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Abstract. In this paper, we study the traveling front solutions of the Lotka-

Volterra competition-diffusion system with bistable nonlinearity. It is well-
known that the wave speed of traveling front is unique. Although little is

known for the sign of the wave speed. In this paper, we first study the standing

wave which gives some criteria when the speed is zero. Then, by the monotone
dependence on parameters, we obtain some criteria about the sign of the wave

speed under some parameter restrictions.

1. Introduction. In this paper, we study the following Lotka-Volterra competition-
diffusion system {

ut = uxx + u(1− u− kv),
vt = dvxx + av(1− v − hu),

(1.1)

where u = u(x, t) and v = v(x, t) represent population densities of two competing
species, and a, h, k, d are positive constants with certain ecological meanings. In-
deed, a is the intrinsic growth rate and d is the diffusion coefficient of the species v, h
is the inter-specific competition coefficient of the species u and k is the inter-specific
competition coefficient of the species v.

The relations of parameters h and k influence the asymptotic behaviors of (u, v).
In fact, for (1.1) with initial data (u, v)(x, 0) ≥ 0, the asymptotic behaviors of (u, v)
can be divided into the following four cases:

(1) If k < 1 < h, then limt→∞(u, v)(x, t) = (1, 0).
(2) If h < 1 < k, then limt→∞(u, v)(x, t) = (0, 1).
(3) If min{h, k} > 1, then (1, 0) and (0, 1) are locally stable and almost every

solution converges to one of them as t→∞.
(4) If max{h, k} < 1, then

lim
t→∞

(u, v)(x, t) = (
1− k

1− hk
,

1− h
1− hk

).
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The system (1.1) has been studied very extensively with monostable or bistable
nonlinearity. For instance see [1, 2, 3, 4, 5, 6, 8, 9, 11, 12] and references therein.
Throughout this paper, we only focus on the bistable nonlinearity. In other words,
the parameters h and k satisfy the bistability condition min{h, k} > 1.

We say that (u, v)(x, t) is a traveling front solution of (1.1) with speed s if
(u, v)(x, t) = (U, V )(ξ), where ξ = x − st for some functions U, V (called wave
profiles), such that (U, V )(±∞) ∈ {(1, 0), (0, 1)} and (U, V )(∞) 6= (U, V )(−∞).
Therefore, the traveling front problem (P) can be written as the system:

U ′′ + sU ′ + U(1− U − kV ) = 0 < U ′, (1.2)

dV ′′ + sV ′ + aV (1− V − hU) = 0 > V ′, (1.3)

with the boundary condition

(U, V )(−∞) = (0, 1), (U, V )(+∞) = (1, 0), (1.4)

where (a, h, k, d) ∈ P := {(a, h, k, d) | a > 0, h > 1, k > 1, d > 0} and s =
s(a, h, k, d). For the study of traveling front solution of (1.1), we refer to, e.g.,
[1, 2, 5, 6, 10].

By the change of the variables (Ũ , Ṽ ) = (U, aV ), problem (P) is reduced to the

following problem (P̃):

Ũ ′′ + s̃Ũ ′ + Ũ(1− Ũ − cṼ ) = 0 < Ũ ′, (1.5)

dṼ ′′ + s̃Ṽ ′ + Ṽ (a− bŨ − Ṽ ) = 0 > Ṽ ′, (1.6)

with

(Ũ , Ṽ )(−∞) = (0, a), (Ũ , Ṽ )(+∞) = (1, 0), (1.7)

where (a, b, c, d) ∈ P̃ := {(a, b, c, d) | 0 < 1/c < a < b, d > 0}, s̃ = s̃(a, b, c, d) = s.
Here, for given a and d, we have the following relations between parameters (h, k)
and (b, c):

(h, k) = (b/a, ac), (b, c) = (ah, k/a). (1.8)

We now recall some known results as follows. In [1] or [2], they proved the
existence of traveling front solutions. In [10] (or [6]), they studied the existence of
traveling front solutions with s = 0 (i.e. the standing wave). In [5], Kan-on derived
the monotone dependence of the wave speed on the parameters a, b, c. In [11], some
exact solutions of (1.5)-(1.7) are given and the wave speed can also be represented
explicitly under some parameter restrictions. But, little is known about the sign of
the wave speed. In fact, the speed sign is an important matter because it decides
which species becomes dominant and eventually occupies the whole domain. From
the biological point of view, when the speed s is positive, the species v is dominant
and the species u goes extinct eventually for those initial distributions which are
close to traveling waves in an appropriate function space (cf. [2, 7]). On the other
hand, the species u wins the competition in the above sense when the speed s is
negative.

Now, we list the main theorems of this paper as follows.

Theorem 1.1. Suppose that a = d. Then we have

s(a, h, k, d) =

 > 0, if k > h > 1;
= 0, if h = k > 1;
< 0, if h > k > 1.
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Theorem 1.2. (i). Suppose that a > d. Then s(a, h, k, d) > 0, if h > 1 and
k ≥ (a/d)2h.
(ii). Suppose that a < d. Then s(a, h, k, d) < 0, if k > 1 and h ≥ (d/a)2k.

Theorem 1.3. For any l > 0, s(a, h, k, d) and s(la, h, k, ld) have the same sign.

Theorem 1.4. Suppose that a > d. If 1 < h ≤ 1 + d/a and k ≥ 2, then
s(a, h, k, d) > 0.

Note that the condition in Theorem 1.4 is not totally included in the condition
in Theorem 1.2 for a > d, since (1 + d/a)(a/d)2 > 2. More precisely, we have

{(h, k) | 1 < h ≤ 1 + d/a, k ≥ 2} \ {(h, k) | h > 1, k ≥ (a/d)2h} 6= ∅.

Theorem 1.5. Suppose that a > d. If h > 1, k ≥ 5a/d and (3ah−d)h ≤ (4a−d)k,
then s(a, h, k, d) > 0.

Rewriting the set {(h, k) | h > 1, k ≥ 5a/d, (3ah− d)h ≤ (4a− d)k} by{
(h, k)

∣∣∣h > 1, k ≥ 5a

d
, k ≥ 3a

4a− d

(
h− d

6a

)2

− d2

12a(4a− d)

}
,

we also see that the condition in Theorem 1.5 is not totally included in the condition
in Theorem 1.2, if a > d and (4a− d)a2 > 14d3.

Theorem 1.6. If a = d/4, then we have

s(a, h, k, d) =

 > 0, if 1 < h ≤ 4/3 and k ≥ 5/4, except (h, k) = (4/3, 5/4);
= 0, if h = 4/3, k = 5/4;
< 0, if h ≥ 4/3 and 1 < k ≤ 5/4, except (h, k) = (4/3, 5/4).

Theorem 1.6 shows that, when a = d/4, we have s(a, h, k, d) < 0 in the region

{(h, k) | h ∈ [4/3, 16], k ∈ (1, 5/4]}∪{(h, k) | 16 < h < 16k, k ∈ (1, 5/4]}\{(4/3, 5/4)}

which is not contained in the set obtained in Theorem 1.2 for a < d.
We organize this paper as follows. In Section 2, we give some preliminaries and

some results about the standing wave in terms of parameters. Next, in Section 3,
we offer the proofs of the main Theorems. Our strategy is to derive some useful
information about the standing waves in terms of parameters. Then, by the mono-
tone dependence on parameters, we can determine the sign of the speed in those
special situations. There are still many cases left open.

2. Preliminaries. In this section, we recall some known results about the prob-
lem (P̃). We say (Ũ , Ṽ )(ξ) is a monotone pair if Ũ(ξ) is increasing and Ṽ (ξ) is

decreasing. In [5], Kan-on derived the following fact that for any (a, b, c, d) ∈ P̃,

there exists a monotone pair (Ũ , Ṽ )(ξ; a, b, c, d) and s̃ = s̃(a, b, c, d) satisfy (1.5)-

(1.7). Moreover, s̃ = s̃(a, b, c, d) is unique and (Ũ , Ṽ )(ξ; a, b, c, d) is also unique up
to translation. On the other hand, for any d > 0 and for any positive numbers b, c
with bc > 1, there exists a unique positive number ā = ā(b, c, d) ∈ (1/c, b) such that
s̃(ā, b, c, d) = 0.

As for the monotone dependence on parameters about s̃(a, b, c, d), we have

∂

∂a
s̃(a, b, c, d) > 0,

∂

∂b
s̃(a, b, c, d) < 0,

∂

∂c
s̃(a, b, c, d) > 0, (2.1)
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if (a, b, c, d) ∈ P̃. From this, we also have the following property about s =
s(a, h, k, d):

∂

∂k
s(a, h, k, d) > 0 >

∂

∂h
s(a, h, k, d), (2.2)

if (a, h, k, d) ∈ P. But, we do not know the monotone dependence on the parameter
a for s(a, h, k, d).

Now, we focus on the case when s(a, h, k, d) = 0. The following lemma can be
proved by the uniqueness of wave speed and a suitable change of variables.

Lemma 2.1. (1) There holds s(1, h, h, 1) = 0 for all h > 1. (2) Moreover, if
s(a, h, k, d) = 0 for some (a, h, k, d) ∈ P, then s(d, k, h, a) = 0 and s(la, h, k, ld) = 0
for all l > 0. In particular, s(d, h, h, d) = 0 for all d > 0, h > 1.

Proof. (1) Let (s, U(ξ), V (ξ)) be a solution of (P) with a = d = 1 and k = h for
some h > 1. Then, by setting (U1, V1)(ξ) := (V,U)(−ξ), the functions U1 and V1
satisfy the following system{

0 = U ′′1 + (−s)U ′1 + U1(1− U1 − hV1),
0 = V ′′1 + (−s)V ′1 + V1(1− V1 − hU1),

with

(U1, V1)(−∞) = (0, 1), (U1, V1)(+∞) = (1, 0).

By the uniqueness of wave speed, we have s(1, h, h, 1) = 0 for all h > 1.
(2) Suppose s(a, h, k, d) = 0 for some (a, h, k, d) ∈ P. That is to say, there exist

functions U2 and V2 satisfy the following system{
0 = U ′′2 + U2(1− U2 − kV2),
0 = dV ′′2 + aV2(1− V2 − hU2),

with

(U2, V2)(−∞) = (0, 1), (U2, V2)(+∞) = (1, 0).

By defining (U3, V3)(ξ) := (V2, U2)(−
√
d/a ξ), the functions U3 and V3 satisfy the

following system {
0 = U ′′3 + U3(1− U3 − hV3),
0 = aV ′′3 + dV3(1− V3 − kU3),

with

(U3, V3)(−∞) = (0, 1), (U3, V3)(+∞) = (1, 0).

Again, by the uniqueness of wave speed, we have s(d, k, h, a) = 0.
At the same time, the functions U2 and V2 also satisfy the following system{

0 = U ′′2 + U2(1− U2 − kV2),
0 = (ld)V ′′2 + (la)V2(1− V2 − hU2)

for any positive number l. By the uniqueness, we also have s(la, h, k, ld) = 0 for all
l > 0.

Finally, it follows from (1) and (2) that s(d, h, h, d) = 0 for all d > 0, h > 1.
Therefore, the lemma follows.
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Next, we study the following problem (P0) when s = 0:

U ′′ + U(1− U − kV ) = 0 < U ′, (2.3)

V ′′ + rV (1− V − hU) = 0 > V ′, (2.4)

with

(U, V )(−∞) = (0, 1), (U, V )(+∞) = (1, 0),

where r 6= 1, h > 1, k > 1. Note that r = a/d.

Lemma 2.2. If (U, V ) is a solution of (P0), then∫ ∞
−∞

U2V ′ = − 1

3k
,

∫ ∞
−∞

U ′V 2 =
1

3h
, (2.5)(

k

3
− r
)∫ ∞
−∞

U ′V 3 + (1− rh)

∫ ∞
−∞

UU ′V 2 −
∫ ∞
−∞

U ′V ′V ′ =
1− 2r

6h
, (2.6)

2r

3

∫ ∞
−∞

U ′V 3 + 2rh

∫ ∞
−∞

UU ′V 2 −
∫ ∞
−∞

U ′V ′V ′ =
r

3h
. (2.7)

Proof. First, multiplying (2.3) by U ′ and integrating it over (−∞,+∞), we get∫ ∞
−∞

U ′U ′′ +

∫ ∞
−∞

U(1− U)U ′ = k

∫ ∞
−∞

UU ′V.

Then, by the boundary condition and the integration by parts, we can easily obtain∫ ∞
−∞

U2V ′ = − 1

3k
.

The case for the value of
∫∞
−∞ U ′V 2 is similar. This proves (2.5).

Next, multiplying (2.3) by V V ′ and integrating this equation over (−∞,∞), we
have ∫ ∞

−∞
U ′′V V ′ +

∫ ∞
−∞

UV V ′ −
∫ ∞
−∞

U2V V ′ − k
∫ ∞
−∞

UV 2V ′ = 0.

By (2.4) and the integration by parts, we get

−
∫ ∞
−∞

U ′V ′V ′ + r

∫ ∞
−∞

U ′V 2(1− V − hU)

+

∫ ∞
−∞

UV V ′ +

∫ ∞
−∞

UU ′V 2 +
k

3

∫ ∞
−∞

U ′V 3 = 0.

Hence (2.6) follows from (2.5) and a direct computation.
Finally, multiplying (2.4) by UV ′ and integrating this equation over (−∞,∞),

it follows from (2.5) and the integration by parts that (2.7) holds. This completes
the proof.

3. Proofs of main theorems. In this section, we give the proofs of the main
theorems stated in Section 1. The main idea is to apply the information of standing
wave with the help of the monotone dependence on parameters.

3.1. Proof of Theorem 1.1. The theorem follows from Lemma 2.1 and (2.2).
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3.2. Proof of Theorem 1.2. First, recall from Lemma 2.1(2) that s(d, h, h, d) = 0
for all h > 1, d > 0. It follows from (1.8) that s̃(d, dh, h/d, d) = 0 for all h > 1,

d > 0. Now, using (2.1) in P̃, we have

s̃(a, dĥ, ĥ/d, d) > 0,

if a > d > 0 and ĥ > a/d. This is equivalent to

s(a, h, k, d) > 0, h = dĥ/a, k = aĥ/d,

if a > d > 0 and ĥ > a/d, due to (1.8).

Next, for a > d > 0 and h > 1, we choose ĥ = ah/d so that ĥ > a/d. Then

s(a, h, k, d) > 0 when k = aĥ/d = (a/d)2h. It follows from (2.2) that s(a, h, k, d) >
0, if a > d > 0 and

h > 1, k ≥ (a/d)2h.

Similarly, we can prove that s(a, h, k, d) < 0, if 0 < a < d, k > 1 and h ≥ (d/a)2k.
This proves Theorem 1.2.

3.3. Proof of Theorem 1.3. When a = d, the conclusion follows from Theo-
rem 1.1. Without loss of generality, we may assume a > d > 0. Suppose the
conclusion is false. By Lemma 2.1(2), there exist a1 > d1 > 0, h1 > 1, k1 >
1, l1 > 0 such that s(a1, h1, k1, d1) > 0 > s(l1a1, h1, k1, l1d1). By (2.2), we have
s(a1, h, k, d1) > 0 if h = h1, k ≥ k1 or 1 < h ≤ h1, k = k1. Similarly, we also have
s(l1a1, h, k, l1d1) < 0 if h = h1, 1 < k ≤ k1 or h ≥ h1, k = k1. Combining these
facts with Lemma 2.1(2) and the continuous dependence on h and k, we have

s(a1, h, k, d1) > 0 > s(l1a1, h, k, l1d1), (3.1)

if (h, k) ∈ {h = h1, k > 1}∪{h > 1, k = k1}. Indeed, this can be proved by a contra-
diction argument. Otherwise, there exists k ∈ (1, k1) such that s(a1, h1, k, d1) = 0.
Then, by Lemma 2.1(2), we have s(l1a1, h1, k, l1d1) = 0, a contradiction. The other
cases are similar. Hence (3.1) follows.

Next, we choose two positive numbers h̃ and k2 with h̃ > h1 and k2 > k1 such
that d2k2 ≥ a2h̃. By Theorem 1.2, we have s(l1a1, h̃, k2, l1d1) > 0. But, by (3.1), we
have s(l1a1, h1, k2, l1d1) < 0. Since s(a, h, k, d) is continuous on h, there exists h2 ∈
(h1, h̃) such that s(l1a1, h2, k2, l1d1) = 0. This implies that s(a1, h2, k2, d1) = 0, by
Lemma 2.1(2). On the other hand, (3.1) implies that s(a1, h2, k1, d1) > 0. It follows
from (2.2) that s(a1, h2, k2, d1) > 0, a contradiction. So the theorem follows.

3.4. Proof of Theorem 1.4. First, we define m := (a/d) − 1 > 0. Then, multi-
plying (1.2) by UmV ′ and (1.3) by (1/d)UmU ′, respectively, and integrating it over



THE SIGN OF THE WAVE SPEED 2089

(−∞,∞), we obtain

0 =

∫ ∞
−∞

(U ′V ′)′Um+

(
1+

1

d

)
s

∫ ∞
−∞

UmU ′V ′+

(∫ ∞
−∞

Um+1V ′+
a

d

∫ ∞
−∞

UmU ′V

)
−
(∫ ∞
−∞

Um+2V ′+
ah

d

∫ ∞
−∞

Um+1U ′V

)
−
(
k

∫ ∞
−∞

Um+1V V ′+
a

d

∫ ∞
−∞

UmU ′V 2

)
=−m

∫ ∞
−∞

Um−1U ′U ′V ′+

(
1+

1

d

)
s

∫ ∞
−∞

UmU ′V ′+

(
m+2− ah

d

)∫ ∞
−∞

Um+1U ′V

+

(
(m+ 1)k

2
− a

d

)∫ ∞
−∞

UmU ′V 2

=−m
∫ ∞
−∞

Um−1U ′U ′V ′+

(
1+

1

d

)
s

∫ ∞
−∞

UmU ′V ′+

(
a+d−ah

d

)∫ ∞
−∞

Um+1U ′V

+
a(k − 2)

2d

∫ ∞
−∞

UmU ′V 2.

Using the fact U ′ > 0 > V ′, the theorem follows.

3.5. Proof of Theorem 1.5. Suppose that (U, V ) is a solution of (P0) and that
r = a/d > 1. Then, by (2.6) and (2.7), we have∫ ∞

−∞
UU ′V 2 =

4r − 1

6h(3rh− 1)
+

k − 5r

3(3rh− 1)

∫ ∞
−∞

U ′V 3. (3.2)

Using 0 < V < 1 and the integration by parts, it follows from (2.5) that∫ ∞
−∞

UU ′V 2 <

∫ ∞
−∞

UU ′V = −1

2

∫ ∞
−∞

U2V ′ =
1

6k
. (3.3)

If we assume that k ≥ 5r, then, by (3.2) and (3.3), we obtain

(3rh− 1)h > (4r − 1)k.

Hence we see that

s(a, h, k, d) 6= 0 if a > d > 0, h > 1, k ≥ 5a/d, (3ah− d)h ≤ (4a− d)k. (3.4)

Suppose that s(a1, h1, k1, d1) < 0 for some (a1, h1, k1, d1) such that

a1 > d1 > 0, h1 > 1, k1 ≥ 5a1/d1, (3a1h1 − d1)h1 ≤ (4a1 − d1)k1.

Then, by Theorem 1.4, we can choose a positive number h2 with 1 < h2 <
min{h1, 1 + d1/a1} such that s(a1, h2, k1, d1) > 0. Since s(a, h, k, d) is continuous

on h, there exists a positive number h̃ ∈ (h2, h1) such that s(a1, h̃, k1, d1) = 0. This

contradicts (3.4), since (3a1h̃−d1)h̃ ≤ (4a1−d1)k1. Hence the theorem follows.

3.6. Proof of Theorem 1.6. When h = 1/(3r) and k = 5r, it follows from (2.6)
and (2.7) that r = 1/4. Let d > 0 be given. Since r = a/d, we have

s(a,
d

3a
,

5a

d
, d) 6= 0 if a ∈ (d/5, d/3) \ {d/4}.

By the relation (1.8), we obtain

s̃(a,
d

3
,

5

d
, d) 6= 0 if a ∈ (d/5, d/3) \ {d/4}.

However, for any positive numbers b, c with bc > 1, there exists a unique positive
number ā = ā(b, c, d) ∈ (1/c, b) such that s̃(ā, b, c, d) = 0. So s̃(d/4, d/3, 5/d, d) = 0
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for all d > 0. In other words, s(d/4, 4/3, 5/4, d) = 0 for all d > 0. Hence the
theorem follows from the monotone dependence on parameters (2.2).
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