

V.S. Tseng et al. (Eds.): PAKDD 2014, Part II, LNAI 8444, pp. 222–233, 2014.
© Springer International Publishing Switzerland 2014

Mining Correlation Patterns among Appliances in Smart
Home Environment

Yi-Cheng Chen1, Chien-Chih Chen2, Wen-Chih Peng2, and Wang-Chien Lee3

1 Department of Computer Science and information engineering, Tamkang University, Taiwan
2 Department of Computer Science, National Chiao Tung University, Taiwan

3 Department of Computer Science and Engineering, The Pennsylvania State University, USA
ycchen@mail.tku.edu.tw, {flykite,wcpeng}@cs.nctu.edu.tw,

wlee@cse.psu.edu

Abstract. Since the great advent of sensor technology, the usage data of ap-
pliances in a house can be logged and collected easily today. However, it is a
challenge for the residents to visualize how these appliances are used. Thus,
mining algorithms are much needed to discover appliance usage patterns. Most
previous studies on usage pattern discovery are mainly focused on analyzing the
patterns of single appliance rather than mining the usage correlation among ap-
pliances. In this paper, a novel algorithm, namely, Correlation Pattern Miner
(CoPMiner), is developed to capture the usage patterns and correlations among
appliances probabilistically. With several new optimization techniques, CoP-
Miner can reduce the search space effectively and efficiently. Furthermore, the
proposed algorithm is applied on a real-world dataset to show the practicability
of correlation pattern mining.

Keywords: correlation pattern, smart home, sequential pattern, time interval-
based data, usage representation.

1 Introduction

Recently, due to the advance of sensor technology, the electricity usage data of in-
house appliances can be collected easily. In particular, an increasing number of smart
power meters, which facilitates data collection of appliance usage, have been dep-
loyed. With the usage data, residents could supposedly visualize how the appliances
are used. Nonetheless, with an anticipated huge amount of appliance usage data, sub-
tle information may exist but hidden. Therefore it is necessary to devise data mining
algorithms to discover appliance usage patterns in order to make representative usage
behavior of appliances explicit. Appliance usage patterns not only help users to better
understand how they use the appliances at home but also detect abnormal usages of
appliances. Moreover, it facilitates appliance manufacturers to design intelligent con-
trol of smart appliances.

Most prior studies focus on knowledge extraction for a single appliance instead
of the correlation among appliances in a house. In our daily life, we usually use dif-
ferent appliances simultaneously. For example, while the night, air conditioner and

 Mining Correlation Patterns among Appliances in Smart Home Environment 223

television in the living room may be turned on in the evening (as shown in Fig. 1).
The correlation among the usage of some appliances can provide valuable information
to assist residents better understand how they use appliances.

So far, little attention has been paid to the issue of mining correlation among ap-
pliances, which undoubtedly is more complex and arduous than mining the usage
patterns of an appliance alone, and thus requires new mining techniques. In this paper,
a new framework fundamentally different from previous work is proposed to discover
the usage correlation patterns.

The contributions of our work are as follows: (1) We define the notion of correlation
pattern based on time interval-based sequence including probability concept. Since the
usage of a device can be regarded as a usage interval (duration between turn-on and
turn-off), interval-based sequences can depict users’ daily behaviors unambiguously. (2)
The relation between any two usage intervals is intrinsically complex which may lead to
more candidate sequences and heavier workload for computation. We propose a me-
thod, called usage representation, to simplify the processing of complex relations
among intervals by considering the global information of intervals in the sequence. (3)
We develop an efficient algorithm, called Correlation Pattern Miner (abbreviated as
CoPMiner), to capture the usage patterns implying the correlations among appliances
with several optimized techniques to reduce the search space effectively. (4) The reada-
bility of patterns is also an essential issue. A large number of patterns may become an
obstacle for users to understand their actual behaviors. A spatial constraint is introduced
to prune off non-promising correlation and reduce the number of generated correlation
patterns. (5) To demonstrate the practicability of correlation pattern mining, we apply
CoPMiner on a real dataset and analyze the results to show the discovered patterns are
not just an anecdote.

The rest of the paper is organized as follows. Sections 2 and 3 provide the related
works and preliminaries, respectively. Section 4 introduces the proposed CoPMiner
algorithm. Section 5 reports the experimental results in a performance study, and
finally Section 6 concludes the paper.

2 Related Work

In this section, we discuss some previous works extracted useful knowledge and pat-
terns of a single device applying on energy disaggregation [3, 6, 11, 13, 18] or

10/27, 2013: 00:00 24:0006:00 12:00 18:00

AC

TV

light

10/27, 2013: 00:00 24:0006:00 12:00 18:00

AC

TV

light

living room

Fig. 1. An example of daily usage sequence

224 Y.-C. Chen et al.

appliance recognition [2, 5, 7, 10, 18]. Suzuki et al. [18] use a new NIALM technique
based on integer programming to disaggregate residential power use. Lin et al. [13]
use a dynamic Bayesian network and filter to disaggregate the data online. Kim et al.
[11] investigate the effectiveness of several unsupervised disaggregation methods on
low frequency power measurements collected in real homes. They also propose a
usage pattern which consists of on-duration distribution of all appliances. Goncalves
et al. [6] explore an unsupervised approach to determine the number of appliances in
the household, including their power consumption and state, at any given moment.
Chen et al. [3] disaggregate utility consumption from smart meters into specific usage
associated with certain human activities. They propose a novel statistical framework
for disaggregation on coarse granular smart meter readings by modeling fixture cha-
racteristic, household behavior, and activity correlations. Ito et al. [7] extract features
from the current (e.g., amplitude, form, timing) to develop appliance signatures. For
appliance recognition, Kato et al. [10] use Principal Component Analysis to extract
features from electric signals and classify them using Support Vector Machine. Arito-
ni et al. [2] develop a software prototype to understand the behaviors of household
appliances. Chen et al. [5] introduce two types of usage patterns to describe users’
representative behaviors. Based on these two types of patterns, an intelligent system,
Jakkula et al. [8, 9] propose an Apriori-based algorithm for activity prediction and
anomaly detection from sensor data in a smart home. All aforementioned studies fo-
cus on knowledge extraction for a single appliance instead of the correlation among
appliances in a house. In this paper, we propose a mining algorithm to extract patterns
including correlation among appliances and probability concept.

A

B

C D

E

A

B

C D

E

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−++−−−+++

2220181612107552

)(DEEDCBACBA

B

E

F

DB

E

F

D

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−−+++−+

1413131010850

)()(DFEFEDBB

E

A
B

D

E

A
B

D ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−++−−++

20191714141276

)(DEEDBABA

B A D

E

B A D

E
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−++−+−+

232221201613108

DEEDAABB

(3, 4, 1)22:4021:30E4

(1, 3, 1)23:3020:00D4

(1, 1, 1)16:0013:20A4

(1, 2, 1)10:0008:30B4

(3, 4, 1)19:0017:30E3

(1, 3, 1)20:3014:00D3

(1, 2, 1)14:0007:20B3

(1, 1, 1)12:2006:00A3

(2, 2, 1)13:1010:20F2

(3, 4, 2)13:1010:20E2

(1, 3, 1)14:0008:00D2

(1, 2, 1)05:3000:40B2

(3, 4, 1)20:0018:00E1

(1, 3, 1)22:4016:10D1

(3, 4, 2)12:3005:20C1

(1, 2, 1)10:0005:20B1

(1, 1, 1)07:3002:10A1

usage representation
(usage sequence, time sequence)

pictorial example
interior
location

turn-off
time

turn-on
time

appliance
symbol

date

(3, 4, 1)22:4021:30E4

(1, 3, 1)23:3020:00D4

(1, 1, 1)16:0013:20A4

(1, 2, 1)10:0008:30B4

(3, 4, 1)19:0017:30E3

(1, 3, 1)20:3014:00D3

(1, 2, 1)14:0007:20B3

(1, 1, 1)12:2006:00A3

(2, 2, 1)13:1010:20F2

(3, 4, 2)13:1010:20E2

(1, 3, 1)14:0008:00D2

(1, 2, 1)05:3000:40B2

(3, 4, 1)20:0018:00E1

(1, 3, 1)22:4016:10D1

(3, 4, 2)12:3005:20C1

(1, 2, 1)10:0005:20B1

(1, 1, 1)07:3002:10A1

usage representation
(usage sequence, time sequence)

pictorial example
interior
location

turn-off
time

turn-on
time

appliance
symbol

date

Fig. 2. An example of usage database

3 Preliminaries

Definition 1 (Usage-interval and usage-interval sequence). Let A = {a1, a2,…, ak}
be a set of k appliances. Without loss of generality, we define a set of uniformly
spaced location and time points based on natural numbering N. A function, Loc: A →
N 3, specifies the location of each appliance in A. Let the triplet (ai, oi, fi) ∈ A × N × N
denote a usage-interval of ai, where ai ∈ A, oi, fi ∈ N and oi < fi. The two time points

 Mining Correlation Patterns among Appliances in Smart Home Environment 225

oi, fi denote the using times, where oi and fi are the turn-on time and the turn-off time
of appliance ai, respectively. A usage-interval sequence is a series of usage-intervals
〈(a1, o1, f1), (a2, o2, f2), …, (an, on, fn)〉, where oi ≤ oi+1, and oi < fi. Loc(ai) is the inte-
rior location of appliance ai in a smart home environment.

Definition 2 (Usage-interval database). Considering a database DB = {r1, r2, …,
rm}, each record ri, where 1 ≤ i ≤ m, consists of a date, a usage-interval and an interior
location of appliance. DB is called a usage-interval database. If all records in DB
with the same date are grouped together and ordered by nondecreasing turn-on time,
turn-off time and appliance symbol, actually, DB can be transformed into a collection
of daily usage-interval sequences. Note that the location information can be viewed as
attachment to appliances. Fig. 2 shows a usage database which consists of 17 usage
intervals and 4 daily usage-interval sequences.

Definition 3 (Usage-point and usage sequence). Given a usage-interval sequence Q
= 〈(a1, o1, f1), (a2, o2, f2), …, (an, on, fn)〉, the set TSQ ={o1, f1, o2, f2, …, oi, fi,…, on, fn}
is called a time set corresponding to Q. By ordering all the elements of TSQ in non-
decreasing order, we can derive a sequence TQ = 〈t1, t2, …, t2n〉 where ti ∈ TSQ , ti ≤
ti+1. TQ is called a time sequence corresponding to Q. A function Φ that maps a usage
interval (ai, oi, fi) into two usage-points ai

＋ and ai
－ is defined as follows,

⎪⎩

⎪
⎨
⎧

=
=

= −

+

iji

iji
j fta

ota
Qt

 if

 if
) ,Φ(, (1)

where ai＋ and ai－ are called on-point and off-point of interval (ai, oi, fi), respective-
ly. The usage-points ak

*, …, aℓ
* (* can be ＋ or －) are collected in brackets as a

pointset if they occur at the same time in TQ, denoted as (ak
, …, aℓ). A usage se-

quence SQ of Q is denoted by 〈s1, …, si,…, s2n〉 where si is a usage-point. For example,
in Fig. 2, the database collects 4 daily usage-interval sequences. The usage sequence
of date 2 is 〈B ＋B －D ＋(E ＋F ＋)(E －F －)D －〉, and (E ＋F ＋) and (E －F －)
are two pointsets because they occur at the same time, respectively.

Definition 4 (Usage representation). Given a usage-interval sequence Q = 〈(a1, o1,
f1), …, (an, on, fn)〉 and corresponding time sequence TQ = 〈t1, …, ti, …,t2n〉, by Defini-
tion 3, we can derive a usage sequence SQ = 〈s1, …, si, …, s2n〉. The usage representa-
tion of Q is defined as a pair,

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ni

ni
QQ ttt

sss
TS

21

21

......

......
) ,(. (2)

Note that the using time of usage point si in SQ is ti in TQ. Take the database in Fig. 2
as an example. Without leading into ambiguity, we consider the turn-on and turn-off
times by hour. The usage representation of DB is shown in the last column in Fig. 2.
For the rest of this paper, we assume the usage database has already been transformed
into usage representation.

226 Y.-C. Chen et al.

Let S1 = 〈x1, …, xi, …, xn〉 and S2 = 〈x1
’, …, xj

’, …, xm
’ 〉 be two usage sequences,

where xi, xj
’ are pointsets and n ≤ m. S1 is called a subsequence of S2, denoted as S1 ⊑

S2, if there exist integers 1 ≤ k1 ≤ k2 ≤ …≤ kn ≤ m such that x1 ⊆ xk1
’, x2 ⊆ xk2

’, …, xn ⊆
xkn

’. Given a usage-interval database DB in usage representation, the tuple (date, S, T)

∈DB is said to contain a usage sequence S’ if S’ ⊑ S. The support of a usage sequence

S’ in DB, denoted as support(S’), is the number of tuples in the database containing

S’. More formally, support(S’) = | { (date, S, T) ∈DB | S’ ⊑ S } |. (3)

As mentioned above, each appliance in a house has its own location. For an ap-
pliance a in A, the function, Loc: A → N × N × N, gives the locations (ax, ay, az) of a.
The similarity between two appliances a1 and a2 is defined as follows:

)(where,)()(if
)()(

1
)()(if 1

) ,(1
21

21

21

21 LocaLocaLocaLoc
aLocaLoc

aLocaLoc
aasimilarity −

⎪⎩

⎪
⎨
⎧

≠
−

=
=

.||||||)(2121212 zzyyxx aaaaaaa −+−+−= (4)

For example, in Fig. 2, the similarity of appliances B and C is .2.0
5

1

122

1 ==
++

We use a support threshold, min_sup and min_sim, to filter out insignificant usage
sequences. A usage sequence S = 〈s1, …, sn〉 in DB is called a frequent sequence, if
support(S) ≥ min_sup and ∀ si, sj in S where i, j ≤ n, similarity(si, sj) ≥ min_sim.

Definition 5 (Correlation pattern). Given DB in usage representation and two thre-
sholds, min_sup and min_sim, the set of frequent sequences, FS, includes all frequent
usage sequences in DB. A correlation pattern P is defined as,

.in offunction y probabilit

 theis and ..., , where,
......

......
))(,(1

1

1

DBs

fFSssS
fff

sss
SfSP

i

in
ni

ni ∈〉〈=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

 (5)

We modify the idea of multivariate kernel density estimation [14, 17] to estimate the
probability function of each si in S. Suppose the time information of si in DB is {ti1,
ti2, …tim}, the probability function is defined as,

(6) .
}) ..., , ,{(

 and ,
π2

1
)(i.e.,

Normal,Gaussian is where,)(
1

}) ..., , ,{ ,),(()(

212

1

1
21

2

m

tttrange
hexK

K
h

tx
K

mh
ttthxKxf

imiix

m

j

ij
imiii

==

−
==

−

=
∑

For example, in Fig. 2, with min_sup = 2 and min_sim = 0.3, 〈A＋A－D－D－〉 is a
frequent sequence since its support is 3 ≥ 2 and similarity (A, D) = 0.5 ≥ 0.3. The

correlation pattern with respective to 〈A＋A－D－D－〉 is ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−+

−+−+

DDAA ffff

DDAA
.

We only discuss fA+ as an example. The time information of A＋ is {2, 6, 13}; hence
fA+(x)

 Mining Correlation Patterns among Appliances in Smart Home Environment 227

=−==++=
−−−−−−

3

213

3

})13 6, {2,(
 with)(

π23

1
222

)
13

(
2

1
)

6
(

2

1
)

2
(

2

1
range

heee
h

h

x

h

x

h

x

 .35.6

4 Mining Appliance Usage Patterns

We focus our study on correlation pattern mining in smart home due to its wide appli-
cability and the lack of research on this topic. In this paper, we develop a new algo-
rithm, called Correlation Pattern Miner (abbreviated as CoPMiner), to discover
correlation patterns effectively and efficiently. CoPMiner utilizes the arrangement of
endpoints to accomplish the mining of correlation among appliances’ usage. We also
propose four pruning strategies to effectively reduce the search space and speedup the
mining process.

4.1 Merits of Correlation Pattern and Usage Representation

Extracting correlation patterns from data collected in smart homes can provide resi-
dent useful information to better understand the relation among usage of appliances.
Given a correlation pattern, as defined in Definition 5, a user can know the distribu-
tion of usage time of appliances. With a turn-on/off time of an appliance, we can de-
rive the usage probability of other appliances. Consider the correlation pattern in
aforementioned example. Suppose appliances A and D are the light and the coffee
machine, respectively. Given the turn-on/off times of light and coffee machine, we
can derive the usage probability for them, i.e., the probability for the light and coffee
machine to be on/off at that time. This probability information is very useful for sev-
eral applications, such as abnormal detection and activity prediction.

Obviously, the correlation pattern mining is an arduous task. Since the time period
of the two usage-intervals may overlap, the relation between them is intrinsically
complex. Allen’s 13 temporal logics [1], in general, can be adopted to describe the
relations among intervals. However, Allen’s logics are binary relations. When de-
scribing relationships among more than three intervals, Allen’s temporal logics may
suffer several problems.

A suitable representation is very important for describing a correlation pattern. In
this paper, a new expression, called usage representation, is proposed to effectively
address the ambiguous and scalable issue [19] for describing relationships among
intervals. Given two different usage-intervals A and B, the usage representation of
Allen’s 13 relations between A and B is categorized as in Fig. 3. Several merits of
usage representation are discussed as follows: (1) Lossless: Usage representation not
only implies the temporal relation among intervals, but also includes the accurate
usage time of each interval. This concept can achieve a lossless representation to ex-
press the nature of the interval sequence. (2) Nonambiguity: According to [19], we
can find that the usage representation has no ambiguous problem. First, by Definition
3, we can transform every usage-interval sequence to a unique usage sequence.

228 Y.-C. Chen et al.

In other words, the temporal relations among intervals can be mapped to a usage se-
quence. Second, in a usage sequence, the order relation of the starting and finishing
endpoints of A and B can be depicted easily. Hence, we can infer the original temporal
relationships between intervals A and B nonambiguously. (3) Simplicity: Obviously,
the complex relations between intervals are the major bottleneck of correlation pattern
mining. However, the relation between two usage points is simple, just “before,” “af-
ter” and “equal.” The simpler the relations, the less number of intermediate candidate
sequences are generated and processed.

4.2 CoPMiner Algorithm

Before introducing the algorithm, we modify the idea in [16] and define the projected
database first. Let α be a usage sequence in a database DB with usage representation.
The α - projected database, denoted as DB|α , is the collection of postfixes of se-
quences (including usage sequences and corresponding time sequence) in DB with
regards to prefix α.

Algorithm 1 illustrates the main framework of CoPMiner. It first transforms the
usage database to usage representation and calculates the count of each usage-point
concurrently (line 2, algorithm 1). CoPMiner removes infrequent usage-points under
given support threshold, min_sup (line 3, algorithm 1). For each frequent starting
usage-point s, we find all its time information {ts1, ts2, …tsm} in DB and estimate the
probability function fs by Definition 5 (lines 6-7, algorithm 1).

Algorithm 1: CoPMiner (DB, min_sup, min_sim)

Input: a usage-interval database DB, the support threshold min_sup, the
similarity threshold min_sim

Output: all correlation patterns P

01: P ← ∅;
02: transform DB into usage presentation by Definition 4;
03: find all frequent usage-points and remove infrequent usage-points in DB;
04: FS ← all frequent “on-points”;
05: for each s ∈ FS do
06: find all corresponding usage time information of s in DB;
07: fs ← calculate the probability function of s by Definition 5;
08: construct DB|s only with each usage-point v, where

similarity(s, v) ≥ min_sim; // spatial-pruning strategy
09: UPrefixSpan(DB|s , s, fs, min_sup, P);
10: output all correlation patterns P;

As mentioned above, the spatial distance may conflict with the correlation depen-

dency between two appliances. When building the projected database DB|s, CoPMiner
collects the postfixes by using spatial pruning strategy. We eliminate the usage-
points which have the similarity with regard to s smaller than min_sim in collected
postfix sequences (line 8, algorithm 1). Finally, CoPMiner calls UPrefixSpan recur-
sively and output all correlation patterns (lines 9-10, algorithm 1).

By borrowing the idea of the PrefixSpan [16], UPrefixSpan is developed with two
search space pruning methods. The pseudo code is shown in Algorithm 2. For a prefix
α, UPrefixSpan scans its projected database DB|α once to discover all local frequent

 Mining Correlation Patterns among Appliances in Smart Home Environment 229

usage-points and remove infrequent ones (line 1, algorithm 2). For frequent usage-
point s, we can append it to original prefix to generate a new frequent sequence α’
with the length increased by 1. We also use the time information of s in DB|α to esti-
mate the probability function fs by Definition 5, and then include fs into f(α’). As such,
the prefixes are extended (lines 3-7, algorithm 2). If all usage-points in a frequent
sequence appear in pairs, i.e., every on(off)-point has corresponding off(on)-point, we
can output this frequent sequence and its probability function as a correlation pattern
(lines 8-9, algorithm 2). Finally, we can discover all correlation patterns by construct-
ing the projected database with the frequently extended prefixes and recursively run-
ning until the prefixes cannot be extended (lines 10-11, algorithm 2).

Taking into account the property of usage-point, we propose two pruning strate-
gies, point-pruning and postfix-pruning to reduce the searching space efficiently and
effectively. Firstly, the on-points and the off-points definitely occur in pairs in a usage
sequence. We only require projecting the frequent on-points or the frequent off-points
which have the corresponding on-points in their prefixes. For example, if we scan the
projected database DB|〈A＋〉 with respective to prefix 〈A＋〉 and find three frequent
local usage-points, A－, B＋ and B－. We only require extending prefix 〈A＋〉 with
A－ and B＋ (i.e., 〈A＋A－〉 and 〈A＋B＋〉), since B－ has no corresponding on-
points in its prefix. It is because that sequence 〈A＋B－〉 has no chance to grow to a
frequent sequence. This strategy is called point-pruning strategy (line 2 and lines
12-19, algorithm 2) which can prune off non-qualified patterns before constructing
projected database.

Second, when we construct a projected database, some usage-points in postfix se-
quences need not be considered. With respect to a prefix sequence 〈α〉, an off-point in
a projected postfix sequence is insignificant, if it has no corresponding on- points in
〈α〉. Hence, when collecting postfix sequences to construct DB|〈α〉 , we can eliminate all
insignificant off-points since they can be ignored in the discovery of correlation pat-
terns. This pruning method is called postfix-pruning strategy which can shrink the
length of postfix sequence and further reduce the size of projected database effective-
ly (line 14 and lines 20-25, algorithm 2).

Algorithm 2: UPrefixSpan (DB|α, α , f(α), min_sup, P)
Input: a projected database DB|α , an usage sequence α , the support

threshold min_sup, a similarity threshold min_sim, and a set of
correlation patterns P

Output: a set of correlation patterns P

01: scan DB|α once, remove infrequent usage-points and find every

frequent usage-point v such that:
(i) v can be assembled to the last pointset of α to form a frequent

sequence; or
(ii) 〈v〉 can be appended to α to form a frequent sequence;

02: FS ← all frequent usage-points;
03: FS ← point_pruning(FS, α); // point-pruning strategy
04: for each s ∈ FS do
05: find all corresponding usage time information of s in DB|α ;
06: fs ← calculate the probability function of s by Definition 5;
07: append s to α to form α’;
08: f(α’) ← f(α) + fs ;
09: if α’ is a correlation pattern then
10: P ← P ∪ (α’, f(α’));
11: DB|α’ ← DB_construct(DB|α, α’); // prefix-pruning

strategy
12: UPrefixSpan(DB|α’ , α’, f(α’), min_sup, P);

Procedure point_pruning (FS, α)
13: temp_point ← ∅;
14: for each s ∈ FS do
15: if s is a “off-point” then // point-pruning

strategy
16: if exist corresponding “on-point” in α then
17: temp_point ← temp_point∪ s;
18: if s is a “on-point” then
19: temp_point ← temp_point∪ s;
20: return temp_point;

Procedure DB_construct (DB|α, α’)
21: temp_seq ← ∅;
22: find all postfix sequences of α’ in DB|α to form DB|α’ ;
23: for each postfix sequence q ∈ DB|α’ do
24: eliminate the “off-points” in q which has no correspond-

ing “on-point” in α’ ; // postfix-pruning strategy
25: temp_seq ← temp_seq ∪ q;
26: return temp_seq;

230 Y.-C. Chen et al.

5 Experimental Results

To best of our knowledge, CoPMiner is the first algorithm discussing the correlation
among appliances included probability concept. Three interval-pattern mining algo-
rithms, CTMiner [4], IEMiner [15] and TPrefixSpan [19] have been implemented for
performance discussion. For fair comparison, when comparing the execution time of
CoPMiner with other interval-pattern mining algorithms, we only discuss the part of
usage sequence mining (i.e., exclusive of computation of probability function). All algo-
rithms were implemented in Java language and tested on a workstation with Intel i7-
3370 3.4 GHz with 8 GB main memory. First, we compare the execution time using
synthetic datasets at different minimum support. Second, we conduct an experiment to
observe the memory usage and the scalability on execution time of CoPMiner. Finally,
CoPMiner is applied in real-world dataset [12] to show the performance and the practi-
cability of mining correlation patterns. The synthetic datasets in the experiments are
generated using synthetic generator in [4] and the parameter setting is shown in Fig. 3.

Parameters Description

| D | Number of event sequences

| C | Average size of event sequences

| S | Average size of potentially frequent sequences

Ns Number of potentially frequent sequences

N Number of event symbols

Fig. 3. Parameters of synthetic data generator

5.1 Performance and Scalability on Synthetic Dataset

In all the following experiments, two parameters are fixed, i.e., | S | = 4 and NS =
5,000. The other parameters are configured for comparison. Note that, for fair com-
parison, when comparing the performance of CoPMiner with other interval-pattern
mining algorithms, we only discuss the part of usage sequence mining (i.e., exclusive
of computation of probability function). Fig. 4(a) shows the running time of the four
algorithms with minimum supports varied from 1 % to 5 % on the dataset
D100k–C20–N10k. Obviously, when the minimum support value decreases, the
processing time required for all algorithms increases. We can see that when we
continue to lower the threshold, the runtime for IEMiner and TPrefixSpan increase
drastically compared to CTMiner and CoPMiner. This is partly because these two
algorithms still process interval-based data with complex relationship which may lead
to generate more number of intermediate candidate sequences.

Then, we study the scalability of CoPMiner. Here, we use the data set C = 20, N =
10k with varying different database size. Fig. 4(b) shows the results of scalability tests
of four algorithms with the database size growing from 100K to 500K sequences. We
fix the min_sup as 1%. Fig. 4(c) depicts the results of scalability tests of CoPMiner
under different database size growing with different minimum support threshold
varying from 1% to 5%. As the size of database increases and minimum support

 Mining Correlation Patterns among Appliances in Smart Home Environment 231

decreases, the processing time of all algorithms increase, since the number of patterns
also increases. As can be seen, CoPMiner is linearly scalable with different minimum
support threshold. When the number of generated patterns is large, the runtime of
CoPMiner still increases linearly with different database size.

(a) (b)

(c) (d)

Fig. 4. Experimental results on synthetic datasets

5.2 Influence of Proposed Pruning Strategies

To reflect the speedup of proposed pruning methods, we measure CoPMiner with
pruning strategies and without pruning strategy on time performance. We compare
five algorithms, CoPMiner (includes all pruning strategies), CoP_Point (only point-
pruning strategy), CoP_Postfix (only postfix-pruning strategy), CoP_Spatial (only
spatial-pruning strategy) and CoP_None (without any pruning strategy). The experi-
ment is performed on the data set D100k–C20–N10k. Fig. 4(d) is the results of vary-
ing minimum support thresholds from 0.5% to 1%. As shown in figure, point-pruning
can improve about 25% performance. Because of removing non-qualified usage-
points before database projection, point-pruning can efficiently speedup the execution
time. As can be seen from the graph, postfix-pruning can improve about 11% perfor-
mance. Postfix-pruning can improve the performance by effectively eliminating all
useless usage-points for correlation pattern construction. We also can observe that
spatial-pruning constantly ameliorate the performance about 2.5.

232 Y.-C. Chen et al.

5.3 Real-World Dataset Analysis

In addition to using synthetic datasets, we also have performed an experiment on real-
world dataset to indicate the applicability of correlation pattern mining. The dataset
REDD [12] used in the experiment is the power reading of appliances collected from
six different houses. Each house has about 15 appliances. We convert the raw data
into the usage interval with turn-on time and turn-off time. Fig. 5 shows the part of
mining result with min_sup = 0.3 and min_sim = 0.1. The probability function of each
usage-point in pattern is listed below.

Fig. 5. Part of discovered correlation patterns from REDD dataset

6 Conclusion

Recently, considerable concern has arisen over the electricity conservation due to the
issue of greenhouse gas emissions. If representative behaviors of appliance usages are
available, residents may adapt their usage patterns to conserve energy effectively.
However, previous studies on usage pattern discovery are mainly focused on analyz-
ing single appliance and ignore the usage correlation. In this paper, we introduce a
new concept, correlation pattern, to capture the usage patterns and correlations among
appliances probabilistically. An efficient algorithm, CoPMiner is developed to dis-
cover patterns based on proposed usage representation. The experimental studies indi-
cate that CoPMiner is efficient and scalable. Furthermore, CoPMiner is applied on a
real-world dataset to show the practicability of correlation pattern mining.

References

1. Allen, J.: Maintaining Knowledge about Temporal Intervals. Communications of
ACM 26(11), 832–843 (1983)

2. Aritoni, O., Negru, V.: A Methodology for Household Appliances Behavior Recognition
in AmI Systems Integration. In: 7th International Conference on Automatic and Autonom-
ous Systems (ICAS 2011), pp. 175–178 (2011)

3. Chen, F., Dai, J., Wang, B., Sahu, S., Naphade, M., Lu, C.T.: Activity Analysis Based on
Low Sample Rate Smart Meters. In: 7th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 2011), pp. 240–248 (2011)

 Mining Correlation Patterns among Appliances in Smart Home Environment 233

4. Chen, Y., Jiang, J., Peng, W., Lee, S.: An Efficient Algorithm for Mining Time Interval-
based Patterns in Large Databases. In: Proceedings of 19th ACM International Conference
on Information and Knowledge Management (CIKM 2010), pp. 49–58 (2010)

5. Chen, Y.-C., Ko, Y.-L., Peng, W.-C., Lee, W.-C.: Mining Appliance Usage Patterns in a
Smart Home Environment. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.)
PAKDD 2013, Part I. LNCS (LNAI), vol. 7818, pp. 99–110. Springer, Heidelberg (2013)

6. Goncalves, H., Ocneanu, A., Bergés, M.: Unsupervised disaggregation of appliances using
aggregated consumption data. In: KDD Workshop on Data Mining Applications in Sustai-
nability, SustKDD 2011 (2011)

7. Ito, M., Uda, R., Ichimura, S., Tago, K., Hoshi, T., Matsushita, Y.: A method of appliance
detection based on features of power waveform. In: 4th IEEE Symposium on Applications
and the Internet (SAINT 2004), pp. 291–294 (2004)

8. Jakkula, V., Cook, D.: Using Temporal Relations in Smart Environment Data for Activity
Prediction. In: Proceedings of the 24th International Conference on Machine Learning
(ICML 2007), pp. 1–4 (2007)

9. Jakkula, V., Cook, D., Crandall, A.: Temporal pattern discovery for anomaly detection
in a smart home. In: Proceedings of the 3rd IET Conference on Intelligent Environments
(IE 2007), pp. 339–345 (2007)

10. Kato, T., Cho, H.S., Lee, D., Toyomura, T., Yamazaki, T.: Appliance recognition from
electric current signals for information-energy integrated network in home environments.
In: Mokhtari, M., Khalil, I., Bauchet, J., Zhang, D., Nugent, C. (eds.) ICOST 2009. LNCS,
vol. 5597, pp. 150–157. Springer, Heidelberg (2009)

11. Kim, H., Marwah, M., Arlitt, M., Lyon, G., Han, J.: Unsupervised disaggregation of low
frequency power measurements. In: 11th SIAM International Conference on Data Mining
(SDM 2011), pp. 747–758 (2011)

12. Kolter, J.Z., Johnson, M.J.: REDD: A public data set for energy disaggregation research.
In: KDD Workshop on Data Mining Applications in Sustainability, SustKDD 2011 (2011)

13. Lin, G., Lee, S., Hsu, J., Jih, W.: Applying power meters for appliance recognition on the
electric panel. In: 5th IEEE Conference on Industrial Electronics and Applications (ISIEA
2010), pp. 2254–2259 (2010)

14. Liu, B., Yang, Y., Webb, G.I., Boughton, J.: A Comparative Study of Bandwidth Choice
in Kernel Density Estimation for Naive Bayesian Classification. In: Theeramunkong, T.,
Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 302–313.
Springer, Heidelberg (2009)

15. Patel, D., Hsu, W., Lee, M.: Mining Relationships Among Interval-based Events for Clas-
sification. In: Proceedings of the 2008 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD 2008), pp. 393–404 (2008)

16. Pei, J., Han, J., Mortazavi-Asl, B., Pito, H., Chen, Q., Dayal, U., Hsu, M.: PrefixSpan:
Mining Sequential Patterns Efficiently by Prefix-Projected Pattern Growth. In: Proceed-
ings of 17th International Conference on Data Engineering (ICDE 2001), pp. 215–224
(2001)

17. Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman and Hall
(1986)

18. Suzuki, K., Inagaki, S., Suzuki, T., Nakamura, H., Ito, K.: Nonintrusive appliance load
monitoring based on integer programming. In: International Conference on Instrumenta-
tion, Control and Information Technology, pp. 2742–2747 (2008)

19. Wu, S., Chen, Y.: Mining Nonambiguous Temporal Patterns for Interval-Based Events.
IEEE Transactions on Knowledge and Data Engineering 19(6), 742–758 (2007)

	PAKDD2014 Part II 252
	PAKDD2014 Part II 253
	PAKDD2014 Part II 254
	PAKDD2014 Part II 255
	PAKDD2014 Part II 256
	PAKDD2014 Part II 257
	PAKDD2014 Part II 258
	PAKDD2014 Part II 259
	PAKDD2014 Part II 260
	PAKDD2014 Part II 261
	PAKDD2014 Part II 262
	PAKDD2014 Part II 263

