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Abstract. Since the great advent of sensor technology, the usage data of ap-
pliances in a house can be logged and collected easily today. However, it is a 
challenge for the residents to visualize how these appliances are used. Thus, 
mining algorithms are much needed to discover appliance usage patterns. Most 
previous studies on usage pattern discovery are mainly focused on analyzing the 
patterns of single appliance rather than mining the usage correlation among ap-
pliances. In this paper, a novel algorithm, namely, Correlation Pattern Miner 
(CoPMiner), is developed to capture the usage patterns and correlations among 
appliances probabilistically. With several new optimization techniques, CoP-
Miner can reduce the search space effectively and efficiently. Furthermore, the 
proposed algorithm is applied on a real-world dataset to show the practicability 
of correlation pattern mining. 

Keywords: correlation pattern, smart home, sequential pattern, time interval-
based data, usage representation. 

1 Introduction 

Recently, due to the advance of sensor technology, the electricity usage data of in-
house appliances can be collected easily. In particular, an increasing number of smart 
power meters, which facilitates data collection of appliance usage, have been dep-
loyed. With the usage data, residents could supposedly visualize how the appliances 
are used. Nonetheless, with an anticipated huge amount of appliance usage data, sub-
tle information may exist but hidden. Therefore it is necessary to devise data mining 
algorithms to discover appliance usage patterns in order to make representative usage 
behavior of appliances explicit. Appliance usage patterns not only help users to better 
understand how they use the appliances at home but also detect abnormal usages of 
appliances. Moreover, it facilitates appliance manufacturers to design intelligent con-
trol of smart appliances. 

Most prior studies focus on knowledge extraction for a single appliance instead  
of the correlation among appliances in a house. In our daily life, we usually use dif-
ferent appliances simultaneously. For example, while the night, air conditioner and  
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television in the living room may be turned on in the evening (as shown in Fig. 1). 
The correlation among the usage of some appliances can provide valuable information 
to assist residents better understand how they use appliances. 

So far, little attention has been paid to the issue of mining correlation among ap-
pliances, which undoubtedly is more complex and arduous than mining the usage 
patterns of an appliance alone, and thus requires new mining techniques. In this paper, 
a new framework fundamentally different from previous work is proposed to discover 
the usage correlation patterns. 

The contributions of our work are as follows: (1) We define the notion of correlation 
pattern based on time interval-based sequence including probability concept. Since the 
usage of a device can be regarded as a usage interval (duration between turn-on and 
turn-off), interval-based sequences can depict users’ daily behaviors unambiguously. (2) 
The relation between any two usage intervals is intrinsically complex which may lead to 
more candidate sequences and heavier workload for computation. We propose a me-
thod, called usage representation, to simplify the processing of complex relations 
among intervals by considering the global information of intervals in the sequence. (3) 
We develop an efficient algorithm, called Correlation Pattern Miner (abbreviated as 
CoPMiner), to capture the usage patterns implying the correlations among appliances 
with several optimized techniques to reduce the search space effectively. (4) The reada-
bility of patterns is also an essential issue. A large number of patterns may become an 
obstacle for users to understand their actual behaviors. A spatial constraint is introduced 
to prune off non-promising correlation and reduce the number of generated correlation 
patterns. (5) To demonstrate the practicability of correlation pattern mining, we apply 
CoPMiner on a real dataset and analyze the results to show the discovered patterns are 
not just an anecdote. 

The rest of the paper is organized as follows. Sections 2 and 3 provide the related 
works and preliminaries, respectively. Section 4 introduces the proposed CoPMiner 
algorithm. Section 5 reports the experimental results in a performance study, and 
finally Section 6 concludes the paper. 

2 Related Work 

In this section, we discuss some previous works extracted useful knowledge and pat-
terns of a single device applying on energy disaggregation [3, 6, 11, 13, 18] or  
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appliance recognition [2, 5, 7, 10, 18]. Suzuki et al. [18] use a new NIALM technique 
based on integer programming to disaggregate residential power use. Lin et al. [13] 
use a dynamic Bayesian network and filter to disaggregate the data online. Kim et al. 
[11] investigate the effectiveness of several unsupervised disaggregation methods on 
low frequency power measurements collected in real homes. They also propose a 
usage pattern which consists of on-duration distribution of all appliances. Goncalves 
et al. [6] explore an unsupervised approach to determine the number of appliances in 
the household, including their power consumption and state, at any given moment. 
Chen et al. [3] disaggregate utility consumption from smart meters into specific usage 
associated with certain human activities. They propose a novel statistical framework 
for disaggregation on coarse granular smart meter readings by modeling fixture cha-
racteristic, household behavior, and activity correlations. Ito et al. [7] extract features 
from the current (e.g., amplitude, form, timing) to develop appliance signatures. For 
appliance recognition, Kato et al. [10] use Principal Component Analysis to extract 
features from electric signals and classify them using Support Vector Machine. Arito-
ni et al. [2] develop a software prototype to understand the behaviors of household 
appliances. Chen et al. [5] introduce two types of usage patterns to describe users’ 
representative behaviors. Based on these two types of patterns, an intelligent system, 
Jakkula et al. [8, 9] propose an Apriori-based algorithm for activity prediction and 
anomaly detection from sensor data in a smart home. All aforementioned studies fo-
cus on knowledge extraction for a single appliance instead of the correlation among 
appliances in a house. In this paper, we propose a mining algorithm to extract patterns 
including correlation among appliances and probability concept.  
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Fig. 2. An example of usage database 

3 Preliminaries  

Definition 1 (Usage-interval and usage-interval sequence). Let A = {a1, a2,…, ak} 
be a set of k appliances. Without loss of generality, we define a set of uniformly 
spaced location and time points based on natural numbering N. A function, Loc: A → 
N 3, specifies the location of each appliance in A. Let the triplet (ai, oi, fi) ∈ A × N × N 
denote a usage-interval of ai, where ai ∈ A, oi, fi ∈ N and oi < fi. The two time points 
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oi, fi denote the using times, where oi and fi are the turn-on time and the turn-off time 
of appliance ai, respectively. A usage-interval sequence is a series of usage-intervals 
〈(a1, o1, f1), (a2, o2, f2), …, (an, on, fn)〉, where oi ≤ oi+1, and oi < fi. Loc(ai) is the inte-
rior location of appliance ai in a smart home environment.  
 
Definition 2 (Usage-interval database). Considering a database DB = {r1, r2, …, 
rm}, each record ri, where 1 ≤ i ≤ m, consists of a date, a usage-interval and an interior 
location of appliance. DB is called a usage-interval database. If all records in DB 
with the same date are grouped together and ordered by nondecreasing turn-on time, 
turn-off time and appliance symbol, actually, DB can be transformed into a collection 
of daily usage-interval sequences. Note that the location information can be viewed as 
attachment to appliances. Fig. 2 shows a usage database which consists of 17 usage 
intervals and 4 daily usage-interval sequences. 
 
Definition 3 (Usage-point and usage sequence). Given a usage-interval sequence Q 
= 〈(a1, o1, f1), (a2, o2, f2), …, (an, on, fn)〉, the set TSQ ={o1, f1, o2, f2, …, oi, fi,…, on, fn} 
is called a time set corresponding to Q. By ordering all the elements of TSQ in non-
decreasing order, we can derive a sequence TQ = 〈t1, t2, …, t2n〉 where ti ∈ TSQ , ti ≤ 
ti+1. TQ is called a time sequence corresponding to Q. A function Φ that maps a usage 
interval (ai, oi, fi) into two usage-points ai

＋ and ai
－ is defined as follows,  
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where ai＋ and ai－ are called on-point and off-point of interval (ai, oi, fi), respective-
ly. The usage-points ak

*, …, aℓ
* (* can be ＋ or － ) are collected in brackets as a 

pointset if they occur at the same time in TQ, denoted as (ak
*, …, aℓ*). A usage se-

quence SQ of Q is denoted by 〈s1, …, si,…, s2n〉 where si is a usage-point. For example, 
in Fig. 2, the database collects 4 daily usage-interval sequences. The usage sequence 
of date 2 is 〈B ＋B －D ＋(E ＋F ＋)(E －F －)D －〉, and (E ＋F ＋) and (E －F －) 
are two pointsets because they occur at the same time, respectively. 
 
Definition 4 (Usage representation). Given a usage-interval sequence Q = 〈(a1, o1, 
f1), …, (an, on, fn)〉 and corresponding time sequence TQ = 〈t1, …, ti, …,t2n〉, by Defini-
tion 3, we can derive a usage sequence SQ = 〈s1, …, si, …, s2n〉. The usage representa-
tion of Q is defined as a pair, 
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Note that the using time of usage point si in SQ is ti in TQ. Take the database in Fig. 2 
as an example. Without leading into ambiguity, we consider the turn-on and turn-off 
times by hour. The usage representation of DB is shown in the last column in Fig. 2. 
For the rest of this paper, we assume the usage database has already been transformed 
into usage representation.  
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Let S1 = 〈x1, …, xi, …, xn〉 and S2 = 〈x1
’, …, xj

’, …, xm
’ 〉 be two usage sequences, 

where xi, xj
’ are pointsets and n ≤ m. S1 is called a subsequence of S2, denoted as S1 ⊑ 

S2, if there exist integers 1 ≤ k1 ≤ k2 ≤ …≤ kn ≤ m such that x1 ⊆ xk1
’, x2 ⊆ xk2

’, …, xn ⊆ 
xkn

’. Given a usage-interval database DB in usage representation, the tuple (date, S, T ) 

∈DB is said to contain a usage sequence S’ if S’ ⊑ S. The support of a usage sequence 

S’ in DB, denoted as support(S’ ), is the number of tuples in the database containing 

S’. More formally, support(S’  ) = | { (date, S, T ) ∈DB | S’ ⊑ S } |.                 (3) 

As mentioned above, each appliance in a house has its own location. For an ap-
pliance a in A, the function, Loc: A → N × N × N, gives the locations (ax, ay, az) of a. 
The similarity between two appliances a1 and a2 is defined as follows:  
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We use a support threshold, min_sup and min_sim, to filter out insignificant usage 
sequences. A usage sequence S = 〈s1, …, sn〉 in DB is called a frequent sequence, if 
support(S) ≥ min_sup and ∀ si, sj in S where i, j ≤ n,  similarity(si, sj) ≥ min_sim. 
 
Definition 5 (Correlation pattern). Given DB in usage representation and two thre-
sholds, min_sup and min_sim, the set of frequent sequences, FS, includes all frequent 
usage sequences in DB. A correlation pattern P is defined as, 
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We modify the idea of multivariate kernel density estimation [14, 17] to estimate the 
probability function of each si in S. Suppose the time information of si in DB is {ti1, 
ti2, …tim}, the probability function is defined as, 
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For example, in Fig. 2, with min_sup = 2 and min_sim = 0.3, 〈A＋A－D－D－〉 is a 
frequent sequence since its support is 3 ≥ 2 and similarity (A, D) = 0.5 ≥ 0.3. The 

correlation pattern with respective to 〈A＋A－D－D－〉 is ⎟
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We only discuss fA+ as an example. The time information of A＋ is {2, 6, 13}; hence 
fA+(x) 
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4 Mining Appliance Usage Patterns 

We focus our study on correlation pattern mining in smart home due to its wide appli-
cability and the lack of research on this topic. In this paper, we develop a new algo-
rithm, called Correlation Pattern Miner (abbreviated as CoPMiner), to discover  
correlation patterns effectively and efficiently. CoPMiner utilizes the arrangement of 
endpoints to accomplish the mining of correlation among appliances’ usage. We also 
propose four pruning strategies to effectively reduce the search space and speedup the 
mining process.  

4.1 Merits of Correlation Pattern and Usage Representation  

Extracting correlation patterns from data collected in smart homes can provide resi-
dent useful information to better understand the relation among usage of appliances. 
Given a correlation pattern, as defined in Definition 5, a user can know the distribu-
tion of usage time of appliances. With a turn-on/off time of an appliance, we can de-
rive the usage probability of other appliances. Consider the correlation pattern in 
aforementioned example. Suppose appliances A and D are the light and the coffee 
machine, respectively. Given the turn-on/off times of light and coffee machine, we 
can derive the usage probability for them, i.e., the probability for the light and coffee 
machine to be on/off at that time. This probability information is very useful for sev-
eral applications, such as abnormal detection and activity prediction.  

Obviously, the correlation pattern mining is an arduous task. Since the time period 
of the two usage-intervals may overlap, the relation between them is intrinsically 
complex. Allen’s 13 temporal logics [1], in general, can be adopted to describe the 
relations among intervals. However, Allen’s logics are binary relations. When de-
scribing relationships among more than three intervals, Allen’s temporal logics may 
suffer several problems. 

A suitable representation is very important for describing a correlation pattern. In 
this paper, a new expression, called usage representation, is proposed to effectively 
address the ambiguous and scalable issue [19] for describing relationships among 
intervals. Given two different usage-intervals A and B, the usage representation of 
Allen’s 13 relations between A and B is categorized as in Fig. 3. Several merits of 
usage representation are discussed as follows: (1) Lossless: Usage representation not 
only implies the temporal relation among intervals, but also includes the accurate 
usage time of each interval. This concept can achieve a lossless representation to ex-
press the nature of the interval sequence. (2) Nonambiguity: According to [19], we 
can find that the usage representation has no ambiguous problem. First, by Definition 
3, we can transform every usage-interval sequence to a unique usage sequence.  
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In other words, the temporal relations among intervals can be mapped to a usage se-
quence. Second, in a usage sequence, the order relation of the starting and finishing 
endpoints of A and B can be depicted easily. Hence, we can infer the original temporal 
relationships between intervals A and B nonambiguously. (3) Simplicity: Obviously, 
the complex relations between intervals are the major bottleneck of correlation pattern 
mining. However, the relation between two usage points is simple, just “before,” “af-
ter” and “equal.” The simpler the relations, the less number of intermediate candidate 
sequences are generated and processed. 

4.2 CoPMiner Algorithm  

Before introducing the algorithm, we modify the idea in [16] and define the projected 
database first. Let α be a usage sequence in a database DB with usage representation. 
The α - projected database, denoted as DB|α , is the collection of postfixes of se-
quences (including usage sequences and corresponding time sequence) in DB with 
regards to prefix α. 

Algorithm 1 illustrates the main framework of CoPMiner. It first transforms the 
usage database to usage representation and calculates the count of each usage-point 
concurrently (line 2, algorithm 1). CoPMiner removes infrequent usage-points under 
given support threshold, min_sup (line 3, algorithm 1). For each frequent starting 
usage-point s, we find all its time information {ts1, ts2, …tsm} in DB and estimate the 
probability function fs by Definition 5 (lines 6-7, algorithm 1). 
 

Algorithm 1: CoPMiner (DB, min_sup, min_sim) 

Input: a usage-interval database DB, the support threshold min_sup, the 
similarity threshold min_sim 

Output: all correlation patterns P 
 
01: P ← ∅; 
02: transform DB into usage presentation by Definition 4; 
03: find all frequent usage-points and remove infrequent usage-points in DB; 
04: FS ← all frequent “on-points”; 
05: for  each s ∈ FS  do 
06:      find all corresponding usage time information of s in DB; 
07:      fs ← calculate the probability function of s by Definition 5; 
08:      construct DB|s only with each usage-point v, where  

similarity(s,  v) ≥ min_sim;   // spatial-pruning strategy 
09:     UPrefixSpan(DB|s , s, fs, min_sup, P ); 
10: output all correlation patterns P; 

 
As mentioned above, the spatial distance may conflict with the correlation depen-

dency between two appliances. When building the projected database DB|s, CoPMiner 
collects the postfixes by using spatial pruning strategy. We eliminate the usage-
points which have the similarity with regard to s smaller than min_sim in collected 
postfix sequences (line 8, algorithm 1). Finally, CoPMiner calls UPrefixSpan recur-
sively and output all correlation patterns (lines 9-10, algorithm 1). 

By borrowing the idea of the PrefixSpan [16], UPrefixSpan is developed with two 
search space pruning methods. The pseudo code is shown in Algorithm 2. For a prefix 
α, UPrefixSpan scans its projected database DB|α once to discover all local frequent 
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usage-points and remove infrequent ones (line 1, algorithm 2). For frequent usage-
point s, we can append it to original prefix to generate a new frequent sequence α’ 
with the length increased by 1. We also use the time information of s in DB|α to esti-
mate the probability function fs by Definition 5, and then include fs into f(α’). As such, 
the prefixes are extended (lines 3-7, algorithm 2). If all usage-points in a frequent 
sequence appear in pairs, i.e., every on(off)-point has corresponding off(on)-point, we 
can output this frequent  sequence and its probability function as a correlation pattern 
(lines 8-9, algorithm 2). Finally, we can discover all correlation patterns by construct-
ing the projected database with the frequently extended prefixes and recursively run-
ning until the prefixes cannot be extended (lines 10-11, algorithm 2). 

Taking into account the property of usage-point, we propose two pruning strate-
gies, point-pruning and postfix-pruning to reduce the searching space efficiently and 
effectively. Firstly, the on-points and the off-points definitely occur in pairs in a usage 
sequence. We only require projecting the frequent on-points or the frequent off-points 
which have the corresponding on-points in their prefixes. For example, if we scan the 
projected database DB|〈A＋〉 with respective to prefix 〈A＋〉 and find three frequent 
local usage-points, A－, B＋ and B－. We only require extending prefix 〈A＋〉 with  
A－ and B＋ (i.e., 〈A＋A－〉 and 〈A＋B＋〉), since B－ has no corresponding on-
points in its prefix. It is because that sequence 〈A＋B－〉 has no chance to grow to a 
frequent sequence. This strategy is called point-pruning strategy (line 2 and lines 
12-19, algorithm 2) which can prune off non-qualified patterns before constructing 
projected database. 

Second, when we construct a projected database, some usage-points in postfix se-
quences need not be considered. With respect to a prefix sequence 〈α〉, an off-point in 
a projected postfix sequence is insignificant, if it has no corresponding on- points in 
〈α〉. Hence, when collecting postfix sequences to construct DB|〈α〉 , we can eliminate all 
insignificant off-points since they can be ignored in the discovery of correlation pat-
terns. This pruning method is called postfix-pruning strategy which can shrink the 
length of postfix sequence and further reduce the size of projected database effective-
ly (line 14 and lines 20-25, algorithm 2). 
 

Algorithm 2: UPrefixSpan (DB|α, α , f(α), min_sup, P )  
Input: a projected database DB|α , an usage sequence α , the support 

threshold min_sup, a similarity threshold min_sim, and a set of 
correlation patterns P 

Output: a set of correlation patterns P 
 
01: scan DB|α once, remove infrequent usage-points and find every 

frequent usage-point v such that:  
(i) v can be assembled to the last pointset of α  to form a frequent 

sequence; or  
(ii) 〈v〉 can be appended to α  to form a frequent sequence; 

02: FS ← all frequent usage-points;  
03: FS ← point_pruning(FS, α);   // point-pruning strategy 
04: for  each s ∈ FS  do 
05:      find all corresponding usage time information of s in DB|α ; 
06:      fs ← calculate the probability function of s by Definition 5; 
07:      append s to α  to form α’; 
08:      f(α’) ← f(α) + fs ; 
09:      if  α’ is a correlation pattern  then 
10:           P ← P ∪ (α’, f(α’));  
11:      DB|α’ ← DB_construct(DB|α, α’);   // prefix-pruning 

strategy 
12:      UPrefixSpan(DB|α’ , α’, f(α’), min_sup, P);

Procedure point_pruning (FS, α) 
13: temp_point ← ∅; 
14: for  each s ∈ FS  do 
15:      if s is a “off-point”  then   // point-pruning 

strategy 
16:           if  exist corresponding “on-point” in α  then  
17:                temp_point ← temp_point∪ s; 
18:      if s is a “on-point”  then 
19:           temp_point ← temp_point∪ s; 
20: return temp_point; 

 

Procedure DB_construct (DB|α, α’) 
21: temp_seq ← ∅; 
22: find all postfix sequences of α’ in DB|α to form DB|α’ ; 
23: for  each postfix sequence q ∈ DB|α’  do   
24: eliminate the “off-points” in q which has no correspond-

ing “on-point” in α’ ;   // postfix-pruning strategy 
25:      temp_seq ← temp_seq ∪ q; 
26: return temp_seq; 
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5 Experimental Results 

To best of our knowledge, CoPMiner is the first algorithm discussing the correlation 
among appliances included probability concept. Three interval-pattern mining algo-
rithms, CTMiner [4], IEMiner [15] and TPrefixSpan [19] have been implemented for 
performance discussion. For fair comparison, when comparing the execution time of 
CoPMiner with other interval-pattern mining algorithms, we only discuss the part of 
usage sequence mining (i.e., exclusive of computation of probability function). All algo-
rithms were implemented in Java language and tested on a workstation with Intel i7-
3370 3.4 GHz with 8 GB main memory. First, we compare the execution time using 
synthetic datasets at different minimum support. Second, we conduct an experiment to 
observe the memory usage and the scalability on execution time of CoPMiner. Finally, 
CoPMiner is applied in real-world dataset [12] to show the performance and the practi-
cability of mining correlation patterns. The synthetic datasets in the experiments are 
generated using synthetic generator in [4] and the parameter setting is shown in Fig. 3. 
 

Parameters Description 

| D | Number of event sequences 

| C | Average size of event sequences 

| S | Average size of potentially frequent sequences 

Ns Number of potentially frequent sequences 

N Number of event symbols 

Fig. 3. Parameters of synthetic data generator  

5.1 Performance and Scalability on Synthetic Dataset  

In all the following experiments, two parameters are fixed, i.e., | S | = 4 and NS = 
5,000. The other parameters are configured for comparison. Note that, for fair com-
parison, when comparing the performance of CoPMiner with other interval-pattern 
mining algorithms, we only discuss the part of usage sequence mining (i.e., exclusive 
of computation of probability function). Fig. 4(a) shows the running time of the four 
algorithms with minimum supports   varied   from   1 % to 5 % on the dataset 
D100k–C20–N10k. Obviously, when the minimum support value decreases, the 
processing time required for all algorithms increases. We can see that when we  
continue to lower the threshold, the runtime for IEMiner and TPrefixSpan increase 
drastically compared to CTMiner and CoPMiner. This is partly because these two 
algorithms still process interval-based data with complex relationship which may lead 
to generate more number of intermediate candidate sequences. 

Then, we study the scalability of CoPMiner. Here, we use the data set C = 20, N = 
10k with varying different database size. Fig. 4(b) shows the results of scalability tests 
of four algorithms with the database size growing from 100K to 500K sequences. We 
fix the min_sup as 1%. Fig. 4(c) depicts the results of scalability tests of CoPMiner 
under different database size growing with different minimum support threshold  
varying from 1% to 5%. As the size of database increases and minimum support  
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decreases, the processing time of all algorithms increase, since the number of patterns 
also increases. As can be seen, CoPMiner is linearly scalable with different minimum 
support threshold. When the number of generated patterns is large, the runtime of 
CoPMiner still increases linearly with different database size. 
 

   
(a)                                                            (b) 

  
(c)                                                           (d) 

Fig. 4. Experimental results on synthetic datasets 

5.2 Influence of Proposed Pruning Strategies 

To reflect the speedup of proposed pruning methods, we measure CoPMiner with 
pruning strategies and without pruning strategy on time performance. We compare 
five algorithms, CoPMiner (includes all pruning strategies), CoP_Point (only point-
pruning strategy), CoP_Postfix (only postfix-pruning strategy), CoP_Spatial (only 
spatial-pruning strategy) and CoP_None (without any pruning strategy). The experi-
ment is performed on the data set D100k–C20–N10k. Fig. 4(d) is the results of vary-
ing minimum support thresholds from 0.5% to 1%. As shown in figure, point-pruning 
can improve about 25% performance. Because of removing non-qualified usage-
points before database projection, point-pruning can efficiently speedup the execution 
time. As can be seen from the graph, postfix-pruning can improve about 11% perfor-
mance. Postfix-pruning can improve the performance by effectively eliminating all 
useless usage-points for correlation pattern construction. We also can observe that 
spatial-pruning constantly ameliorate the performance about 2.5. 
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5.3 Real-World Dataset Analysis 

In addition to using synthetic datasets, we also have performed an experiment on real-
world dataset to indicate the applicability of correlation pattern mining. The dataset 
REDD [12] used in the experiment is the power reading of appliances collected from 
six different houses. Each house has about 15 appliances. We convert the raw data 
into the usage interval with turn-on time and turn-off time. Fig. 5 shows the part of 
mining result with min_sup = 0.3 and min_sim = 0.1. The probability function of each 
usage-point in pattern is listed below. 
 

  

Fig. 5. Part of discovered correlation patterns from REDD dataset 

6 Conclusion 

Recently, considerable concern has arisen over the electricity conservation due to the 
issue of greenhouse gas emissions. If representative behaviors of appliance usages are 
available, residents may adapt their usage patterns to conserve energy effectively. 
However, previous studies on usage pattern discovery are mainly focused on analyz-
ing single appliance and ignore the usage correlation. In this paper, we introduce a 
new concept, correlation pattern, to capture the usage patterns and correlations among 
appliances probabilistically. An efficient algorithm, CoPMiner is developed to dis-
cover patterns based on proposed usage representation. The experimental studies indi-
cate that CoPMiner is efficient and scalable. Furthermore, CoPMiner is applied on a 
real-world dataset to show the practicability of correlation pattern mining. 
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