful effect.

Conclusion
In the zebrafish model we established for gross assessment 

of PLD-induced HFS, we observed both the intestinal 

mucositis, a common side effect of PLD in humans, as well 

as skin  damage with the typical pathological changes of 

HFS, validating that this model is clinically feasible due 

to the similarities in the clinical course and manifestations. 

The toxicity induced by Lipo-Dox injection was reversible, 

as is the case in clinical practice, where the typical skin 

 pathological changes of HFS disappear within a few weeks 

after discontinuation of the drug.12

The markedly increased number of intestinal goblet cells 

(an important marker of intestinal inflammation)21,22 we 

observed in the Lipo-Dox-injected zebrafish suggest that the 

intestinal inflammation induced by Lipo-Dox resembles the 

intestinal mucositis the clinical patients suffered from after 

the administration of this anticancer therapeutic.

Our data suggest that the zebrafish can be regarded as an 

efficient screening model for agents managing PLD-induced 

HFS, as well as intestinal mucositis. However, further  clinical 

investigations to validate the correlation between human and 

zebrafish data are warranted.
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