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Abstract: The behavior of a chaotic dynamic system is extremely sensitive to the system parameters and initial 
conditions. In this paper, a recurrent fuzzy neural network (RFNN) is used to online approximate the unknown nonlinear 
term of chaotic system dynamics with a good accuracy. Meanwhile, an intelligent second-order sliding-mode control
(ISSMC) system is proposed for a chaotic dynamic system with high accuracy tracking response. A neural controller 
and a robust compensator are designed in the proposed ISSMC system. Because of the ISSMC system uses integration 
method to obtain the actual control signal, the chattering phenomenon can be removed effectively. Further, the controller 
parameter adaptation laws are derived based on the Lyapunov function, so that the system stability of the closed-loop
system can be guaranteed. Finally, the proposed ISSMC method is successfully applied to the chaotic tracking control
problem.  
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1. INTRODUCTION 

During the past four decades, sliding mode control 
(SMC) is a popular robust strategy to treat uncertain 
control systems [1, 2]. The important feature of the 
SMC scheme is its ability to deal with external 
disturbances and unmodeled system dynamics. The 
SMC has other advantages liking as ease of 
implementation and reduction in the order of the state 
equation. Such properties make the SMC system 
suitable for real-time control applications for nonlinear 
dynamic control systems. However, to satisfy the sliding 
condition, a switching control law should be constructed, 
which results in the chattering phenomena. However, 
the chattering phenomenon is a well-known 
disadvantage of the SMC method. 

To attack this problem, several methods have been 
proposed to solve the chattering problem. A common 
method is using a saturation function to replace a 
switching function in the switching control law [2]. But, 
an indefinite steady state error will be caused if the 
boundary layer is selected too large. Another method is 
to diminish the gain of the switching control law. If the 
switching control law is not strong enough to deal with 
the system uncertainties, the robustness of the SMC 
system will become poor. 

For the chattering eliminating, a second-order 
sliding-mode control (SSMC) is an effective method [3, 
4]. A discontinuous switching control law is contained 
in the derivative control signal and the actual control 
signal is obtained after integrating the discontinuous 
switching control law. Thus, the SSMC system 
possesses the advantages of system stability, without 
chattering and system robustness to uncertainties which 
are usually composed of unpredictable plant parameter 
variations and external disturbances. 

On the other hand, various intelligent sliding-mode 
controllers of nonlinear systems using fuzzy system, 
neural network or neural-fuzzy approaches have been 
proposed [5-11]. Especially when systems have large 

uncertainties and strong nonlinearities, it is known that 
fuzzy systems, neural networks or neural-fuzzy systems 
are powerful techniques in the discipline of system 
control and system description. For real-time practical 
implementation, the controller parameters of the 
intelligent sliding-mode controller can be online tuned 
by the online parameter learning algorithm, but it doest 
not require off-line parameter learning algorithm. 

The fuzzy neural network (FNN) possesses both of 
the advantages of fuzzy systems and neural networks. It 
brings the learning and computational power of neural 
networks into fuzzy systems and provides the human 
thinking and reasoning of fuzzy systems into neural 
networks [12, 13]. However, the FNN applications are 
limited to the static input-output mapping problems due 
to that FNNs are feedforward neural network. To attack 
this problem, interest in using a recurrent fuzzy neural 
network (RFNN) has been steadily growing [14-18]. 
Un-liking the FNN, RFNN demonstrates good control 
performance in the presence of system uncertainties due 
to the RFNN has feedback loops which are used to 
memorize past information [18]. 

The purpose of this paper proposes an intelligent 
second-order sliding-mode control (ISSMC) system, 
which combining the principles of SSMC and RFNN, 
for a chaotic tracking control problem. A RFNN is used 
to online approximate the unknown nonlinear term of 
chaotic dynamics systems with a good accuracy. 
Meanwhile, a parameter learning algorithm is derived in 
the sense of a Lyapunov function to guarantee system 
stable. Finally, the simulation results verify that the 
system stabilization, system robustness and favorable 
tracking performance can be achieved by the proposed 
ISSMC system.  

 

2. DESCRIPTION OF RFNN 

The network structure of RFNN is given as shown in 
Fig. 1, where there are two input variables and one 
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output variable. The operation functions in each layer 
are introduced in the following. 
Layer 1: No function is performed in this layer. 
Layer 2: Each node in this layer defines a Gaussian 
membership function. For the i-th input, the function is 
given as 
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where n  is the number of fuzzy sets and ijv  and ijc  

are the adjustable parameters. 
Layer 3: The firing strength of the k-th rule is 
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where m  is the number of fuzzy rules. 

Layer 4: The temporal firing strength is a linear 
combination function expressed as 
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where kor  is the recurrent weight of the k-th recurrent 

neuron to o-th recurrent neuron and pre

k  is the output 
signals of the k-th recurrent neuron in the previous time. 

Layer 5: The output is obtained as 
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Fig. 1. Network structure of RFNN. 

 

By the universal function approximation of RFNN, it 
implies that there exists an ideal RFNN *y  such that it 

can approximate a time-varying nonlinear function   
as [18] 

  ******* ),,( ΘαrvcΘα TTy  (5) 

where *α  and *Θ  are the optimal parameter vectors 
of α  and Θ , respectively, *c , *v  and *r  are those 
of c , v  and r , respectively, and   is the 
approximation error. And, an estimated RFNN ŷ  is 
given as 

 ΘαrvcΘα ˆˆ)ˆ,ˆ,ˆ(ˆˆ TTy   (6) 

where α̂  and Θ̂  are the estimates of *α  and *Θ , 
respectively, and ĉ , v̂  and r̂  are those of *c , *v  
and *r , respectively. Thus, the estimation error can be 
obtained as 

 yy ˆ~   ΘαΘαΘα
~~~

ˆˆ~ TTT  (7) 

where ααα ˆ~ *   and ΘΘΘ ˆ~ *  . Taking the Taylor 
series expansion of Θ

~
 to obtain [8, 9] 

 hrCvBcAΘ  ~~~~ TTT  (8) 

where ccc ˆ~ *   σσσ ˆ~ *   rrr ˆ~ *  , 
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 m , and h  is a vector containing 

high order terms. Substituting (8) into (7) yields 

  ΘαhrCvBcAαΘα
~~)~~~(ˆˆ~~ TTTTTTy 

  αCrαBvαAcΘα ˆ~ˆ~ˆ~ˆ~ TTTT  (9) 

where  Θαhα
~~ˆ TT  denotes a lumped 

approximation error. In this paper, a assumption is given 
as E  where E  is a positive constant. 

 

3. ISSMC SYSTEM FOR CHAOTIC 
TRACKING 

3.1 Description of chaotic dynamic 
The behavior of a chaotic dynamic system is 

extremely sensitive to the system parameters and initial 
conditions applied [19-21]. In the last three decades, 
control and synchronization of chaotic dynamic systems 
have become an important topic. This paper considers a 
Duffing’s chaotic dynamic system as [19] 

 utqxpxpxpx  )cos(3

21   

 uf  )(x  (10) 

where t  is the time variable, Txx ],[ x  is the state 
vector,   is the frequency, )(xf  is the system 
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dynamic, u  is the control input and p , 1p , 2p  and 
q  are real constants. The open-loop chaotic behavior is 
simulated with 4.0p , 1.11 p , 0.12 p . In this 
paper, consider the effect of the system parameters, two 
simulation cases of the system parameters are 
considered with Case 1 )6.1,5.1(),( q and Case 2 　

)8.1,1.4(),( q . The uncontrolled chaotic responses 
( 0u ) with initial condition )0,0(),( xx   are shown 
in Fig. 2(a) for Case 1 and in Fig. 2(b) for Case 2. It is 
shown that the uncontrolled chaotic dynamic system has 
different chaotic trajectories for different system 
parameter values. 
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Fig. 2. Behavior of uncontrolled chaotic dynamic. 
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Fig. 3. The block diagram of the ISSMC system. 

 

3.2 Design of ISSMC 
The control objective of the chaotic tracking problem 

is to find a control law so that the chaotic state x  can 
track a chaotic command cx  closely. Define the 

tracking error as 

 cxxe   (11) 

For controller design, a sliding surface and a dynamic 
sliding surface are selected as [22-24] 
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where 1a , 2a , 1b  and 2b  are positive constants. 
Differentiating (13) with respect to time and using (12), 
we can obtain 

 sbsbs 21    
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0
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where the nonlinear term )3()()( cxfz  xx  , 

111 bac  , 21122 bbaac  , 21123 babac   and 

224 bac  . The output of the proposed ISSMC system as 
shown in Fig. 3 is designed as 
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where ncu dececececz
t


0

4321
ˆ   serves as the 

neural controller, the RFNN output ẑ  is utilized to 
online approximate the nonlinear term )(xz , and the 
robust compensator rcu  is designed to deal with the 
effect of the approximation error between )(xz  and ẑ . 
Imposing the control law ismcuu    into (14), we can 
obtain that 

 rcuzz  ˆ)(x rcuz  ~  (17) 

where zzz ˆ)(~  x . Using the universal function 
approximation, (17) can be rewritten as 

 rc

TTTT u  αCrαBvαAcΘα ˆ~ˆ~ˆ~ˆ~  (18) 

To prove the stability of the ISSMC system, define a 
Lyapunov function as 
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where  , c , v  and r  are positive learning 
constants. Differentiating (19) with respect to time and 
using (18) obtains 
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If the parameter adaptive laws are selected as 

 Θα ˆˆ   (21) 

 αAc ˆˆ c  (22) 

 αBv ˆˆ v  (23) 

 αCr ˆˆ r  (24) 

and the robust compensator is designed as 

 )sgn(
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where   is a strictly positive constant that is less than 
one, then (20) can be rewritten as 
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It has been observed that is 0  as t  [25]. 
Thus, the control law of the ISSMC system can 
guarantee the stability. Meanwhile, if the condition 

0  satisfies, the sliding surface convergence to zero 
( 0s ) for all time. It implies that the tracking error 
convergence to zero ( 0e ). 

Remark 1: Generally speaking, one neural approximator 
is used under the direct-type intelligent control scheme, 
but two neural approximators are required to 
approximate the unknown system dynamics under the 
indirect-type intelligent control scheme. The proposed 
ISSMC system is of the indirect type, but it is worth 
noting that we need only one RFNN to online estimate 
the nonlinear term. 

Remark 2: It can been observed that the control gain of 

the robust compensator 
)1(   e

E
 varies between 

E  and 

E

. 

 

4. SIMULATION RESULTS 

It should be emphasized that we does not need to 
know any knowledge of the chaotic dynamics to 

construct the proposed ISSMC system. The control 
parameters of the ISSMC system are selected as 

411  ba , 422  ba , 20 , 1 rvc  , 

5.0  and 1.0E . These parameters are selected 
through some trials. The parameters  , c , v  and 

r  are the leaning rates in the RFNN. In general, if the 

leaning rates are chosen to be sufficiently small, this 
will result in slow learning speed. On the contrary, if the 
leaning rates are chosen too large, the learning speed 
can be increased; yet, the system may become unstable. 
Meanwhile, if the bound constant of approximator error 
E  is not strong enough to deal with the approximator 
error, the robustness of the ISSMC system will become 
poor. 

In the simulation, the RFNN has two input variables 
(  and  ) and one output variable ( ẑ ) with 933   

fuzzy rules. The simulation results of the ISSMC system 
are shown in Figs. 4 and 5 for Case 1 and 2, respectively. 
Since the control rules are initialized from zero ( 0α  ), 
the RFNN has the drawback of large transient responses 
of the state trajectories and control efforts during the 
control parameter learning process. From the simulation 
results, it shows that the proposed ISSMC system can 
achieve favorable chaotic tracking responses. 
Meanwhile, the learned RFNN can online approximate 
the unknown nonlinear term with a good accuracy.  

 

5. CONCLUSION 

Standard second-order sliding-mode control (SSMC) 
systems in [3, 4] have the main drawback that the 
control law require the nominal plant model. To avoid 
the above disadvantage, this paper studies a model-free 
intelligent second-order sliding-mode control (ISSMC) 
for a chaotic tracking problem. The behavior of a 
chaotic system can be evaluated through a recurrent 
fuzzy neural network (RFNN). Finally, we present the 
numerical simulation results to illustrate the 
effectiveness of the ISSMC scheme. Also the chattering 
does not appear due to the actual control signal is 
obtained after an integrating operation. 

The major contributions of this paper are: (1) the 
successful development of the ISSMC system for a 
chaotic tracking problem; (2) the successful 
development of the RFNN to confront the behavior of a 
chaotic system; (3) the successful derivation of 
parameter learning algorithms in the Lyapunov stabile 
theorem; (4) the successful derivation of the robust 
compensator with exponential reaching phase; (5) the 
successful application of the ISSMC system on a 
chaotic dynamic system with robust control 
performance and high accuracy response. 
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Fig. 4. Simulation results of chaotic dynamic for Case 1. 

(a) the control response x  
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(c) the control input u  
(d) the RFNN output ẑ  
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Fig. 4. Simulation results of chaotic dynamic for Case 1. 
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