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Abstract. We study the initial boundary value problem for the damped hy-
perbolic equation arising in the micro-electro mechanical system device with

local or nonlocal singular nonlinearity. For both cases, we provide some cri-

teria for quenching and global existence of the solution. We also derive the
existence of the quenching curve for the corresponding Cauchy problem with

local source.

1. Introduction. In this paper, we consider the following initial boundary value
problem arising in the study of the micro-electro mechanical system (MEMS) device:

εutt + ut = ∆u+ F (x, t, u), in Ω× (0,∞)
u = 0, on ∂Ω× (0,∞)
u(x, 0) = u0(x), for x ∈ Ω
ut(x, 0) = u1(x), for x ∈ Ω

(1.1)

where ε > 0, Ω ⊂ RN , u0 < 1 on Ω, u0, u1 ∈ C(Ω),

F (x, t, u) :=
λf(x, t)

(1− u)2
(
1 + α

∫
Ω

1
1−udx

)2
with λ > 0, α ≥ 0 and f(x, t) > 0 on Ω.

In (1.1), u stands for the deflection of the membrane, ε is the ratio of the inertial
and damping terms in the model, while

λ =
V 2L2ε0

2T l2
in which V stands for the applied voltage, T is the tension in the membrane, L
the characteristic length (diameter) of the fixed ground plate Ω, l the character-
istic width of the gap between the membrane and the ground plate, and ε0 the
permittivity of the free space. The function f(x, t) represents the varying dielec-
tric properties of the membrane. The appearance of the integral in F depends on
whether the device is embedded in an electrical circuit with a capacitor of fixed
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capacitance or not. Here we have normalized the distance between the edge of the
membrane and the ground plate to be 1.

We say that u is a weak solution of (1.1) on DT := Ω× (0, T ) for some T > 0, if

(i) u ∈ C0(DT ) such that the initial and boundary conditions in (1.1) are satis-
fied,

(ii) |u| ≤ 1− δ on DT for some δ ∈ (0, 1), and
(iii) the first order weak derivatives ut,∇u of u are in L2(DT ) such that∫

Ω

ψ(x, t)[εut(x, t) + u(x, t)]dx−
∫

Ω

ψ(x, 0)[εu1(x) + u0(x)]dx

=

∫ t

0

∫
Ω

[ψτ (x, τ)(εuτ (x, τ) + u(x, τ))−∇ψ(x, τ) · ∇u(x, τ)]dxdτ

+

∫ t

0

∫
Ω

ψ(x, τ)F (x, τ, u(x, τ))dxdτ

for all t ∈ (0, T ) for any function ψ(x, t) ∈ C1(DT ) with ψ = 0 on ∂Ω× [0, T ).

We call a (weak) solution quenches (in finite time) if there is a T <∞ such that

lim sup
t↑T

{max
x∈Ω

u(x, t)} = 1.

In this case, the device breaks down, since a singularity occurs.
When ε = 0, (1.1) is reduced to the following parabolic problem

ut = ∆u+ F (x, t, u), in Ω× (0,∞),
u = 0, on ∂Ω× (0,∞),
u(x, 0) = u0(x), for x ∈ Ω.

(1.2)

We refer the reader to the work [10] and the references cited therein for the study of
(1.2) when F is independent of (x, t). In fact, the study of quenching for parabolic
problems has a long history back to the work by Kawarada [14]. After this pioneer
work, there has been extensive study on quenching of solution for parabolic prob-
lems. We refer the reader to [2, 3, 7, 8, 9, 10, 11, 14, 15, 16, 17] and the references
therein. In particular, when F is independent of (x, t), some criteria for quenching
and global existence of solution of (1.2) for 1-dimensional local source case were
given in [2, 3, 16, 17]. The higher dimensional local source case was studied by
[11]. The nonlocal source case was studied by [9] for 1-dimensional case and [10] for
higher dimensional case. For the study of the phenomena beyond quenching and
the quenching profile, we refer the reader to [7, 16]. Although little is known for
(1.2) with F depending on (x, t).

On the other hand, most classical works on the singularities (e.g., quenching,
blow-up, etc.) of hyperbolic problems are dealing with wave equation with a non-
linearity without damping term. We refer the reader to [4, 5, 6, 13, 15, 18, 19, 20, 21]
and the references therein. We also refer the reader to [1, 22] for works with damp-
ing. The main purpose of this paper is to derive some criteria of quenching and
global existence of solutions of (1.1) with a damping term. Without loss of gener-
ality, by rescaling the variables x and t, we may assume that ε = 1. In this work,
we shall mainly consider the case that N = 1 and f ≡ 1. Some quenching criteria
for the higher dimensional case are also given.

For N = 1, we let Ω = (0, 1). Then the first equation in (1.1) becomes

utt + ut = uxx +
λh2(u)

[1 + αI(u)]2
, (1.3)
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where for convenience we let

h(u) :=
1

1− u
, I(u)(t) :=

∫ 1

0

h(u(x, t))dx.

Let v = et/2u. Then we can rewrite (1.3) as

vtt = vxx +
1

4
v +

λet/2h2(e−t/2v)

[1 + αI(e−t/2v)]2
.

Thus we end up with an equation with no damping term. Hence the local (in time)
existence and uniqueness of weak solution can be easily deduced by the contraction
mapping principle (cf. e.g., [6, 13] for details).

It is well-known that the global vs non-global existence of solutions of evolution
problems is strongly related to the structure of the stationary solutions. For the
stationary solutions, we refer it to [16] for α = 0 and [9, 13] for α > 0. In either
case, there is a critical value λ∗ such that a stationary solution exists if and only if
λ ≤ λ∗. Therefore, it is natural to expect that we have the global (in time) existence
when λ is small and quenching occurs when λ is large enough. However, due to
the dependence of time variable for the nonlinear term and the lack of comparison
principle, certain difficulties arise when we derive the quenching criteria and global
existence.

This paper is organized as follows. In §2, we deal with the case without capaci-
tor, i.e., the case of local source. By using a convexity argument (cf. [6]), we derive
some quenching criteria for the local problem. Then, by employing an energy ar-
gument, we provide a criterion of the global existence for the local problem. Next,
we study the case with a capacitor, i.e., the case when α > 0 in §3. In this section,
we first provide some criteria for which the solution exists globally in time by using
an energy argument (cf. [6, 13]). Then we modify the method of [13] to obtain a
quenching criterion for the problem with zero initial data. Here we prove the spa-
tially independent lemma (see Lemma 3.2 below) without the symmetry condition.
The quenching criterion with nonzero initial data is also derived by applying an
energy argument (cf. [10]). Finally, in §4, we study the quenching curve for the
corresponding Cauchy problem when α = 0. We prove that there is a curve such
that u(x, t) reaches 1 as (x, t) tends to this curve.

2. Local source case: Without capacitor. In this section, we assume that α =
0. Then (1.1) with N = 1 becomes the following initial-boundary value problem:

utt + ut = uxx + λh2(u), 0 < x < 1, t > 0,
u(0, t) = u(1, t) = 0, t > 0,
u(x, 0) = u0(x), 0 ≤ x ≤ 1,
ut(x, 0) = u1(x), 0 ≤ x ≤ 1,

(2.1)

where h(z) = 1/(1− z).
We shall give some quenching criteria for large λ as follows. First, we consider

the case u0 ≡ 0 and u1 ≡ 0. Let

H(z) = −π2z + λh2(z), −∞ < z < 1. (2.2)

Note that limz→1− H(z) = +∞.
Employing the standard convexity argument (cf. [6, 12]), we give the following

quenching criterion.
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Theorem 2.1. Suppose that N = 1, u0 ≡ 0 and u1 ≡ 0. If λ ≥ π2/2, then the
solution of (2.1) quenches in finite time.

Proof. Suppose not, that is, 0 ≤ u(x, t) < 1 for (x, t) ∈ [0, 1]× [0,∞). Define

G(t) :=

∫ 1

0

u(x, t)ρ(x)dx, ρ(x) :=
π

2
sin(πx). (2.3)

Then 0 ≤ G(t) < 1 for all t ∈ [0,∞).
Set ψ(x, t) := tρ(x). Multiplying the first equation in (2.1) by ψ and integrating

over [0, 1]× [0, t], the integration by parts gives

tG′(t) =
tπ

2

∫ 1

0

sin(πx)utdx =

∫ 1

0

ψutdx

= −
∫ 1

0

ψudx+

∫ t

0

∫ 1

0

[ψτ (uτ + u) + ψxxu]dxdτ + λ

∫ t

0

∫ 1

0

ψh2(u)dxdτ

= −tG(t) +

∫ t

0

[G′(τ) +G(τ)− π2τG(τ)]dτ + λ

∫ t

0

τ

∫ 1

0

h2(u)ρ(x)dxdτ.

By differentiating the above equation with respect to t once, we deduce that

G′′(t) = −G′(t)− π2G(t) + λ

∫ 1

0

h2(u)ρ(x)dx.

It follows from Jensen’s inequality that

G′′(t) +G′(t) ≥ H(G(t)) (2.4)

for all t ∈ [0,∞).
Suppose that λ ≥ π2/2. Then, by the definition of H, we have H(0) = λ,

H ′(0) ≥ 0 and H ′′(z) > 0 for all z < 1. Hence H(z) is increasing on [0, 1]. Since
u(x, 0) = ut(x, 0) = 0, we have G(0) = G′(0) = 0. Also, G′′(0) ≥ H(G(0)) =
H(0) = λ > 0, so there exists t0 > 0 such that G′(t) > 0 on (0, t0].

We claim that G′(t) > 0 for all t > 0. If not, let t1 ∈ (t0,∞) be the smallest
positive number such that G′(t1) = 0. Then G(t) is increasing on [0, t1]. So we have
G(t) > 0 for all t ∈ (0, t1]. Since H is increasing on [0, 1], it follows from (2.4) that

G′′(t) +G′(t) ≥ H(G(t)) ≥ H(0) = λ, ∀ t ∈ [0, t1]

which is equivalent to (
etG′(t)

)′ ≥ λet, ∀ t ∈ [0, t1].

Thus
etG′(t) ≥ λ(et − 1) > 0

for all t ∈ (0, t1], a contradiction. Therefore, G′(t) > 0 for t > 0.
Recall that G(0) = 0, we then have G(t) > 0 on (0,∞). Also, by (2.4),

G′′(t) +G′(t) ≥ H(0) = λ, ∀ t ∈ [0,∞)

and so

G′(t) +G(t) ≥ λt, ∀ t ∈ [0,∞).

Since G(t) < 1 for t ≥ 0, we have

G′(t) ≥ λt−G(t) > λt− 1, ∀ t ∈ [0,∞).

Hence we get

1 > G(t) >
λ

2
t2 − t, ∀ t ∈ [0,∞),



HYPERBOLIC QUENCHING 423

which is impossible. Thus the theorem is proved.

For a general bounded domain Ω ⊂ RN with N > 1, let (λ∗, ρ) be the first
eigen-pair of the problem

−∆ρ = λ∗ρ in Ω, ρ = 0 on ∂Ω (2.5)

such that
∫

Ω
ρ(x)dx = 1. Then, by a similar argument as the proof of Theorem 2.1,

we have the following quenching criterion.

Theorem 2.2. Suppose that N > 1. Then the solution of (1.1) with ε = 1,
f(x, t) ≡ 1 and u0 = u1 = 0 quenches in finite time, provided that λ ≥ λ∗/2.

Proof. As in (2.3), we set

G(t) :=

∫
Ω

u(x, t)ρ(x)dx,

where ρ is defined by (2.5). We redefine H in (2.2) by H(z) = −λ∗z + λh2(z).
Then a similar argument as in the proof of Theorem 2.1 leads to the inequality
(2.4). Also, H(z) is increasing on [0, 1] due to the assumption λ ≥ λ∗/2. Hence the
theorem follows by the same argument as that of Theorem 2.1.

For the general case u0 6≡ 0 or u1 6≡ 0, we have

G(0) =
π

2

∫ 1

0

sin(πx)u0(x)dx, G′(0) =
π

2

∫ 1

0

sin(πx)u1(x)dx

when N = 1.

Theorem 2.3. Suppose that N = 1, G(0) ≥ 0 and G′(0) ≥ 0 such that G(0)2 +
G′(0)2 6= 0. Then the solution of (2.1) must quench in finite time, provided that{

λ ≥ π2[1−G(0)]3/2, if 0 ≤ G(0) < 1/3,
λ > π2G(0)[1−G(0)]2, if 1/3 ≤ G(0) < 1.

(2.6)

Proof. Observe that

π2G(0)[1−G(0)]2 − π2[1−G(0)]3

2
=
π2[1−G(0)]2

2
[3G(0)− 1].

Suppose that (2.6) holds. In either case, we always have that

H(G(0)) > 0 and H ′(G(0)) ≥ 0.

Suppose that |u| < 1 for (x, t) ∈ [0, 1]× [0,∞). Note that (2.4) holds for all t ≥ 0.
By assumption, there exists t0 > 0 such that G′(t) > 0 on (0, t0]. Indeed, this is
trivial if G′(0) > 0 due to the continuity. If G′(0) = 0, then G′′(0) ≥ H(G(0)) > 0
also implies the existence of such t0.

We claim that G′(t) > 0 for all t > 0. Suppose not. Let t1 ∈ (t0,∞) be the
smallest number such that G′(t1) = 0. Then G′(t) > 0 on (0, t1) and so G(t) ≥ G(0)
for all t ∈ [0, t1]. Since H ′′ > 0 and H ′(G(0)) ≥ 0, we see that H is increasing on
[G(0), 1). Therefore, we obtain

G′′(t) +G′(t) ≥ H(G(t)) ≥ H(G(0)) (2.7)

so that (
etG′(t)

)′ ≥ H(G(0))et (2.8)

for all t ∈ [0, t1]. Integrating (2.8) from 0 to t1 and using G′(t1) = 0, we find

−G′(0) ≥ H(G(0))

∫ t1

0

esds = H(G(0))(et1 − 1) > 0,
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a contradiction. Hence G′(t) > 0 for all t > 0 and so (2.7) holds for all t > 0.
Now, integrating (2.7) twice and using the fact G(t) < 1, we have

1 > G(t) ≥ 1

2
H(G(0))t2 + [G(0) +G′(0)− 1]t+G(0), ∀ t > 0,

which is impossible. Hence the solution of (2.1) must quench in finite time provided
(2.6) holds.

In the rest of this section, we shall derive some criteria for the global existence
when N = 1 by the energy method (cf. [6]). To find the energy, we multiply the
first equation of (2.1) by ut and integrate it over [0, 1]. Then we obtain

1

2

d

dt

∫ 1

0

(u2
t + u2

x)dx+

∫ 1

0

u2
tdx = λ

d

dt

∫ 1

0

Φ(u)dx

where Φ(z) = −1 + 1/(1− z). Define

E(t) =

∫ 1

0

[1

2
u2
t +

1

2
u2
x − λΦ(u)

]
dx

then
dE

dt
(t) = −

∫ 1

0

u2
tdx ≤ 0

and hence E(t) ≤ E(0) for t > 0.
We now state and prove the following criterion for the global existence.

Theorem 2.4. Suppose that u = u(x, t;λ) is the solution of (2.1) such that

0 < λ < max
0≤δ≤1

π2δ(1− δ)
πδ − 2δ + 2

.

If E(0) ≤ 0, then there exists δ ∈ (0, 1) such that |u(x, t;λ)| < 1− δ for all x ∈ [0, 1]
and t ≥ 0.

Proof. By assumption, there exists a δ > 0 such that

λ <
π2δ(1− δ)
πδ − 2δ + 2

<
π2δ

2
. (2.9)

We claim that |u(x, t;λ)| < 1− δ for all x ∈ [0, 1] and t ≥ 0.
For contradiction, we assume that T is the finite number such that

max
(x,t)∈[0,1]×[0,T ]

u(x, t;λ) = 1− δ.

Note that E(t) ≤ E(0) ≤ 0 for t > 0 and we write

Φ(z) =
z

1− z
= z +

z2

1− z
.

Then, by Poincaré and Schwartz inequalities, we get

π2

∫ 1

0

u2dx ≤
∫ 1

0

u2
xdx ≤ 2λ

∫ 1

0

Φ(u)dx

≤ 2λ

∫ 1

0

udx+ 2λ

∫ 1

0

u2

1− u
dx

≤ 2λ
(∫ 1

0

u2dx
)1/2

+
2λ

δ

∫ 1

0

u2dx.
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Hence we obtain

π2

∫ 1

0

u2dx ≤ 2λ
(∫ 1

0

u2dx
)1/2[

1 +
1

δ

(∫ 1

0

u2dx
)1/2]

. (2.10)

for t ∈ [0, T ]. This implies that(∫ 1

0

u2dx
)1/2

≤ 2λ

π2 − 2λ/δ

If this bound is used on the right hand side of (2.10) and if the inequality

4u2 ≤
∫ 1

0

u2
xdx (2.11)

is also employed, we obtain that

4u2 ≤
∫ 1

0

u2
xdx ≤ 2λ

(∫ 1

0

u2dx
)1/2[

1 +
1

δ

(∫ 1

0

u2dx
)1/2]

≤ 4λ2

π2 − 2λ/δ

(
1 +

1

δ
· 2λ

π2 − 2λ/δ

)
=

4π2δ2λ2

(π2δ − 2λ)2
.

It follows from (2.9) that u2(x, t;λ) < (1 − δ)2 for all (x, t) ∈ [0, 1] × [0, T ], which
contradicts the choice of T . Hence the theorem is proved.

3. Nonlocal source case: With capacitor. In this section, we consider the
case α > 0 so that the problem has a nonlocal source. Then the problem (1.1) with
N = 1 becomes the following initial-boundary value problem:

utt + ut = uxx + λh2(u)
[1+αI(u)]2 , 0 < x < 1, t > 0,

u(0, t) = u(1, t) = 0, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 ≤ x ≤ 1.

(3.1)

We first derive the criterion for the global existence. For convenient, we denote

Ψ(u)(t) =
1

1 + αI(u)(t)
.

Then
d

dt
Ψ(u) = −α

∫ 1

0

h2(u)ut
[1 + αI(u)]2

dx

Using the energy method (cf. [6, 13]), we multiply the first equation of (3.1) by ut
and integrate it over [0, 1]. Then we obtain

1

2

d

dt

∫ 1

0

(u2
t + u2

x)dx+

∫ 1

0

u2
tdx = −λ

α

d

dt
Ψ(u)(t).

Define

E(t) =

∫ 1

0

[1

2
u2
t +

1

2
u2
x

]
dx+

λ

α
Ψ(u)(t). (3.2)

Then
dE

dt
(t) = −

∫ 1

0

u2
tdx ≤ 0

and hence E(t) ≤ E(0) for t > 0.
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Theorem 3.1. If u0 = u1 = 0 and

0 < λ < 2(1 + α) max
0≤δ≤1

(1− δ)(α+ δ),

then the solution u = u(x, t;λ) of (3.1) exists globally in time.

Proof. Consider the function

Λ(δ) = 2(1 + α)(1− δ)(α+ δ), δ ∈ [0, 1].

We have Λ(0) = 2α(1+α), Λ(1) = 0, and Λ′(δ) = −2(1+α)(2δ+α−1). Then Λ(δ)
is strictly decreasing on [0, 1] if α ≥ 1, while Λ(δ) has a unique maximum point on
(0, 1) if 0 < α < 1.

By assumption, there exists δ ∈ (0, 1) such that λ < Λ(δ). We claim that
|u(x, t;λ)| < 1− δ for all x ∈ [0, 1] and t ≥ 0. Assume on the contrary that there is
T > 0 such that

max
(x,t)∈[0,1]×[0,T ]

u(x, t;λ) = 1− δ.

Since u ≤ 1− δ, we have

Ψ(u) =
1

1 + αI(u)
≥ δ

α+ δ

for t ∈ [0, T ]. By (2.11) and using u0 = u1 ≡ 0, we obtain

4u2 ≤
∫ 1

0

u2
xdx ≤ 2E(0)− 2λ

α
Ψ(u) ≤ 2λ

α(1 + α)
− 2λδ

α(α+ δ)
=

2λ(1− δ)
(1 + α)(α+ δ)

.

Since λ < Λ(δ), so u2(x, t;λ) < (1 − δ)2 for all t ∈ [0, T ], which contradicts the
choice of T . Hence the theorem follows.

For the case of non-zero small initial data, we have the global existence if

0 < λ < [2− (‖u′0‖2 + ‖u1‖2)/2]α. (3.3)

Hereafter ‖·‖ denotes the L2 norm. Indeed, suppose that u ≤M < 1 in [0, 1]×[0, T ].
Then we have

Ψ(u)(t) ≥ 1

1 + α/(1−M)
for all t ∈ [0, T ].

Using E(t) ≤ E(0), (2.11) and Ψ(u) ≤ 1, we obtain

4M2 +
2λ

α

1−M
1 + α−M

≤ ‖u′0‖2 + ‖u1‖2 +
2λ

α
(3.4)

for all t ∈ [0, T ]. If u quenches in finite time, by letting M → 1 in (3.4), then it
contradicts (3.3). Hence u exists globally if the condition (3.3) is assumed. Note
that the condition (3.3) is meaningful if the initial data are small enough in the
sense that ‖u′0‖2 + ‖u1‖2 < 4.

Next, we study the quenching criteria for large λ. For the case of zero initial and
boundary conditions, let v = et/2u, then v satisfies

vtt − vxx = 1
4v + λet/2h2(e−t/2v)

[1+αI(e−t/2v)]2
, 0 < x < 1, t > 0,

v(0, t) = v(1, t) = 0, t > 0,
v(x, 0) = vt(x, 0) = 0, 0 ≤ x ≤ 1.

(3.5)

Then we have the following lemma. Although the proof is quite similar to the one
given in [13], we provide the details here for the reader’s convenience.
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Lemma 3.2. There exists t0 ∈ (0, 1/2] such that the solution v of (3.5) satisfies

v(x, t) = V (t) = max
x∈[0,1/2]

v(x, t)

in the set {(x, t) ∈ R | x ≥ t, t < t0}, where R := {(x, t) | 0 < x < 1/2, 0 < t <
1/2}.

Proof. Following [13], we shall prove this lemma by applying a Picard iteration.
Initially, we define v0 to be the solution of

∂ttv0 − ∂xxv0 = g0(t), (x, t) ∈ [0, 1]× [0, 1/2],

with the initial and boundary conditions defined as in (3.5), where

g0(t) =
λet/2h2(0)

[1 + αI(0)]2
=

λet/2

(1 + α)2
.

Then, by Duhamel’s Principle and the domain of dependence for 1-d wave equation,
v0(x, t) can be solved explicitly as

v0(x, t) =


1

2

∫ t

0

∫ x+t−τ

x−t+τ
g0(τ)dydτ, if x ≥ t,

1

2

∫ t

t−x

∫ x+t−τ

x−t+τ
g0(τ)dydτ +

1

2

∫ t−x

0

∫ x+t−τ

t−x−τ
g0(τ)dydτ, if x ≤ t,

=


∫ t

0

(t− τ)g0(τ)dτ := V0(t), if x ≥ t,

V0(t)− V0(t− x), if x ≤ t

for (x, t) ∈ R. Note that

∂xv0(x, t) =


0, if x ≥ t,∫ t−x

0

g0(τ)dτ > 0, if x ≤ t.

Then ∂xv0 ≥ 0 in R and we have

0 ≤ v0(x, t) ≤ V0(t) = max
x∈[0,1/2]

v0(x, t), (x, t) ∈ R,

and v0(x, t) = V0(t) in {(x, t) ∈ R | x ≥ t}.
Next, we define v1(x, t) to be the solution of

∂ttv1 − ∂xxv1 = g1(x, t), (x, t) ∈ [0, 1]× [0, 1/2],

with the same initial and boundary conditions as in (3.5), where

g1(x, t) :=
1

4
v0(x, t) + λet/2k0(t)h2(e−t/2v0)(x, t),

k0(t) := 1/
[
1 + αI(e−t/2v0)(t)

]2
.

Since v0 ≥ 0, it is easy to see that g1(x, t) > 0. Moreover, v1(x, t) can be written as

v1(x, t) =


1

2

∫ t

0

∫ x+t−τ

x−t+τ
g1(y, τ)dydτ, if x ≥ t,

1

2

∫ t

t−x

∫ x+t−τ

x−t+τ
g1(y, τ)dydτ +

1

2

∫ t−x

0

∫ x+t−τ

t−x−τ
g1(y, τ)dydτ, if x ≤ t
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for (x, t) ∈ R. We compute that

∂xv1(x, t) =



1

2

∫ t

0

[g1(x+ t− τ, τ)− g1(x− t+ τ, τ)]dτ, if x ≥ t,

1

2

∫ t

t−x
[g1(x+ t− τ, τ)− g1(x− t+ τ, τ)]dτ

+
1

2

∫ t−x

0

[g1(t+ x− τ, τ) + g1(t− x− τ, τ)]dτ, if x ≤ t.

Note that h(e−t/2v0) is well-defined if v0 < et/2. Since k0(t) > 0 and h′ > 0, so

∂xg1 = [1/4 + 2λk0(t)h(e−t/2v0)h′(e−t/2v0)]∂xv0 ≥ 0

and we obtain that ∂xv1 ≥ 0 in R. Hence

0 ≤ v1(x, t) ≤ V1(t) = max
x∈[0,1/2]

v1(x, t), (x, t) ∈ R,

where

V1(t) =

∫ t

0

(t− τ)g̃1(τ)dτ,

g̃1(t) :=
1

4
V0(t) + λet/2k̃0(t)h2(e−t/2V0(t)),

k̃0(t) := 1/
[
1 + αI(e−t/2V0(t))

]2
.

Note also that v1(x, t) = V1(t) in {(x, t) ∈ R | x ≥ t}, due to g1 is independent of
x for x ≥ t. Moreover, since g̃1 ≥ g0, we have V1 ≥ V0, if V0 < et/2.

In general, for n ≥ 2, having (vk, Vk) for k = 0, · · · , n− 1, with

Vn−1 ≥ Vn−2, ∂xvn−1 ≥ 0, 0 ≤ vn−1 ≤ Vn−1 in R, and

vn−1 = Vn−1 in {(x, t) ∈ R | x ≥ t},

we inductively define vn(x, t) to be the solution of

∂ttvn − ∂xxvn = gn(x, t), (x, t) ∈ [0, 1]× [0, 1/2],

with the same initial and boundary conditions as in (3.5), where

gn(x, t) :=
1

4
vn−1(x, t) + λet/2kn−1(t)h2(e−t/2vn−1)(x, t),

kn−1(t) := 1/
[
1 + αI(e−t/2vn−1)(t)

]2
.

By the induction hypothesis, ∂xgn ≥ 0 and hence ∂xvn ≥ 0 in R, if Vn−1 < et/2.
Moreover,

0 ≤ vn(x, t) ≤ Vn(t) = max
x∈[0,1/2]

vn(x, t), (x, t) ∈ R,

and vn(x, t) = Vn(t) for x ≥ t, where

Vn(t) =

∫ t

0

(t− τ)g̃n(τ)dτ,

g̃n(t) :=
1

4
Vn−1(t) + λet/2k̃n−1(t)h2(e−t/2Vn−1(t)),

k̃n−1(t) := 1/
[
1 + αI(e−t/2Vn−1(t))

]2
.

Moreover, since h is increasing, the induction hypothesis implies that g̃n ≥ g̃n−1

and so Vn ≥ Vn−1, if Vn−1 < et/2.
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Therefore, we obtain an increasing sequence {Vn(t)}∞n=1 such that it converges
to a function V (t) as n→∞. It is easy to check that V satisfies

V (t) =

∫ t

0

(t− τ)

{
1

4
V (τ) + λeτ/2h2(e−τ/2V (τ))/[1 + αI(e−τ/2V (τ))]2

}
dτ.

Note that V (0) = V ′(0) = 0 and V ′′(t) > 0 for t ≥ 0. Then there exists t0 ∈ (0, 1/2]
such that V (t) < et/2 for all t ∈ [0, t0). Moreover, we have

0 ≤ v(x, t) = V (t) = max
x∈[0,1/2]

v(x, t), for x ≥ t,

for the solution v of (3.5). Hence the lemma is proved.

With this lemma, we give the following quenching criterion for the problem with
zero initial data.

Theorem 3.3. Suppose that λ ≥ λ̂(α), where

λ̂(α) :=
(1 + α)2

1/
√
e− 1/2

.

Then the solution u to (3.1) with u0 = u1 = 0 quenches in a finite time T ≤ 1/2.

Proof. Since u = e−t/2v, we let U(t) = e−t/2V (t), where V is defined in Lemma 3.2.
Then the function U(t) is the solution of the problem (3.1) with u0 = u1 = 0 for
x ≥ t. Hence there holds

U ′′ + U ′ ≥ λh2(U)

[1 + αI(U)]2
=

λ

(1 + α− U)2
,

U(0) = 0, U ′(0) = 0.

Suppose that U(t) < 1 for t ∈ [0, 1/2]. It is clear that

λ

(1 + α− U)2
≥ λ

(1 + α)2

and thus (
etU ′

)′ ≥ λet

(1 + α)2
for all t ∈ [0, 1/2].

Using U(0) = U ′(0) = 0, by integrating the above inequality from 0 to t, we get

U(t) ≥ λ

(1 + α)2
(e−t + t− 1) for all t ∈ [0, 1/2].

In particular, U(1/2) ≥ 1, if λ ≥ λ̂(α), a contradiction. Therefore we deduce that

U(t) reaches 1 before the time t = 1/2, if λ ≥ λ̂(α). This proves the theorem.

Now, we derive a quenching criterion for the case u0 6≡ 0 and/or u1 6≡ 0 such
that the following quantity

λ+(α) = λ+(α;u0, u1) :=

{
α[αI(u0)+1](‖u′0‖

2+‖u1‖2)
αI(u0)−1 , 0 < α ≤ 1/2,

2α2[αI(u0)+1](‖u′0‖
2+‖u1‖2)

1−4α+αI(u0) , α > 1/2
(3.6)

is well-defined and is positive. In fact, this is true only when the initial function u0

is sufficiently close to 1 so that the denominators in (3.6) are positive.
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Theorem 3.4. Assume that the initial function u0 satisfies

I(u0) > 1/α, if α ∈ (0, 1/2]; I(u0) > 4− 1/α, if α > 1/2.

Suppose that either λ > λ+(α;u0, u1), or

λ = λ+(α;u0, u1) and

∫ 1

0

u2
0(x)dx+ 2

∫ 1

0

u0(x)u1(x)dx > 1. (3.7)

Then the solution of (3.1) quenches in finite time.

Proof. Suppose that |u| < 1 for (x, t) ∈ [0, 1]× [0,∞). Following [10], we set

A(t) =

∫ 1

0

u2(x, t)dx.

Then we compute that

A′(t) = 2

∫ 1

0

uutdx, A′′(t) = 2

∫ 1

0

uuttdx+ 2

∫ 1

0

u2
tdx.

It follows from (3.1) and an integration by parts that

A′′(t) +A′(t) = −2

∫ 1

0

u2
xdx+ 2

∫ 1

0

u2
tdx+ 2λ

∫ 1

0
uh2(u)dx

[1 + αI(u)]2
.

Using (3.2) and h(u) = 1/(1− u), we can deduce that

A′′(t) +A′(t) = 4

∫ 1

0

u2
tdx− 4E(t) +

4λ

α[1 + αI(u)]
+ 2λ

∫ 1

0
uh2(u)dx

[1 + αI(u)]2

= 4

∫ 1

0

u2
tdx− 4E(t) + 2λ

2 + α
∫ 1

0
(2− u)h2(u)dx

α[1 + αI(u)]2
.

Moreover, using Young’s inequality and Hölder’s inequality, we have

[1 + αI(u)]2 ≤ 2[1 + α2I(u)2] ≤ 2 + 2α2

∫ 1

0

h2(u)dx.

Since E(t) ≤ E(0) for t ≥ 0 and |u| < 1 for (x, t) ∈ [0, 1] × [0,∞), we end up with
the following inequality

A′′(t) +A′(t) ≥ −4E(0) +
λ

α
θ

(∫ 1

0

h2(u)dx

)
, (3.8)

where θ(z) := (2 + αz)/(1 + α2z) for z ≥ 0.
Since

θ′(z) = α(1− 2α)/(1 + α2z)2,

we see that θ(z) ≥ θ(0) = 2 for all z ≥ 0, if α ∈ (0, 1/2], while θ(z) ≥ θ(+∞) = 1/α
for all z ≥ 0, if α > 1/2. It follows from (3.8) that

A′′(t) +A′(t) ≥ Q(λ, α), (3.9)

where

Q(λ, α) :=

{
−4E(0) + 2λ/α, 0 < α ≤ 1/2,
−4E(0) + λ/α2, α > 1/2.

Integrating (3.9) twice and using the fact that A(t) < 1 for all t ≥ 0, it follows that

A(t) ≥ 1

2
Q(λ, α)t2 + [A(0) +A′(0)− 1]t+A(0), ∀ t ≥ 0. (3.10)
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Recall that

E(0) = (‖u′0‖2 + ‖u1‖2)/2 + λ/{α[1 + αI(u0)]}.
Then

Q(λ, α) =

{
λ 2[αI(u0)−1]
α[αI(u0)+1] − 2(‖u′0‖2 + ‖u1‖2), 0 < α ≤ 1

2 ,

λ 1−4α+αI(u0)
α2[αI(u0)+1] − 2(‖u′0‖2 + ‖u1‖2), α > 1

2 .

Therefore, if λ > λ+(α), then Q(λ, α) > 0. It follows from (3.10) that A(t) → ∞
as t → ∞, a contradiction. On the other hand, if λ = λ+(α), then Q(λ, α) = 0.
But, the condition (3.7) implies that A(0) + A′(0) > 1. Hence we also obtain from
(3.10) that A(t) → ∞ as t → ∞, a contradiction. This completes the proof of the
theorem.

For general bounded Ω ⊂ RN with N > 1, let

λ+(α;u0, u1) :=

{
α[αI(u0)+1](‖∇u0‖2+‖u1‖2)

αI(u0)−1 , 0 < α ≤ 1/(2|Ω|),
2α2|Ω|[αI(u0)+1](‖∇u0‖2+‖u1‖2)

1−4|Ω|α+αI(u0) , α > 1/(2|Ω|).

Then, by a similar argument as the proof of Theorem 3.4, we have the following
quenching criterion. We safely omit the proof.

Theorem 3.5. Under the assumption that the initial function u0 satisfies

I(u0) > 1/α, if 0 < α ≤ 1/(2|Ω|); I(u0) > 4|Ω| − 1/α, if α > 1/(2|Ω|),
if either λ > λ+(α;u0, u1), or

λ = λ+(α;u0, u1) and ‖u0‖2 + 2

∫
Ω

u0(x)u1(x)dx > 1,

then the solution of (1.1) with ε = 1, f(x, t) ≡ 1 quenches in finite time.

4. Quenching curve for the Cauchy problem. In this section, we study the
quenching curve for the following Cauchy problem: utt + ut = uxx + λh2(u) in R× {t > 0},

u(x, 0) = u0(x) on R× {t = 0},
ut(x, 0) = u1(x) on R× {t = 0}.

(4.1)

As before, we set v(x, t) = et/2u(x, t). Then v satisfies vtt − vxx = 1
4v + λet/2h2(e−t/2v) in R× {t > 0},

v(x, 0) = u0(x) =: v0(x) on R× {t = 0},
vt(x, 0) = 1

2u0(x) + u1(x) =: v1(x) on R× {t = 0}.
Then v can be expressed as

v(x, t) = v̄(x, t) +
λ

2

∫ t

0

∫ x+t−τ

x−t+τ
W (v(y, τ), τ)dydτ,

where

v̄(x, t) :=
1

2
[v0(x+ t) + v0(x− t)] +

1

2

∫ x+t

x−t
v1(y)dy,

W (z, s) :=
1

4λ
z + es/2h2(e−s/2z),

as long as v(y, τ) < eτ/2 in the domain of dependence at (x, t).
First, we prove the following lemma.
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Lemma 4.1. Let U(t) be the solution of{
U ′′ + U ′ = λh2(U),
U(0) = U ′(0) = 0.

Then there exists T0 <∞ such that U(t)→ 1 as t→ T0.

Proof. Suppose that U(t) < 1 for all t > 0. Since

(etU ′)′ = λeth2(U) > 0

and U ′(0) = 0, we have U ′(t) > 0 for all t > 0. Hence U(t) is increasing and so
U(t) > 0 for all t > 0 due to U(0) = 0. Note that h(U) is increasing for U < 1.
Then we have

U ′′(t) + U ′(t) >
λ

[1− U(0)]2
= λ.

for any t > 0. Integrating the above inequality from 0 to t and using the initial
condition, we get

U ′(t) + U(t) > λt, ∀ t > 0.

Since U < 1, we have

U ′(t) > λt− U(t) > λt− 1.

Integrating this inequality from 0 to t, we obtain

1 > U(t) >
λt2

2
− t, ∀ t > 0,

a contradiction. Hence there exists T0 <∞ such that U(t)→ 1 as t→ T0.

Now, let V (t) = et/2U(t). Then V (t) satisfies

V ′′ =
1

4
V + λet/2h2(e−t/2V ), V (0) = V ′(0) = 0,

and V (t)→ eT0/2 as t→ T0. Note that we can represent V (t) in the form

V (t) = λ

∫ t

0

(t− τ)W (V (τ), τ)dτ =
λ

2

∫ t

0

∫ x+t−τ

x−t+τ
W (V (τ), τ)dydτ

for any x ∈ R.
Now, we state and prove the following theorem for the existence of quenching

curve.

Theorem 4.2. Suppose that 0 ≤ u0(x) < 1 and u1(x) > 0 in R. Let u be the
solution of the Cauchy problem (4.1). Then there exists a function φ defined in R
with 0 < φ(x) ≤ T0 such that u(x, t) < 1 for 0 ≤ t < φ(x), x ∈ R and u(x, t)→ 1 as
t ↑ φ(x) for each x ∈ R.

Proof. First, given a positive number T1 such that T1 ≤ T0. Suppose that u < 1 in
the set

Kξ,T1 := {(y, τ) : |y − ξ| ≤ T1 − τ, τ > 0}
for some ξ ∈ R. Then v(x, t) < et/2 in Kξ,T1

. Since

v(x, 0)− V (0) = u0(x) ≥ 0, vt(x, 0)− V ′(0) =
1

2
u0(x) + u1(x) ≥ ν

for x ∈ [−ξ− T0, ξ+ T0] for some positive constant ν, we have v(x, t) > V (t) for all
x ∈ [−ξ − T0, ξ + T0] and t ∈ (0, δ] for some sufficiently small δ > 0.
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We claim that v(x, t) > V (t) for all (x, t) ∈ Kξ,T1 . Otherwise, let t0 be the
smallest positive time such that v(x0, t0) = V (t0) for some (x0, t0) ∈ Kξ,T1 . Note
that W (z, s) is monotone increasing in z. Then

0 = v(x0, t0)− V (t0) = v̄(x0, t0) +
λ

2

∫ t0

0

∫ x0+t0+τ

x0−t0+τ

[W (v, τ)−W (V, τ)]dydτ > 0,

a contradiction. Hence v(x, t) > V (t) for all (x, t) ∈ Kξ,T1
. This implies that

U(t) < u(x, t) < 1 for (x, t) ∈ Kξ,T1
.

Now, for contradiction, we assume that there is a point x∗ ∈ R such that
u(x∗, t) < 1 for all t ≤ T0. Then, by the domain of dependence, u(x, t) < 1 for
all (x, t) ∈ Kx∗,T0

. Furthermore, by Lemma 4.1, we have

1 = U(T0) < u(x∗, T0) < 1,

a contradiction. Hence the theorem is proved.
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