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This letter describes the fast growth of ultrananocrystalline diamond (UNCD) films by bias-

enhanced nucleation and growth process in CH4/Ar plasma. The UNCD grains were formed at

the beginning of the film’s growth without the necessity of forming the amorphous carbon

interlayer, reaching a thickness of �380 nm in 10 min. Transmission electron microscopic

investigations revealed that the application of bias voltage induced the formation of graphitic

phase both in the interior and at the interface regions of UNCD films that formed interconnected

paths, facilitating the transport of electrons and resulting in enhanced electron field emission

properties. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4875808]

The admirable properties of diamond, namely, high

hardness, low friction coefficient, chemical inertness, high

electrical resistivity, and semiconducting properties makes it

a promising material for numerous applications.1–3

Ultrananocrystalline diamond (UNCD) films grown in

CH4/Ar plasma possess nano-sized grains with grain bounda-

ries of considerable thickness, which contain sp2-bonds and

hence acquire excellent conductivity.4 The transport of elec-

trons through the UNCD films is noticeably better than the

conventional microcrystalline diamond (MCD) films and

therefore the UNCD films possess superior electron field

emission (EFE) properties than the MCD films.5,6 However,

the conductivity of grain boundary phase in UNCD films is

still poor which hinders the performance of the EFE emitters

made from UNCD films. Moreover, nucleation of diamond

grains on Si substrates is difficult. The formation of an amor-

phous carbon (a-C) phase as transition layer between the dis-

similar materials is usually required.7 Such an a-C layer is

rather resistive and hinders the transport of electrons from Si

to UNCD films thereby limiting the EFE properties attain-

able in UNCD films.

The bias-enhanced nucleation and growth (BEN-BEG)

process is found to be an effective diamond nucleation tech-

nique, which can circumvent the formation of a-C films for

MCD films grown in CH4/H2 plasma.8 The application of

bias voltage in the CH4/H2 plasma using microwave plasma

enhanced chemical vapor deposition (MPECVD) system not

only facilitated the growth of diamond but also efficiently

reduced the size of the grains.9,10 Moreover, Teng et al.
reported the enhanced EFE behavior for the BEG grown dia-

mond films in CH4/H2 plasma and proposed that BEG pro-

cess can convert the a-C into nanographite phases.11

Nevertheless, whether the same BEN-BEG process can be

applied in CH4/Ar plasma for growing the UNCD films has

not been reported yet.

In this paper, we report on the high growth rate of

UNCD films achieved by applying negative bias voltage in

CH4/Ar plasma. The application of negative bias initiated

the formation of UNCD grains even in the minimum growth

time of 10 min. In addition, the bias voltage induced the for-

mation of graphitic phases in the interior and the interface of

UNCD films that enhanced the electron conduction, resulting

in the improved EFE properties.

The UNCD films were grown on n-type silicon sub-

strates by MPECVD system. Prior to the deposition of

UNCD films, the silicon substrates were preseeded by ultra-

sonication in methanol solution, containing nano-sized dia-

mond powders (�5 nm) and Ti powders (�32.5 nm) for

45 min. The substrates were ultrasonicated again in methanol

for 1 min to eradicate the possibly adhered nanoparticles.

The UNCD films were grown in Ar (98%)/CH4 (2%) plasma

(100 sccm) and excited by a 1200 W microwave power with

a 150 Torr total pressure. A negative bias voltage (�200 V)

was applied to the Si substrate when the pressure reached

150 Torr. It should be noted that unlike the case in the

CH4/H2 plasma, in which applying a negative voltage is

straightforward and very effective in modifying the granular

structure of the MCD films, the application of bias voltage in

CH4/Ar plasma is rather difficult, as the arcing is easily

induced in the Ar plasma. We re-designed the stainless steel

substrate holder to a square shaped holder with roundish in

edges, in which the Si-substrate is accommodated almost in

plane with the surface of the substrate holder. The films were

grown for 10 min and the corresponding films were desig-

nated as UNCD10B. In addition, the UNCD films without

bias of different growth periods (10 and 30 min) were grown

to facilitate the comparison and the corresponding films were

designated as UNCD10N and UNCD30N, respectively.

The bias current is an effective parameter that can moni-

tor the progress of the nucleation of diamond in the BEN-

BEG process. The top right inset of Fig. 1(a) shows the

evolution of bias current against the time after the onset of

the application of the negative bias voltage. The bias currenta)Electronic mail: inanlin@mail.tku.edu.tw
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increased rapidly and reached a saturated value of

200 mA/cm2 in 3 min after the application of bias voltage,

indicating that the diamond nuclei have already fully covered

the Si substrates in such a short interval. It is to be mentioned

that in CH4/H2 plasma, the bias current required at least 7.5

min to reach a saturated value.11 Fig. 1(a) shows scanning

electron microscopy (SEM; Jeol JSM-6500F) image of the

UNCD10B films. The morphology of the UNCD10B shows

random and spherically structured grains in the films (Fig.

1(a)), with the thickness of �380 nm, which was estimated

from the cross-sectional SEM micrographs of the films (bot-

tom right inset of Fig. 1(a)). The growth rate was around

�38 nm/min. In contrast, when the films were grown without

the negative bias voltage, the growth rate of UNCD10N films

decreased markedly to around 22 nm/min., i.e., with thick-

ness of �220 nm when grown without bias in CH4/Ar plasma

for 10 min (inset of Fig. 1(b)). The granular structure has not

yet completely developed and the films contain large propor-

tion of a-C phase (Fig. 1(b)). The detailed microstructural

investigation on these UNCD films will be further illustrated

using transmission electron microscopy (TEM) shortly. It

requires at least 30 min in MPECVD process without bias to

develop a spherically granular structured as similar to that of

the morphology of UNCD10B films (UNCD30N, Fig. 1(c)).

Moreover, the UNCD30N films show the thickness of

�330 nm with average growth rate of �11 nm/min (inset of

Fig. 1(c)). From these observations, we can conclude that by

applying �200 V bias, we obtained several fold of magni-

tude higher growth rate for UNCD films grown in CH4/Ar

plasma, as compared to the films grown without bias.

For the purpose of explicitly differentiating the various

types of carbon bonding configuration in the films, near edge

X-ray absorption spectroscopy (NEXAFS) for these UNCD

films were examined. Fig. 2 shows the NEXAFS spectra of

the UNCD films deposited in CH4/Ar plasma with and with-

out bias. Curve I in Fig. 2 clearly ascertains that the major

configuration of carbon in UNCD10B films is the sp3-bonded

carbon of the diamond phase, with a smaller amount of

sp2-bonded carbons distributed in the films.12,13 A sharp

peak at �289.5 eV corresponds to the electron core excita-

tion of C-C (1s)-r* of the sp3-bonded carbon in diamond,

whereas a dip valley observed at 302.0 eV is assigned to the

second absorption band gap of diamond.14,15 The small peak

at �284.5 eV is assigned to the C1s-p* transition corre-

sponding to the sp2 phase.16,17 Moreover, a weak bump at

286.7 eV observed between the p* and the r* bonds is attrib-

uted to the C-H bond,18 which was presumed to originate

from the absorption of hydrocarbon at grain boundaries dur-

ing the film deposition process.19 On the other hand, for the

UNCD10N films grown without bias with growth time of

10 min (curve II, Fig. 2), there appears only a small peak at

�284.5 eV (p*-band) and an abrupt rise near 287.5 eV,

which indicates that the films contain only the sp2 phase.

The peaks corresponding to diamond phase are not observ-

able. Only when the UNCD films were grown without bias

for longer time, i.e., more than 30 min, the signature of

sp3-bonded carbon, the r* bonds at 289.5 eV, and the deep

valley at 302 eV were observable (curve III, Fig. 2). These

results indicate that in nucleation process without bias,

sp2-bonded carbon was only formed in the first 10 min and

no sp3-bonded carbon was observable. In contrast, by apply-

ing bias voltage of �200 V, the diamond grains can be

FIG. 1. SEM micrographs with the insets showing the cross-sectional SEM

image of (a) UNCD10B, (b) UNCD10N, and (c) UNCD30N films. The evolu-

tion of bias current in negative bias of �200 V is shown in the top right inset

of Fig. 1(a).

FIG. 2. NEXAFS spectra of (I) UNCD10B, (II) UNCD10N, and (III)

UNCD30N films.
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initiated at the very beginning of the film’s growth in

CH4/Ar plasma.

The EFE properties of these UNCD films were meas-

ured with a tunable parallel plate setup, in which the cath-

ode-to-anode distance was controlled using a micrometer.

The current-voltage (I-V) characteristics were measured

using an electrometer (Keithley 2410) under 10�6 Torr and

were modeled by Fowler-Nordheim (F-N) theory.20 Fig. 3

shows the EFE properties, the current density (Je) versus

applied field (E) curves, of the films deposited in CH4/Ar

plasma with or without bias. The corresponding F-N plots,

the log (Je/E
2) versus 1/E curves, were shown as the inset in

Fig. 3. The turn-on field (E0) was designated as the point of

interception of the straight lines extrapolated from the low

and the high-field segments of the F-N plots. Interestingly,

the UNCD10B films possess the best EFE properties, viz., the

lowest E0 value of 4.2 V/lm and the highest Je value of

2.6 mA/cm2 at E¼ 8.5 V/lm (curve I, Fig. 3). In contrast,

the EFE properties were inferior when the UNCD films were

grown without bias. Curve II of Fig. 3 shows that the

E0 value was increased to (E0)¼ 10.8 V/lm with the Je value

of 2.2 mA/cm2 at E¼ 17.8 V/lm for UNCD10N films

and curve III of Fig. 3 shows that (E0)¼ 16.6 V/lm and

(Je)¼ 1.3 mA/cm2 at E¼ 27.6 V/lm for UNCD30N films.

The above-described results generate two unresolved

questions concerning the role of negative bias voltage on the

evolution of granular structure and the EFE behavior of the

UNCD films; they are: (i) what are the grain boundary

phases formed during the fast growth of UNCD10B films?

and (ii) how do they enhance the EFE properties of

UNCD10B films? To answer these questions, TEM micro-

structural investigations (Jeol 2100F) were performed to ver-

ify the changes of the hybridized carbon phase in the films. It

should be noted that when the samples were ion-milled only

from the Si side, the TEM foil contains mostly the regions

near the surface of the UNCD films, whereas when the sam-

ples were ion-milled both from the top and the bottom surfa-

ces evenly at the same time, the thin foil will contain the

materials near the UNCD-to-Si interface of the UNCD films.

The bright field (BF) TEM image for the surface region of

UNCD10B films (Fig. 4(a)) and the associated selected area

electron diffraction (SAED) pattern (inset, Fig. 4(a)) show

that the clusters in the film consist of ultra-small spherical di-

amond grains (5–10 nm). Detailed examination of the SAED

patterns reveals the commonly observed (111), (220), and

(311) diffraction rings corresponding to the structure of dia-

mond phase. Fig. 4(b) shows the TEM micrograph of the

interface region of the UNCD10B films, indicating that this

region of the films show similar granular structure as those

observed in the surface region of the films (cf. Fig. 4(a)), i.e.,

there are evenly distributed ultranano-sized diamond grains.

The corresponding SAED pattern of Fig. 4(b) also reveals

the usually observed (111), (220), and (311) diffraction rings

corresponding to the structure of diamond phase.

On the other hand, the BF-TEM image for the surface

region of UNCD10N (Fig. 4(c)) along with the SAED pattern

(inset of Fig. 4(c)) shows that the films also consist of

ultra-small spherical diamond grains as like the grains in the

surface region of UNCD10B films. Nevertheless, the TEM

micrograph corresponding to the interface region of the

UNCD10N films (Fig. 4(d)) shows a faint micrograph of

undeveloped diamond grains. The SAED pattern shown in

the inset of Fig. 4(d) also shows a large diffused ring in the

center of the SAED along with the faded diamond rings, sig-

nifying the existence of amorphous (or sp2-bonded) phase in

this region with fewer diamond grains. These TEM observa-

tions clearly evidenced that diamond grains were formed at

the very beginning of the film’s growth for UNCD10B films

due to applied bias, whereas only a-C phase were present at

the interface region for the UNCD10N films grown without

bias.

The behavior of the applied negative bias voltage on

modifying the microstructure of the UNCD films is

FIG. 3. EFE properties of (I) UNCD10B, (II) UNCD10N, and (III) UNCD30N

films. The inset shows the corresponding F-N plots.

FIG. 4. The TEM bright field micrographs of (a) the surface region and (b)

the interface region of UNCD10B films with the insets showing the SAED

patterns of the corresponding TEM images. The TEM bright field micro-

graphs of (c) the surface region and (d) the interface region of UNCD10N

films with the insets showing the SAED patterns of the corresponding TEM

images.

181603-3 Saravanan et al. Appl. Phys. Lett. 104, 181603 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

163.13.36.166 On: Fri, 12 Dec 2014 02:24:24



interesting, but such information is not able to account for

the significant improvement on the EFE properties for the

UNCD10B films. To understand the genuine mechanism on

the enhancement of these properties, the bonding structure of

the UNCD films was examined using the carbon K-edge

electron energy loss spectroscopy (EELS) to unambiguously

distinguish between the different carbon materials such as di-

amond, graphite and a-C.21 Fig. 5 shows the selected area

EELS spectra corresponding to each TEM micrograph of

UNCD10B and UNCD10N films (cf. Fig. 4), revealing that

there are significant changes in bonding structure due to the

application of negative bias voltage in the nucleation and the

growth process. The carbon edge core-loss EELS spectra

corresponding to both the surface and the interface regions

of UNCD10B films (curves I and II, respectively, Fig. 5(a))

and that of UNCD10N films (curves III and IV, respectively,

Fig. 5(a)) contain an abrupt rise near 289.5 eV (r*-band) and

a large dip in the vicinity of 302 eV, implying the diamond

nature of the materials22,23 in both the UNCD10B and the

UNCD10N films. But the signature of sp3-bonded carbons in

the interface region of UNCD10N films is much less promi-

nent, compared to that in the surface region of the films.

There is a p*-band at 285.5 eV in core-loss EELS spectra,

indicating that some proportion of sp2-bonded carbon was

induced, probably along the grain boundary regions of these

UNCD films.

It is still necessary to differentiate the nature of the

sp2-bonded carbon to understand the genuine mechanism for

enhancing the EFE properties for the UNCD10B films.

Notably, the plasmon-loss EELS spectra are the most effec-

tive measurement for distinguishing the crystalline

sp2-bonded carbons (the graphite) from the amorphous ones,

as the plasmon-loss EELS spectra for the graphitic phase

shows a prominent peak at s3 (27 eV) and those for the a-C
phase shows a peak at s1 (22 eV).23,24 In contrast, the crystal-

line sp3-bonded carbons in diamond, shows a peak conse-

quent to the bulk plasmon at s4 (33 eV) with a shoulder

corresponding to the surface plasmon at s2 (23 eV). The

Is2/Is4 ratio is about 1:�2. Curves I and II in Fig. 5(b) show

the plasmon-loss EELS spectra of the surface and the inter-

face regions of UNCD10B films, respectively. It is observed

that both the surface and the interface regions of UNCD10B

films are dominated by larger s3-band (�27 eV) along with

the s2- and s4-bands,25 indicating that both regions consist of

some proportion of graphitic phases besides diamond. Quite

the opposite, the plasmon-loss spectra for both the surface

and the interface regions of UNCD10N (curves III and IV,

respectively, Fig. 5(b)) are subjugated by s1-band (22 eV), in

which s2- and s4-bands are still present but with much

smaller spectral weight compared with the s1-band (22 eV).

These results indicate that the films grown without bias pos-

sess a-C phases along with some diamond grains in the

UNCD films. Such a result is in accord with the previous

observations that the bias enhanced growth of UNCD films

induced the formation of graphitic phases in the grain bound-

ary regions of the UNCD films.9,10 Moreover, Teng et al.
also reported the induction of nano-graphite filaments, when

the diamond films were grown in CH4/H2 plasma using bias

voltage.11 Previous reports revealed that the graphitic phases

are more conducting than that of the a-C phases,25,26 such

that the formation of sp2-bonded graphitic phases at the grain

boundaries creates conduction channels for the electrons.

In summary, in this work, the films were grown by

BEN-BEG process in CH4/Ar plasma. The application of

negative bias voltage not only induced the instantaneous

nucleation of diamond circumventing the formation of a-C
phase near the UNCD-to-Si interface region but also con-

verted the grain boundary phase into nanographite. Hence,

the electrons can be transported easily across the

UNCD-to-Si interface and along the graphite phases to the

emitting surface, and which were then emitted to vacuum

without any difficulty. Especially, UNCD10B films exhibited

superior EFE properties as E0¼ 4.2 V/lm with

Je¼ 2.6 mA/cm2 at E¼ 8.5 V/lm. On the other hand, the

UNCD10N films contain mostly the trans-polyacetylene

phases in the grain boundaries and a-C phase in the interface,

resulting in inferior EFE properties. As a result, the fast

growth process of UNCD films using negative bias voltage

induced graphitic phase in the grain boundaries, which is the

genuine factor for the superior EFE properties of UNCD10B

films.
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