Backtesting VaR in consideration of the higher moments of the distribution for minimum-variance hedging portfolios

Chung-Chu Chuanga,⁎, Yi-Hsien Wangb, Tsai-Jung Yeha, Shuo-Li Chuangc

a Department of Management Sciences, Tamkang University, Taipei, Taiwan, ROC
b Department of Banking and Finance, Chinese Culture University, Taipei, Taiwan, ROC
c Department of Information, Risk, and Operations Management, University of Texas at Austin, United States

ABSTRACT

The higher moments of a distribution often lead to estimated value-at-risk (VaR) biases. This study's objective is to examine the backtesting of VaR models that consider the higher moments of the distribution for minimum-variance hedging portfolios (MVHPs) of the stock indices and futures in the Greater China Region for both short and long hedgers. The results reveal that the best backtesting VaR for the MVHP considered both the higher moments of the MVHP distribution and the asymmetry in volatility, cross-market asymmetry in volatility, and level effects in the covariance matrix of assets in the MVHP. These empirical results provide references for investors in risk management.

1. Introduction

The occurrence of numerous incidents related to inappropriate risk management, such as those involving the Orange County government and JP Morgan Chase and Co., have motivated companies to emphasize risk management and profitability. Furthermore, the implementation of the Basel II Accord by the Basel Committee on Banking Supervision at the Bank for International Settlements signifies the determination that risk management methods have become a central issue for financial institutions and companies globally.

Ensuring accuracy is the main issue in applying value-at-risk (VaR) models. In 1996, the Basel Committee on Banking Supervision amended the Basel Accord to require that banks approximate suitable capital adequacy using an internal VaR model and conduct backtests to assess the model's reliability. When asset returns display heavy tails or skewness, the t distribution outperforms normal distribution for estimating VaR. Chong (2004) and So and Yu (2006) discovered that the t distribution can better capture heavy tails in asset returns. However, t distributions underperform asset returns in identifying skewness. Thus, Favre and Galeano (2002) proposed a mean-modified VaR optimization model that utilizes the higher moments of the distribution to capture both heavy tails and skewness. Favre and Galeano (2002) also found that a mean-modified VaR optimization model is necessary for VaR estimation.

The volatility clustering that is common in financial data can be identified using a univariate generalized autoregressive conditional heteroskedasticity (GARCH) model (Baillie and Myers, 1991; Bollerslev, 1986; Engle, 1982). However, the inability of the GARCH model to capture asymmetry in volatility led Glosten et al. (1993) to develop the univariate Glosten, Jagannathan and Runkle (GJR) model. Pochon and Teiletche (2007) and Mokni et al. (2009) have reported that, in addition to the better capturing asymmetry in volatility, the VaR performance of the GJR model was superior to that of the GARCH model. However, interactions between asymmetry in volatility have commonly occurred in the asset returns of hedging portfolios; therefore, researchers proposed the bivariate asymmetric diagonal VECH (ADVECH) model to capture the asymmetry in and cross-market asymmetry in volatility in the covariance matrix of assets in the portfolio (Cotter and Hanly, 2012; De Goeij and Marquering, 2004). In addition, the vector error correction (VEC) model can solve the problem of long-term information loss when taking the difference of time series. Thus, Chuang et al. (2012) proposed the multivariate VEC-ADVECH model that can simultaneously reveal long-term deviations among variables in mean equations and the asymmetry in volatility, the cross-market asymmetry in volatility in the covariance matrix of assets in the hedging portfolio.
The level effect refers to the influence of asset returns on volatility, and the predictive ability of models that consider that the level effect is superior to those of models that fail to consider it. De Goiej and Marquering (2009) extended the multivariate ADVECH model of De Goiej and Marquering (2004) into the multivariate level ADVECH (ADVECH-L) model, which can simultaneously identify level effects, asymmetry in volatility, and cross-market asymmetry in volatility in the covariance matrix of assets. However, few studies have considered the use of the multivariate VEC-ADVECH-L model to investigate the VaR performance of minimum-variance hedging portfolios (MVHPs).

In situations with heavy tails or skewness in returns on assets, using higher moments of the distribution to estimate the VaR can improve the VaR performance. This study refers to Johnson’s hypotheses (1960) to establish the MVHP of the multivariate time-variant volatility model for stock indices and derived futures in the Greater China Region (i.e., the Hang Seng, Taiwan, and Shanghai A-share stock indices and futures) for short and long hedgers. Additionally, this study compares backtesting VaR performance for the MVHP both considering and without considering the higher moments of the MVHP distribution on the likelihood ratio test of Kupiec (1995) and the conditional coverage test of Christoffersen (1998).

The main contribution of the study shows, for short and long hedgers, that the backtesting for VaR performances that considers the higher moments of the distribution for the MVHP were consistently superior to performances of the model that does not consider the higher moments of the distribution for the MVHP. Additionally, the backtesting showed that the best VaR performance for the MVHP was from a model that considered the higher moments of the MVHP and then to calculate the hedge ratio of the MVHP at date $n + 1$. Consequently, if y_9 is not 0, the conditional covariance is determined by the product of returns on assets i and j as well as and information shocks. The larger y_9 is, the more level effects are. If y_9 is 0, the conditional covariance is only determined by information shocks i.e., it is the VEC-ADVECH model. Eqs. (3) and (4) are based on the dynamic conditional correlation proposed by Tsay (2009), where ρ_{ij} represents the dynamic conditional correlation coefficient of returns on assets i and j at time τ. In addition, γ_{ij} captures the asymmetric interaction effect of return shocks between assets i and j at time τ. Moreover, Eq. (2) is the conditional covariance of the returns on assets i and j at time τ. Moreover, α_{ij} captures the asymmetric interaction effect of return shocks between assets i and j at time τ. Therefore, γ_{ij} estimates the asymmetric interaction effect of returns on assets i and j at time τ. In addition, α_{ij} represents the effect of cross-market asymmetry in volatility. Moreover, γ_{ij} is used to capture the impact of level effects. Consequently, if y_9 is not 0, the conditional covariance is determined by the product of returns on assets i and j as well as and information shocks. The larger y_9 is, the more level effects are. If y_9 is 0, the conditional covariance is only determined by information shocks i.e., it is the VEC-ADVECH model. Eqs. (3) and (4) are based on the dynamic conditional correlation proposed by Tsay (2009), where ρ_{ij} represents the dynamic conditional correlation coefficient of returns on assets i and j at time τ. Additionally, γ_{ij} captures the asymmetric interaction effect of return shocks between assets i and j at time τ. Furthermore, α_{ij} represents the dynamic conditional correlation coefficient between returns on assets i and j that is influenced by normalization shocks at time τ. Finally, Table 1 compares the specifications of the models and the parameter-related restrictions.

<table>
<thead>
<tr>
<th>Model</th>
<th>γ</th>
<th>α_2</th>
<th>α_3</th>
<th>α_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEC-DVECH</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VEC-ADVECH</td>
<td>0</td>
<td>Unrestricted</td>
<td>Unrestricted</td>
<td>Unrestricted</td>
</tr>
<tr>
<td>VEC-DVECH-L</td>
<td>Unrestricted</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>VEC-ADVECH-L</td>
<td>Unrestricted</td>
<td>Unrestricted</td>
<td>Unrestricted</td>
<td>Unrestricted</td>
</tr>
</tbody>
</table>

Note: VEC-DVECH denotes a multivariate DVECH model with a vector error correction term. VEC-ADVECH represents a multivariate ADVECH model with a vector error correction term. VEC-DVECH-L is a multivariate DVECH-L model with a vector error correction term. VEC-ADVECH-L denotes a multivariate ADVECH-L model with a vector error correction term.
Because the log likelihood function is a nonlinear function of the parameters in the empirical model, this study used the BHHH algorithm that was proposed by Berndt et al. (1974) to obtain the maximum likelihood estimates of the parameters.

2.3. VaR model for MVHP of short and long hedgers

Let \(\beta_j \) be the hedge ratio of MVHP and let \(r_{it} \) be the returns on asset \(i \) at time \(t \), then the returns of the MVHP at time \(t \) are \(r_{p,t} = \delta_{p,t} + \beta_j r_{jt} \) for short hedgers and \(r_{p,t} = -\delta_{p,t} + \beta_j r_{jt} \) for long hedger. At a confidence level of \(1 - \alpha \), the VaR model for the MVHP of short hedgers is

\[
\text{VaR}_{p,t}^{\text{short}} = \mu_p + \delta_{p,t} \sigma_p \tag{5}
\]

and the VaR model for the MVHP of long hedgers is

\[
\text{VaR}_{p,t}^{\text{long}} = \mu_p + \delta_{p,t} \sigma_p \tag{6}
\]

where \(\text{VaR}_{p,t}^{\text{short}} \) (\(\text{VaR}_{p,t}^{\text{long}} \)) represents the VaR of the MVHP returns at time \(t \) for short (long) hedgers, \(\sigma_p = \sqrt{\mathbf{W} \sum \mathbf{w}} \) is the standard deviation of the MVHP returns at time \(t \), and \(\mathbf{W} \) and \(\sum \) represent the weight vector and covariance matrix of the various asset returns in the MVHP, respectively. When the higher moments of the MVHP distribution are ignored, \(\delta_{p,t} \) is set as the \(\alpha \)th percentile of the standard normal distribution. This study sets \(\alpha \) as 1% and 5%. When the higher moments of the MVHP distribution are considered, we follow the approach of the mean-modified VaR optimization model proposed by Favre and Galeano (2002) (simply labeled the FG model hereafter), setting \(\delta_{p,t} \) as

\[
\delta_{p,t} = z_{\alpha} + (1/6) \left(z_{\alpha}^2 - 1 \right) \frac{\sigma_p}{\sum} (1/24) \left(z_{\alpha}^3 - 3z_{\alpha} \right) \frac{\sigma_p}{\sum} - (1/36) \times \left(z_{\alpha}^2 - 2z_{\alpha} \right) \frac{\sigma_p}{\sum} \tag{7}
\]

where \(z_{\alpha} \) represents the \(\alpha \)th percentile of the standard normal distribution, and \(\sum \) and \(\frac{\sigma_p}{\sum} \) represent the skewness and kurtosis of the MVHP returns, respectively. Pochon and Teiletche (2007) list the \(z_{\alpha} \) values under different levels of significance.

The likelihood ratio test of Kupiec (1995) is used to compare the backtesting of the VaR performance for the MVHP from variant multivariate time-variant volatility models in this study. However, the numbers failure series may be clustered, and the conditional coverage test of Christoffersen (1998), which is a joint test of unconditional coverage and serial independence, is also used to compare the VaR performance for the MVHP from the variant multivariate time-variant volatility models in this study.

3. Empirical results

Table 2 lists the summary of statistics. At a significance level of 5%, the Jarque–Bera test statistics of the stock indices and futures in the Greater China Region did not support that any one follows normal distribution. Table 3 lists the hedge ratios of the MVHP for stock indices and futures in the Greater China Region. Ignoring the higher moments of the MVHP distribution, the hedge ratios of the MVHP ranged between 0.7029 and 0.9529. When the higher moments of the MVHP distribution were considered, the hedge ratios ranged between 0.6962 and 0.9414. Regardless of whether the higher moments of the MVHP distribution were considered, the hedge ratios of the MVHP were all below 1 and above 0, which indicates the applicability of futures for hedging in the Greater China Region.

After calculating the VaR values of the MVHP from variant multivariate time-variant volatility models, this study employed the likelihood ratio test from Kupiec (1995) and the conditional coverage test of Christoffersen (1998), which is a joint test of unconditional coverage and serial independence, is also used to compare the VaR performance for the MVHP from the variant multivariate time-variant volatility models in this study.
Christoffersen (1998) to perform backtesting for VaR performance. Tables 4 and 5 list the backtesting VaR performances for the MVHP of short and long hedges, respectively. For both types of hedges, consistently fewer failures are generated when the higher moments of the MVHP distribution are considered than when they are not considered, which demonstrates that the VaR of the MVHP should consider the higher moments of the MVHP distribution, and supports the conclusions of Favre and Galeano (2002). Regardless of whether we consider the higher moments of the MVHP distribution, the VEC-ADVECH model passed the backtests. The ranking of backtesting VaR performance among researched models is VEC-ADVECH-L, VEC-DVECH-L, VEC-ADVECH, and the VEC-DVECH model in descending order on the likelihood ratio test of Kupiec (1995) by means of pairwise comparisons. These results demonstrate the ability of the VEC-ADVECH model to improve VaR performance and to capture asymmetry in volatility. Generally, the conclusions are identical for short and long hedges in the backtesting VaR performances for the MVHP for the Hang Seng, Taiwan and Shanghai A-share stock indices and futures. The backtesting VaR performance that considers the higher moments of the distribution for the MVHP were better than those of the MVHP that do not consider the higher moments of the distribution. Furthermore, the backtesting of the VaR performances of the MVHP in the variant multivariate time-variant volatility models with level effects in the covariance matrix of assets in the MVHP were superior to those that have no asymmetry in volatility. Additionally, the backtesting of the VaR performance for the MVHP in the variant multivariate time-variant volatility models with level effects in the covariance matrix of assets in the MVHP were better than those of the MVHP that have no level effect in covariance matrix of assets in the MVHP. Among the models discussed in this study, backtesting of the VaR performance that considered the higher moments of distribution for the MVHP from the VEC-ADVECH-L model is the best one for the MVHP. Moreover, the model that does not consider the higher moments of distribution for the MVHP from the VEC-DVECH model performed the worst one for the MVHP in backtesting.

4. Conclusions and suggestions

This study was in backtesting VaR that considers the higher moments of the distribution for the MVHP of the daily stock index and futures in the Greater China Region. This study constructed the MVHP from the variant multivariate time-variant volatility models for stock indices and derived futures. Furthermore, we performed the likelihood ratio of Kupiec (1995) and conditional coverage tests of Christoffersen (1998) to backtest the VaR that considered the higher moments of the MVHP from the variant multivariate time-variant volatility models for short and long hedges.

Table 4

<table>
<thead>
<tr>
<th>Model</th>
<th>Hedging portfolio</th>
<th>Number of failures</th>
<th>LRuc 1%</th>
<th>LRuc 5%</th>
<th>LRcc 1%</th>
<th>LRcc 5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: without considering the higher moments of the MVHP distribution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEC-DVECH</td>
<td>HS</td>
<td>5</td>
<td>12</td>
<td>4.2930</td>
<td>1.9368</td>
<td>6.2905</td>
</tr>
<tr>
<td></td>
<td>TW</td>
<td>8</td>
<td>13</td>
<td>12.4964</td>
<td>2.2305</td>
<td>13.6900</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>9</td>
<td>16</td>
<td>15.8091</td>
<td>5.6903</td>
<td>17.7114</td>
</tr>
<tr>
<td>VEC-ADVECH</td>
<td>HS</td>
<td>3</td>
<td>9</td>
<td>0.8336</td>
<td>0.0369</td>
<td>2.8314</td>
</tr>
<tr>
<td></td>
<td>TW</td>
<td>6</td>
<td>10</td>
<td>6.6964</td>
<td>0.2834</td>
<td>8.4846</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>7</td>
<td>14</td>
<td>9.4469</td>
<td>3.2111</td>
<td>11.2128</td>
</tr>
<tr>
<td>VEC-DVECH-L</td>
<td>HS</td>
<td>4</td>
<td>7</td>
<td>2.3046</td>
<td>0.2775</td>
<td>3.7811</td>
</tr>
<tr>
<td></td>
<td>TW</td>
<td>5</td>
<td>9</td>
<td>4.2930</td>
<td>0.0369</td>
<td>5.9835</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>6</td>
<td>12</td>
<td>6.6964</td>
<td>1.9368</td>
<td>8.4303</td>
</tr>
<tr>
<td>VEC-ADVECH-L</td>
<td>HS</td>
<td>2</td>
<td>5</td>
<td>0.0542</td>
<td>1.7263</td>
<td>2.0523</td>
</tr>
<tr>
<td></td>
<td>TW</td>
<td>3</td>
<td>6</td>
<td>0.8336</td>
<td>0.8283</td>
<td>2.2148</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>4</td>
<td>10</td>
<td>2.3046</td>
<td>0.2834</td>
<td>4.2987</td>
</tr>
<tr>
<td>Panel B: considering the higher moments of the MVHP distribution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEC-DVECH</td>
<td>HS</td>
<td>4</td>
<td>11</td>
<td>2.3046</td>
<td>0.7428</td>
<td>3.9272</td>
</tr>
<tr>
<td></td>
<td>TW</td>
<td>6</td>
<td>10</td>
<td>6.6964</td>
<td>0.2834</td>
<td>7.6962</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>8</td>
<td>14</td>
<td>12.4964</td>
<td>3.2111</td>
<td>14.1632</td>
</tr>
<tr>
<td>VEC-ADVECH</td>
<td>HS</td>
<td>2</td>
<td>7</td>
<td>0.0542</td>
<td>0.2775</td>
<td>2.0523</td>
</tr>
<tr>
<td></td>
<td>TW</td>
<td>5</td>
<td>9</td>
<td>4.2930</td>
<td>0.0369</td>
<td>5.9712</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>6</td>
<td>11</td>
<td>6.6964</td>
<td>0.7428</td>
<td>8.6937</td>
</tr>
<tr>
<td>VEC-DVECH-L</td>
<td>HS</td>
<td>3</td>
<td>6</td>
<td>0.8336</td>
<td>0.8283</td>
<td>2.8336</td>
</tr>
<tr>
<td></td>
<td>TW</td>
<td>4</td>
<td>7</td>
<td>2.3046</td>
<td>0.2775</td>
<td>4.3046</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>5</td>
<td>9</td>
<td>4.2930</td>
<td>0.0369</td>
<td>6.2864</td>
</tr>
<tr>
<td>VEC-ADVECH-L</td>
<td>HS</td>
<td>1</td>
<td>4</td>
<td>0.0542</td>
<td>0.3092</td>
<td>0.3344</td>
</tr>
<tr>
<td></td>
<td>TW</td>
<td>2</td>
<td>4</td>
<td>0.0542</td>
<td>0.3092</td>
<td>1.1813</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>3</td>
<td>7</td>
<td>0.8336</td>
<td>0.2775</td>
<td>2.8314</td>
</tr>
</tbody>
</table>

Note: 1. VEC-DVECH is a multivariate DVECH model with a vector error correction term. VEC-ADVECH denotes a multivariate ADVECH model with a vector error correction term. VEC-DVECH-L represents a multivariate DVECH-L model with a vector error correction term. VEC-ADVECH-L denotes a multivariate ADVECH-L model with a vector error correction term.
2. HS, TW, and SA denote the Hang Seng, Taiwan, and Shanghai A stock indices and futures portfolios, respectively.
3. The boldface numerics in the table indicate no significance at their corresponding levels determined through backtesting.
4. LRuc denotes the likelihood ratio test, which is a chi-square distribution with 1° of freedom. The critical value is 6.6349 (3.8415) at the 1% (5%) significance level.
5. LRcc denotes the conditional coverage test, which is a chi-square distribution with 2° of freedom under null hypothesis. The critical value is 9.210 (5.992) at the 1% (5%) significance level.
The backtesting VaR performance of the models that considered the higher moments of the MVHP distribution were consistently superior to that of models that do not consider such higher moments of the MVHP distribution for short and long hedges. Additionally, the best backtesting VaR performance for the MVHP was from the model that considered the higher moments of the MVHP distribution and the asymmetry in volatility, cross-market asymmetry in volatility, and level effects in the covariance matrix of assets in the MVHP, and the worst backtesting VaR was from a model that does not consider any of the foregoing. When investors construct the MVHP for hedging, they should consider the influences of asymmetry in volatility and cross-market asymmetry in volatility, level effects in the covariance matrix of assets in the MVHP. Moreover, to consider the higher moments is an indispensable part of VaR estimation for the accuracy of risk management.

References

Table 5
Backtesting VaR for the MVHP of long hedges.

<table>
<thead>
<tr>
<th>Model</th>
<th>Hedging portfolio</th>
<th>Number of failures</th>
<th>LRsuc</th>
<th>Lrsc</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1%</td>
<td>5%</td>
<td>1%</td>
</tr>
<tr>
<td>Panel A: without considering the higher moments of the MVHP distribution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEC-DVECH</td>
<td>HS</td>
<td>6</td>
<td>14</td>
<td>6.6964</td>
</tr>
<tr>
<td></td>
<td>TW</td>
<td>6</td>
<td>14</td>
<td>6.6964</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>8</td>
<td>17</td>
<td>12.4964</td>
</tr>
<tr>
<td>VEC-ADVECH</td>
<td>HS</td>
<td>4</td>
<td>8</td>
<td>2.0346</td>
</tr>
<tr>
<td></td>
<td>TW</td>
<td>5</td>
<td>7</td>
<td>4.2930</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>7</td>
<td>9</td>
<td>9.4469</td>
</tr>
<tr>
<td>VEC-DVECH-L</td>
<td>HS</td>
<td>6</td>
<td>14</td>
<td>6.6964</td>
</tr>
<tr>
<td></td>
<td>TW</td>
<td>6</td>
<td>14</td>
<td>6.6964</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>8</td>
<td>17</td>
<td>12.4964</td>
</tr>
<tr>
<td>VEC-ADVECH-L</td>
<td>HS</td>
<td>4</td>
<td>8</td>
<td>2.0346</td>
</tr>
<tr>
<td></td>
<td>TW</td>
<td>5</td>
<td>7</td>
<td>4.2930</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>7</td>
<td>9</td>
<td>9.4469</td>
</tr>
<tr>
<td>Panel B: considering the higher moments of the MVHP distribution.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEC-DVECH</td>
<td>HS</td>
<td>6</td>
<td>14</td>
<td>6.6964</td>
</tr>
<tr>
<td></td>
<td>TW</td>
<td>6</td>
<td>14</td>
<td>6.6964</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>8</td>
<td>17</td>
<td>12.4964</td>
</tr>
<tr>
<td>VEC-ADVECH</td>
<td>HS</td>
<td>4</td>
<td>9</td>
<td>2.0346</td>
</tr>
<tr>
<td></td>
<td>TW</td>
<td>4</td>
<td>7</td>
<td>2.0346</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>6</td>
<td>9</td>
<td>6.6964</td>
</tr>
<tr>
<td>VEC-DVECH-L</td>
<td>HS</td>
<td>3</td>
<td>7</td>
<td>0.8336</td>
</tr>
<tr>
<td></td>
<td>TW</td>
<td>3</td>
<td>6</td>
<td>0.8336</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>5</td>
<td>7</td>
<td>4.2930</td>
</tr>
<tr>
<td>VEC-ADVECH-L</td>
<td>HS</td>
<td>2</td>
<td>5</td>
<td>0.0542</td>
</tr>
<tr>
<td></td>
<td>TW</td>
<td>1</td>
<td>4</td>
<td>0.0334</td>
</tr>
<tr>
<td></td>
<td>SA</td>
<td>3</td>
<td>6</td>
<td>0.8336</td>
</tr>
</tbody>
</table>

Note: 1. VEC-DVECH is a multivariate DVECH model with a vector error correction term. VEC-ADVECH denotes a multivariate ADVECH model with a vector error correction term. VEC-DVECH-L represents a multivariate DVECH-L model with a vector error correction term. VEC-ADVECH-L denotes a multivariate ADVECH-L model with a vector error correction term. 2. HS, TW, and SA denote the Hang Seng, Taiwan, and Shanghai A stock indices and futures portfolios, respectively. 3. The boldface numerics in the table indicate no significance at their corresponding levels determined through backtesting. 4. LRsuc denotes the likelihood ratio test, which is a chi-square distribution with 1° of freedom. The critical value is 6.6349 (3.8415) at the 1% (5%) significant level. 5. LRsc denotes the conditional coverage test, which is a chi-square distribution with 2° of freedom under null hypothesis. The critical value is 9.210 (5.992) at the 1% (5%) significant level.

Table 5
Backtesting VaR for the MVHP of long hedges.