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In this article, a new profit function based on a surrogate variable of its performance
variable is provided to develop an optimum screening procedure for manufacturing. The
optimum screening procedure helps producers set up the mean level of manufacturing
and the screening limits of a surrogate variable to reach a maximum expected profit per
unit. The proposed method is useful when the products in the manufacturing process

are classified into different grades and sold in two alternate markets. A cement-packing
example is used to illustrate the proposed method, and a numerical study is conducted
to evaluate the effects of cost components and distribution parameters on the expected
profit per unit. The proposed screening procedure provides a significant improvement
over existing methods in term of higher expected profit per unit.

Keywords: Production; screening limits; performance variable; surrogate variable; profit
function.

1. Introduction

Automatic production techniques have been successfully applied in today’s man-
ufacturing. Products often are inspected before they are shipped to consumers to
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determine whether their quality meets the acceptance level. In most situations, the
quality characteristic of a product (or performance variable) is quantitative such
as the weight, volume and the geometric dimension of products. If the value of a
performance variable is lower than its lower specification limit, it may be sold at a
discounted price or reworked. Producers may enhance the mean level in production
to decrease the proportion of nonconformities. However, such an adjustment may
unavoidably increase the cost. Consequently, the selection of process mean level
depends on a tradeoff among the production cost, payoff of conforming products,
and the costs incurred owing to nonconforming products.

Many researchers have paid attention on the development of optimum screening
procedure. References 24, 3, 8 and 9 considered the problem of optimum process set-
ting for a filling process, in which underfilled or overfilled products are reprocessed
at a fixed cost. References 12, 4 and 5 studied sale conditions of products when
the measure of performance variable is lower than the specification limit. However,
in many situations, it would be impossible or not economical to screen products
via performance variable, and producers may then inspect its surrogate variable
instead. When a variable that is highly correlated with the performance variable is
easier and cheaper to measure, we call this variable the surrogate variable. Many
studies in various applications with models developed using surrogate variable can
be found in the literature, such as, Refs. 5, 26, 2.

Due to the production variability, manufacturers often sort accepted products
into different grades and sell them to different markets. This practice has been
used for sporting goods, electronic products, chemical materials and some primary
materials such as lumber, wheat, and butter. Products of the same brand name
but different grades may be sold at different prices, or marketed in different chain
stores or areas. Some economic inspection procedures can be found in Refs. 25, 26,
14, 16, 10 and 6.

Most works in the literature gave detailed discussions for the development of
optimum screening procedure using the joint density function of the performance
and surrogate variables. However, all these studies considered a constant penalty
cost to punish misclassification error of products in a given interval. It is unrealistic
to use the same penalty cost for misclassification of product no matter how large
an error incurred. In this paper, a new profit function is provided to determine the
optimum process mean level and the screening limits of surrogate variable. Assum-
ing that a surrogate variable can be observed and the conditional density function
of its performance variable is known, the level or grade of this surrogate variable
can be used to construct the new profit function to reach a maximum expected
profit per unit. Moreover, the proposed profit function punishes the misclassifica-
tion error of a product with a penalty cost proportional to the distance between
the real quality level of the performance variable and the specification limits. The
proposed profit function considers existing methods as special cases and is capable
of reaching a larger expected profit per unit.
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The rest of this article is organized as follows. In Sec. 2, the optimum screening
procedure with a new profit function is discussed. A new profit function containing
the selling prices, production cost, inspection cost, rework cost, and penalty costs
as components is given. Methods of finding the optimum process mean level and the
screening limits of the surrogate variable are provided. An example is presented in
Sec. 3 to illustrate the proposed method. Moreover, a numerical study is conducted
to evaluate the performance of the proposed method. The effect of cost components
and distribution parameters on the expected profit per unit are studied through a
sensitivity study. Finally, some concluding remarks are given.

2. Optimum Screening Procedure for a New Profit Model

We consider a process in which products are manufactured and inspected into three
quality levels A, B, and C before they are shipped to consumers. Products of grade
A are sold to a primary market, products of grade B are sold to a secondary market,
and products of grade C are reworked through the same manufacturing process and
inspected and classified again. Let L1 and L2(≤ L1) be two specification limits on
a performance variable Y for grades A and B. A product with quantity Y ≥ L1

and L1 > Y ≥ L2 is sold at fixed prices a1 and a2 per unit, respectively, to
the primary and secondary markets; and product with Y < L2 is reworked with
the same manufacturing process at a rework cost r with r < a2 < a1. Assume that
the production cost per unit is proportional to Y , i.e., when Y = y, the cost is b+cy,
where b is the fixed cost per product and c(c ≥ 0) is the unit cost of a quantity
of product. Let the performance variable of a reworked product be YR. Without
loss of generality, we can assume that Y and YR are identically and independently
normally distributed with mean µy and variance σ2

y , denoted by N(µy, σ2
y).

In the situation when the inspection cost of Y is high, producers would want
to run the screening procedure based on its surrogate variable X instead. We now
consider the conditional distribution of X , given Y = y as N(λ1+λ2y, σ2), where λ1

and λ2 are known constants. Usually, λ2 is positive so that X and Y are positively
correlated. If X is negatively correlated with Y , one can use a screening variable
−X rather than X to develop the optimum screening procedure. Accordingly, the
covariate (X, Y ) follow a bivariate normal distribution with means (µx, µy), vari-

ances (σ2
x, σ2

y) and correlation coefficient ρ =
√

λ2
2σ

2
y/σ2

x, where µx = λ1 + λ2µy

and σ2
x = λ2

2σ
2
y + σ2.

Let ω1 and ω2 be screening limits on X with ω1 ≥ ω2. Every accepted product
under inspection is classified into one of the three quality grades: (i) if X ≥ ω1, we
conclude that Y ≥ L1. The product is sold at the price a1 to the primary market;
(ii) if ω2 ≤ X < ω1, we conclude that L2 ≤ Y < L1. The product is sold at the price
a2 to the secondary markets; (iii) if X < ω2, the product is reworked at a rework
cost r. Because X is not perfectly correlated with Y , the error of accepting products
with Y < L1 or Y < L2 incur penalty costs. A way to discourage a misclassification
is to consider the penalty cost proportional to the distance between the real quality
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level of Y and the specification limits of quality. For example, if a product has the
condition Y < L1 but it is misclassified as Y ≥ L1, the penalty cost can be taken
as d(L1 − Y ), where d is a constant multiplier to the penalty. Alternatively, if a
product has the condition Y < L2 but it is misclassified as L2 ≤ Y < L1, the
penalty cost can be calculated as d(L2 − Y ). Let PG = PG(Y |x, µy , ω1, ω2) be the
profit function per unit, and its expected value is E(PG) = E[PG(Y |x, µy, ω1, ω2)].
Accordingly, PG can be presented by

PG =




a1 − b − cY − cx, Y ≥ L1, given X ≥ ω1,

a1 − b − cY − cx − d(L1 − Y ), Y < L1, given X ≥ ω1,

a2 − b − cY − cx, Y ≥ L2, given ω2 ≤ X < ω1,

a2 − b − cY − cx − d(L2 − Y ), Y < L2, given ω2 ≤ X < ω1,

E[PG(YR|xR, µy, ω1, ω2)] − r − cx, X < ω2.

(1)

Let d1 = d(L1 − Y ), if L2 ≤ Y < L1, given X ≥ ω1; and let d2 = d(L2 − Y ), if
Y < L2, given ω2 ≤ X < ω1, and let c′ = c − d, d′1 = dL1 and d′2 = dL2, then PG

reduces to P ′
G as the following in (2). P ′

G is similar to the profit function PII in
Lee et al.,15 but P ′

G uses the conditional density function to calculate its expected
profit and c′ �= c.

P ′
G =




a1 − b − cY − cx, Y ≥ L1, given X ≥ ω1,

a1 − b − c′Y − cx − d′1, Y < L1, given X ≥ ω1,

a2 − b − cY − cx, Y ≥ L2, given ω2 ≤ X < ω1,

a2 − b − c′Y − cx − d′2, Y < L2, given ω2 ≤ X < ω1,

E[P ′
G(YR|xR, µy, ω1, ω2)] − r − cx, X < ω2.

(2)

For parallel comparison, we reduce the proposed profit function of (2) with the
condition of c′ = c. Then P ′

G in (2) can be rewritten as

P ′
G =




a1 − b − cY − cx, Y ≥ L1, given X ≥ ω1,

a1 − b − cY − cx − d1, Y < L1, given X ≥ ω1,

a2 − b − cY − cx, Y ≥ L2, given ω2 ≤ X < ω1,

a2 − b − cY − cx − d2, Y < L2, given ω2 ≤ X < ω1,

E[P ′
G(YR|xR, µy, ω1, ω2)] − r − cx, X < ω2.

(3)

We want to show that the new profit function P ′
G performs better than PII with a

bigger expected profit per unit even when the underlying distribution is different.
In practice, we need to classify the quality of product according to an observed level
of surrogate variable. So the conditional density function is used to calculate the
expected profit per unit instead of using a joint density function. Let δi = (ωi −
µx)/σx, Φ−i = Φ(−δi), φi = φ(δi) and Φi = Φ(δi), i = 1, 2, where φ and Φ are the
probability density function and cumulative density function of the standard normal
distribution, respectively; let Ψ(·, ·|ρ) be the standardized bivariate normal distribu-
tion with correlation coefficient ρ; let Ψ−1·1 = Ψ(−δ1, η|−ρ), Ψ−1·2 = Ψ(−δ1,−η|ρ),
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Ψ1·1 = Ψ(δ1, η − χ|ρ), Ψ1·2 = Ψ(δ1, χ − η| − ρ), Ψ2·1 = Ψ(δ2, η − χ|ρ), and
Ψ2·2 = Ψ(δ2, χ − η| − ρ). Using the proof in Appendix A, we can show that:

(a)
∫ ∞
−∞ yf(y|X ≥ ω1)dy = µy + ρσyφ1

Φ−1
.

(b)
∫ L1

−∞ f(y|X ≥ ω1)dy = Ψ−1·1
Φ−1

.

(c)
∫ ∞
−∞ yf(y|ω2 ≤ X < ω1)dy = µy + ρσyφ21

Φ12
.

(d)
∫ L2

−∞ f(y|ω2 ≤ X < ω1)dy = Ψ1·1−Ψ2·1
Φ12

.

where φ21 = φ2 − φ1 and Φ12 = Φ1 − Φ2.
It follows that the expected profit of P ′

G in (3) can be derived based on the proof
in Appendix B as

E(P ′
G) =

1
Φ−2




a1 + a2 − 2b − 2cx − c

(
2(L1 − ησy) + ρσy

[
φ1

Φ−1
+

φ21

Φ12

])

− d1
Ψ−1·1
Φ−1

− d2
Ψ1·1 − Ψ2·1

Φ12
− (r + cx)Φ2




.

(4)

If E(P ′
G) is a unimodal function of η and δi, the optimum values of η and δi

can be determined by solving equations of ∂E(P ′
G)

∂η = 0 and ∂E(P ′
G)

∂δi
= 0, i = 1, 2,

simultaneously as the follows:

d1Φ1·1φ(η)
Φ−1φ(η − χ)

+
d2

Φ12
{Φ1·3 − Φ1·4} − 2cσy

φ(η − χ)
= 0 (5)

cρσy

{
φ1 − δ1Φ−1

Φ2
−1

+
δ1Φ12 − φ21

Φ2
12

}
− d1

Φ2
−1

{Φ2·1Φ−1 − Ψ−1·1}

+
d2

Φ2
12

{Φ2·2Φ12 − Ψ1·1 + Ψ2·1} = 0 (6)

cρσy

Φ2
12

{φ21 − δ2Φ12} − d2

Φ2
12

{Φ3·1Φ12 − Ψ1·1 + Ψ2·1} + (r + cx)

− 1
Φ−2

{
a1 + a2 − 2b − 2cx − c

(
2(L1 − ησy) + ρσy

[
φ1

Φ−1
+

φ21

Φ12

])

− d1
Ψ−1·1
Φ−1

− d2
Ψ1·1 − Ψ2·1

Φ12
− (r + cx)Φ2

}
= 0 (7)

where Φ1·1 = Φ((−δ1 + ρη)/
√

1 − ρ2), Φ1·3 = Φ((δ1 − ρ(η − χ))/
√

1 − ρ2), Φ1·4 =
Φ((δ2 − ρ(η − χ))/

√
1 − ρ2), Φ2·1 = Φ((η − ρδ1)/

√
1 − ρ2), Φ2·2 = Φ((η − χ −

ρδ1)/
√

1 − ρ2), and Φ3·1 = Φ((η − χ− ρδ2)/
√

1 − ρ2). If E(P ′
G) is not a unimodal

function of η and δi, a global searching procedure (see Refs. 21 and 22) is needed
to find the optimum values of η and δi in a large ranges of η and δi.

Because there is no close-form solution for Eqs. (5)–(7), the optimum values
of parameters η and δi, denoted by η∗

G′ and δ∗i,G′ , i = 1, 2, should be evaluated
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numerically. A computation approach such as the General-purpose Optimization
Method27 or the L-BFGS-B method13 is required to obtain these values of η∗

G′ and
δ∗i,G′ , i = 1, 2. Accordingly, the optimum process mean level of Y based on P ′

G,
denoted by µ∗

y,G′ , and the optimal screening limits on X , denoted by ω∗
1,G′ and

ω∗
2,G′ , can be determined, respectively by

µ∗
y,G′ = L1 − η∗

G′σy. (8)

ω∗
i,G′ = µx + δ∗i,G′σx, for i = 1, 2. (9)

Using the derivation in Appendix C, we can shown that the expected profit function
of PG in (1) as

E(PG) = E(P ′
G; d1 = d′1, d

′
2 = d′2)

+
d

Φ−2

{∫ L1

−∞
yf(y|X ≥ ω1)dy +

∫ L2

−∞
yf(y|ω2 ≤ X ≤ ω1)dy

}
, (10)

where
∫ L1

−∞ yf(y|X ≥ ω1)dy is a functional of (η, δ1) and
∫ L2

−∞ yf(y|ω2 ≤ X ≤ ω1)dy

is a function of (η, δ1, δ2). Let

G1 =
ησy + µy

Φ1
φ(η)(1 − Φ1·1),

G2 =
(η − χ)σy + µy

Φ12
φ(η − χ)(Φ1·3 − Φ1·4),

G3 =
−1
Φ−1

∫ η

−∞

z2σy + µy

2π
√

1 − ρ2
e−(δ2

1+z2
2+2ρδ1z2)/2(1−ρ2)dz2

+
φ1

(Φ−1)2

∫ ∞

δ1

∫ η

−∞

z2σy + µy

2π
√

1 − ρ2
e−(z2

1+z2
2+2ρz1z2)/2(1−ρ2)dz2dz1,

G4 =
1

Φ12

∫ η−χ

−∞

z2σy + µy

2π
√

1 − ρ2
e−(δ2

1+z2
2+2ρδ1z2)/2(1−ρ2)dz2

+
φ1

(Φ12)2

∫ δ1

δ2

∫ η−χ

−∞

z2σy + µy

2π
√

1 − ρ2
e−(z2

1+z2
2+2ρz1z2)/2(1−ρ2)dz2dz1,

G5 =
−1
Φ12

∫ η−χ

−∞

z2σy + µy

2π
√

1 − ρ2
e−(δ2

2+z2
2+2ρδ2z2)/2(1−ρ2)dz2

+
φ2

(Φ12)2

∫ δ1

δ2

∫ η−χ

−∞

z2σy + µy

2π
√

1 − ρ2
e−(z2

1+z2
2+2ρz1z2)/2(1−ρ2)dz2dz1,

where z1 = (x − µx)/σx and z2 = (y − µy)/σy. If E(PG) is a unimodal function
of η and δi, the optimum values of η and δi, denoted by η∗

G and δ∗i,Gi = 1, 2, can
be determined numerically. Otherwise, a global searching procedure is needed. It
can be shown that η∗

G and δ∗i,Gi = 1, 2, are the values satisfying the following three
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equations simultaneously:

∂

∂η
E(P ′

G; d1 = d′1, d2 = d′2) +
d

Φ−2
{G1 + G2} = 0 (11)

∂

∂δ1
E(P ′

G; d1 = d′1, d2 = d′2) +
d

Φ−2
{G3 + G4} = 0 (12)

∂

∂δ2
E(P ′

G; d1 = d′1, d2 = d′2)

+
1

(Φ−2)2

{
dG5 + φ2

[∫ L1

−∞
yf(y|X ≥ ω1)dy +

∫ L2

−∞
yf(y|ω2 ≤ X ≤ ω1)dy

]}
= 0

(13)

The optimum process mean level of Y based on PG, denoted by µ∗
y,G, and the opti-

mal screening limits on X , denoted by ω∗
1,G and ω∗

2,G, can be determined, respec-
tively by

µ∗
y,G = L1 − η∗

Gσy , (14)

ω∗
i,G = µx + δ∗i,Gσx, for i = 1, 2. (15)

3. Illustration Example and Numerical Results

3.1. Illustration example

A cement-packing example is used for illustration. The packing operation of a
cement factory consists of two steps with a filling process and an inspection process.
Each cement bag is processed by a filling machine, and moved to the loading and
dispatching phases on a conveyor belt. Inspection by continuous weighting feeders
(CWFs) is performed. A CWF measures the milliampere (mA) of the load cell for
each cement bag, denoted by X . Past experience indicates that the measurement of
X is positively correlated with the cement bag’s weight denoted as the performance
variable Y . The current measurement in mA of the load cell is cheaper and easier
to measure than measuring the cement bag’s weight directly.

For the purpose of performance comparison, this paper adopts cost components
and parameters following the suggestions of Lee et al.15 with σ2

y = 1.5635, and
the conditional distribution X , given Y = y is N(4.0 + 0.08y, 0.0125). The cost
components and the specification limits for Y are a1 = 3.25, a2 = 3.10, r = 0.10, b =
0.10, c = 0.06, cy = 0.04, cx = 0.004, d1 = 6.5, d2 = 6.2, L1 = 41.5 and L2 = 40.
The corresponding constants are σ2

x = 0.0125, ρ = 0.894 and χ = 1.2. Four profit
functions are considered as follows:

Case I: Using the profit function PI of Lee et al.15 which involves only the
performance variable in the profit function.
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Case II: Using the profit function PII of Lee et al.15 which involve both the
performance and surrogate variables in the profit function but using the
joint density function to calculate the expected profit per unit.

Case III: Using the profit function P ′
G in (3).

Case IV: Using the profit function PG in (1).

Table 1 shows the optimum process mean level, the screening limits of surrogate
variable and the expected profit per unit for various profit functions in Case I
to Case IV. The optimum values of η∗

II , µ
∗
y,II and E(PII ) in Table 1 are slightly

different from the values in Lee et al.15 because the Eq. (8) of Lee et al.15 contains
a minor error. Specifically, the notation of “]” is mistakenly placed in front of the
component φ(η − χ). This equation should have been written as[

d1Φ
(

−δ1+ηρ
(1−ρ2)0.5

)
φ(η) + d2

{
Φ

(
δ1+(χ−η)ρ
(1−ρ2)0.5

)
− Φ

(
δ2+(χ−η)ρ
(1−ρ2)0.5

)}
φ(η − χ)

]
{cσyΦ(−δ2)} = 1.

Table 1 shows that the expected profits per unit, E(P ′
G) and E(PG), are both

bigger than those of E(PI) and E(PII ).

3.2. Numerical results

A numerical study is conducted to compare the expected profits based on the
profit functions of PI , PII of Lee et al.15 and P ′

G in (3) when the cost components
or parameters of the underlying distribution vary. Table 2 shows that the expected
profit E(P ′

G) is bigger than those of E(PI) and E(PII ). This result supports the
claim that the proposed method gains improvement from existing methods.

From Table 2 we observe that E(PII ) and E(P ′
G) increase as χ or ρ increase.

E(PII ) and E(P ′
G) decrease as σ increases. When the cost component of b increases,

Table 1. Optimum process mean level, screening limits of surrogate variable
and expected profit for various profit functions.

Parameter Optimum process mean Expected
Cases estimates level & screening limits profit

Case I η∗
I = −0.4576 µ∗

y,I = 42.0720 (kg) E(PI) = 0.5272

Case II η∗
II = −0.4750

δ∗1,II = 0.4680

δ∗2,II = 0.9023

µ∗
y,II = 42.0938 (kg)

ω∗
1,II = 7.4199 (mA)

ω∗
2,II = 7.2664 (mA)

E(PII ) = 0.4613

Case III η∗
G′ = −1.4944

δ∗
1,G′ = −0.8529

δ∗
2,G′ = −1.0966

µ∗
y,G′ = 43.3680 (kg)

ω∗
1,G′ = 7.3739 (mA)

ω∗
2,G′ = 7.3466 (mA)

E(P ′
G) = 0.5843

Case IV η∗
G = −1.5370

δ∗1,G = −11.2593

δ∗2,G = −0.5278

µ∗
y,G = 43.4213 (kg)

ω∗
1,G = 6.2127 (mA)

ω∗
2,G = 7.4146 (mA)

E(PG) = 0.7916
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Table 2. Values of µ∗
y,G′ , E(PII ) and E(P ′

G) for various
χ, σy , ρ, b and cx.

χ σy ρ b cx µ∗
y,G′ E(PII ) E(P ′

G)

0.7 1.25 0.894 0.1 0.004 43.3862 0.4827 0.5021
0.9 — — — — 43.3810 0.4863 0.5486
1.1 — — — — 43.3704 0.4895 0.5713
1.3 — — — — 43.3619 0.4922 0.5933
1.5 — — — — 43.3035 0.4945 0.6013

1.2 1 0.894 0.1 0.004 42.9797 0.515 0.6238
— 1.2 — — — 43.2887 0.4954 0.5909
— 1.4 — — — 43.7107 0.4777 0.5684
— 1.6 — — — 43.9415 0.4617 0.5487
— 1.8 — — — 44.2951 0.4472 0.54

1.2 1.25 0.65 0.1 0.004 44.3802 0.4473 0.8708
— — 0.725 — — 44.3786 0.4563 0.8925
— — 0.8 — — 44.4085 0.4685 0.893
— — 0.875 — — 44.3549 0.4854 0.8983
— — 0.95 — — 44.5891 0.5122 0.9457

1.2 1.25 0.894 0.1 0.004 43.3671 0.5029 0.5838
— — — 0.2 — 43.5861 0.4029 0.483
— — — 0.3 — 43.6814 0.3029 0.3182
— — — 0.4 — 43.7787 0.2029 0.2095
— — — 0.5 — 44.0110 0.1029 0.1031

1.2 1.25 0.894 0.1 0.002 43.3671 0.505 0.5888
— — — — 0.003 43.3671 0.504 0.5863
— — — — 0.004 43.3671 0.5029 0.5838
— — — — 0.005 43.3631 0.5019 0.5787
— — — — 0.006 43.3608 0.5009 0.5750

Note: “—” indicates the value does not change.

both E(PII ) and E(P ′
G) decrease. Moreover, both E(PII ) and E(P ′

G) are insensitive
to the change of the cost component cx. When the profit function P ′

G is used, the
optimum process mean level of µy decreases as χ increases. The optimum process
mean level decreases as σy increases. The optimum process mean level decreases
first and then increases as the value of b increases. The change of the optimum
process mean level is insensitive to the change of cx.

Numerical results of sensitivity analysis study based on the proposed profit
function of P ′

G are given in Figs. 1 to 8. Figure 1 shows that the optimum screening
limits decrease as χ increases. Figure 2 shows that the width of band between the
optimum screening limits decreases as σy increases. Figure 3 shows that the width
of band between the optimum screening limits decreases first and then increases
as b increases. Figure 4 shows that the change of the optimum screening limits are
insensitive to the change of cx. Figure 5 shows that the proportion of primary market
decreases and the proportion of secondary market increase as χ increases. But the
proportion of reworked products is insensitive to the change of χ. Figure 6 shows
that the proportion of primary market decreases and the proportions of secondary
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Fig. 1. Effect of χ on ω1 and ω2 for P ′
G.

Fig. 2. Effect of σy on ω1 and ω2 for P ′
G.
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Fig. 3. Effect of b on ω1 and ω2 for P ′
G.

Fig. 4. Effect of cx on ω1 and ω2 for P ′
G.
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Fig. 5. Effect of χ on the proportions of different markets for P ′
G.

Fig. 6. Effect of σy on the proportions of different markets for P ′
G.

market and reworked products increase as σy increases. Figure 7 shows that the
proportion of primary market increases slightly and the proportion of secondary
market decreases slightly as ρ increases. But the proportion of reworked products
is insensitive to the change of ρ. Figure 8 shows that the proportions of primary
market, secondary market and reworked products are insensitive to the change of cx.
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Fig. 7. Effect of ρ on the proportions of different markets for P ′
G.

Fig. 8. Effect of cx on the proportions of different markets for P ′
G.

When the profit model PG is used to develop the optimum screening procedure,
we are interested in the effect of the multiplier of penalty cost on the expected
profit model. Figure 9 indicates that the optimum screening procedure based on
PG performs the best with a biggest expected profit among all competed optimum
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Fig. 9. Compares the expected profits between PG and other designs.

screening procedures if the multiplier of penalty cost is taken at least 24% of the
unit cost of the quantity of a product.

4. Concluding Remarks

We develop an optimum screening procedure to maximize manufacturing profit per
unit. A new profit function based on a surrogate variable of its performance variable
is introduced to consider selling price, production cost, inspection cost, rework cost
and penalty costs incurred due to component misclassifications. A search method
is provided to determine the optimum process mean level and the screening limits
of the surrogate variable. Some useful formulas in the searching method are derived
in the Appendices.

A cement-packing example is used to demonstrate the application of the pro-
posed optimum screening procedure. Through this example, we observe that the
proposed method reaches a higher expected profit than the existing methods can.
A sensitivity analysis study is conducted and the effects of the cost components
and the distribution parameters on the expected profits are discussed. When using
the proposed method, users need to have knowledge on the variance and correla-
tion coefficient of the performance variable. Extending the present work to cases
where the variance and the correlation coefficient of the performance variable are
unknown will be a future topic of studies.
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Appendix A: Proof of the Properties with the Profit Function P ′
G

(a) It can be shown that the conditional probability distribution of Y , given X = x

is normal with mean µy + ρσy/σy(x − µx) and variance σ2
y(1 − p2).∫ ∞

−∞
yf(y|X ≥ ω1)dy

=
1

P (X ≥ ω1)

∫ ∞

ω1

∫ ∞

−∞
yf(x, y)dydx

=
1

Φ−1

∫ ∞

ω1

∫ ∞

−∞
yf(y|x)dyf(x)dx

=
1

Φ−1

∫ ∞

ω1

[
µy + ρ

σy

σx
(x − µx)

]
f(x)dx

=
1

Φ−1

{(
µy − ρ

σy

σx
µx

) ∫ ∞

ω1

f(x)dx + ρ
σy

σx

∫ ∞

ω1

xf(x)dx

}
. (A.1)

Let z = (x − µx)/σx and x = µx + zσx. Equation (A1) can be rewritten as

µy − ρ
σy

σx
µx + ρ

σy

σxΦ−1

∫ ∞

δ1

(µx + zσx)φ(z)σxdz

= µy − ρ
σy

σx
µx +

{
ρ

σy

σxΦ−1

∫ ∞

δ1

(µx + zσx)
1√
2π

e−z2/2dz

}

= µy − ρσy
φ1

Φ−1

(b)
∫ L1

−∞
f(y|X ≥ ω1)dy =

P (X ≥ ω1, Y < L1)
P (X ≥ ω1)

=
Ψ−1·1
Φ−1

.

(c) ∫ ∞

−∞
yf(y|ω2 ≤ X < ω1)dy =

1
Φ12

∫ ω1

ω2

∫ ∞

−∞
yf(y|x)dyf(x)dx

=
1

Φ12

∫ ω1

ω2

[
µy + ρ

σy

σx
(x − µx)

]
f(x)dx

= µy − ρ
σy

σx
µx + ρ

σy

σxΦ12

∫ ω1

ω2

xf(x)dx (A.2)

Equation (A2) can be rewritten as

µy − ρ
σy

σx
µx +

{
ρ

σy

σxΦ12

∫ δ1

δ2

(µx + zσx)
1√
2π

e−z2/2dz

}
= µy − ρσy

φ21

Φ12

(d)
∫ L2

−∞
f(y|ω2 ≤ X < ω1)dy =

P (ω2 ≤ X < ω1, Y < L2)
P (ω2 ≤ X < ω1)

=
Ψ1·1 − Ψ2·1

Φ12
.
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Appendix B: Proof of E(P ′
G)

The expected profit per product is given by

E(P ′
G) =

∫ ∞

L1

(a1 − b − cy − cx)f(y|x ≥ ω1)dy

+
∫ L1

−∞
(a1 − b − cy − cx − d1)f(y|x ≥ ω1)dy

+
∫ ∞

L2

(a2 − b − cy − cx)f(y|ω2 ≤ x < ω1)dy

+
∫ L2

−∞
(a2 − b − cy − cx − d2)f(y|ω2 ≤ x < ω1)dy

+ {E(P ′
G) − r − cx}p(x < ω2).

Accordingly,

E(P ′
G)Φ−2 = (a1 − b − cx)

∫ ∞

−∞
f(y| ≥ ω1)dy

+ (a2 − b − cx)
∫ ∞

−∞
f(y|ω2 ≤ x < ω1)dy − d1

∫ L1

−∞
f(y|x ≥ ω1)dy

− c

{∫ ∞

−∞
yf(y|x ≥ ω1)dy +

∫ ∞

−∞
yf(y|ω2 ≤ x < ω1)dy

}

− d2

∫ L2

−∞
f(y|ω2 ≤ x < ω1)dy − (r + cx)Φ2.

Accordingly, we obtain

E(P ′
G) =

1
Φ−2

{
a1 + a2 − 2b − 2cx − c

(
2(L1 − ησy) + ρσy

[
φ1

Φ−1
+

φ21

Φ12

])

− d1
Ψ−1·1
Φ−1

− d2
Ψ1·1 − Ψ2·1

Φ12
− (r + cx)Φ2

}
.

Appendix C. Proof of E(PG)

The expected profit per product is given by

E(PG) =
∫ ∞

L1

(a1 − b − cy − cx)f(y|x ≥ ω1)dy

+
∫ L1

−∞
(a1 − b − c′y − cx − d′1)f(y|x ≥ ω1)dy

+
∫ ∞

L2

(a2 − b − cy − cx)f(y|ω2 ≤ x < ω1)dy
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+
∫ L2

−∞
(a2 − b − c′y − cx − d′2)f(y|ω2 ≤ x < ω1)dy

+ {E(PG) − r − cx}p(x < ω2).

Accordingly,

E(PG)Φ−2 = (a1 − b − cx)
∫ ∞

−∞
f(y| ≥ ω1)dy

+ (a2 − b − cx)
∫ ∞

−∞
f(y|ω2 ≤ x < ω1)dy − d′1

∫ L1

−∞
f(y|x ≥ ω1)dy

− c

{∫ ∞

−∞
yf(y|x ≥ ω1)dy +

∫ ∞

−∞
yf(y|ω2 ≤ x < ω1)dy

}

− d′2

∫ L2

−∞
f(y|ω2 ≤ x < ω1)dy − (r + cx)Φ2

+ d

{∫ L1

−∞
yf(y|x ≥ ω1)dy +

∫ L2

−∞
yf(y|ω2 ≤ x < ω1)dy

}
.

We obtain

E(PG) = E(P ′
G; d1 = d′1, d2 = d′2)

+
d

Φ−2

{∫ L1

−∞
yf(y |X ≥ ω1)dy +

∫ L2

−∞
yf(y|ω2 ≤ X < ω1)dy

}
,
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