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CONVERGENCE AND BLOW-UP OF SOLUTIONS

FOR A COMPLEX-VALUED HEAT EQUATION

WITH A QUADRATIC NONLINEARITY

JONG-SHENQ GUO, HIROKAZU NINOMIYA, MASAHIKO SHIMOJO,
AND EIJI YANAGIDA

Abstract. This paper is concerned with the Cauchy problem for a system of
parabolic equations which is derived from a complex-valued equation with a
quadratic nonlinearity. First we show that if the convex hull of the image of
initial data does not intersect the positive real axis, then the solution exists
globally in time and converges to the trivial steady state. Next, on the one-
dimensional space, we provide some solutions with nontrivial imaginary parts
that blow up simultaneously. Finally, we consider the case of asymptotically
constant initial data and show that, depending on the limit, the solution blows
up nonsimultaneously at space infinity or exists globally in time and converges
to the trivial steady state.

1. Introduction

In this paper we consider the equation

(1.1) zt = Δz + z2,

where z = z(x, t) is a complex-valued function of the spatial variable x ∈ R
m (m

a positive integer) and the time t ≥ 0, and Δ denotes the Laplace operator with
respect to x. This equation appears as a one-dimensional model for the vorticity
equation of incompressible and viscous fluids of three dimensions. If we write
z(x, t) = u(x, t)+iv(x, t), where i =

√
−1 and u(x, t), v(x, t) ∈ R, then the equation

above is rewritten as a system of parabolic equations

(1.2)

{
ut = Δu+ u2 − v2,

vt = Δv + 2uv.

When z is real-valued (i.e., v ≡ 0), then this system is reduced to the scalar equation

(1.3) ut = Δu+ u2.

This equation is a special case of the so-called Fujita equation ([9])

ut = Δu+ up, p > 1,

which has been studied extensively by many authors (see, e.g., [8, 10, 11, 12, 15,
17, 18, 19] and a recent monograph by Quittner and Souplet [25]). The aim of
this paper is to make clear the difference of the dynamics of solutions between
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the system (1.2) with v �≡ 0 and the scalar equation (1.3). For studies on other
superlinear systems, we refer the reader to [1, 2, 4, 6, 14, 20, 21, 36].

Let us consider the initial value problem for (1.2) with an initial data

(1.4) (u(·, 0), v(·, 0)) = (u0, v0) ∈
(
L∞(Rm) ∩ C(Rm)

)2

.

Then (1.2) has a unique solution (u, v)∈
(
C([0, T );L∞(Rm) )

)2
, where T =T (u0, v0)

∈ (0,∞] denotes the maximal existence time of the solution. Moreover, we have
either T = ∞, or

T < ∞ and lim sup
t→T

{‖u(·, t)‖L∞(Rm) + ‖v(·, t)‖L∞(Rm)} = ∞.

In the former case we say that the solution is global, while in the latter case we say
that the solution blows up in a finite time. Also, T is called the blow-up time of
the solution if T < ∞. A point x0 ∈ R

m is said to be a blow-up point if there is a
sequence {(xj , tj)} such that xj → x0, tj ↑ T and |u(xj , tj)| + |v(xj , tj)| → ∞ as
j → ∞. The set of all blow-up points is called the blow-up set. We investigate the
global vs. nonglobal existence of solutions of (1.2).

Let us first consider a spatially homogeneous solution (u, v) = (U(t), V (t)). Then
(U(t), V (t)) satisfies the following ODE system:

(1.5)

{
Ut = U2 − V 2,

Vt = 2UV,

which can be solved explicitly as

(1.6) U(t) =
TR − t

(TR − t)2 + T 2
I

, V (t) =
TI

(TR − t)2 + T 2
I

,

where

TR =
U(0)

U(0)2 + V (0)2
, TI =

V (0)

U(0)2 + V (0)2
.

This implies that the solution on the positive U -axis is exceptional. Namely, the
solution becomes unbounded at t = T = TR if U(0) > 0 and V (0) = 0, while
(U(t), V (t)) → (0, 0) as t → ∞ otherwise. Thus we may expect that if a solution of
(1.2) does not take any values on the positive u-axis, then the solution converges
to the trivial steady state as t → ∞. Indeed, the following result holds true:

Theorem 1.1. Suppose that the initial data satisfy

(1.7) u0(x)−Av0(x) < 0 for all x ∈ R
m

with some constant A ∈ R. Then the solution of (1.2) with (1.4) exists globally in
time and converges to (0, 0) as t → ∞ uniformly in R

m.

This theorem implies that even if u0 is positive, there exist global solutions for
(1.2) for any dimension m ∈ N. On the other hand, it is known that all solutions of
(1.3) with u0 > 0 blow up if m = 1, 2. This is one of the differences between (1.2)
and (1.3). See [9, 23] and the references in [25] for real-valued equations.

We also remark that the hypothesis of this theorem implies that the closure of the
convex hull of Im(0) does not intersect the positive u-axis, where Im(t) represents
the image of the solution on the (u, v)-plane defined by

Im(t) := {(u(x, t), v(x, t)) ∈ R
2 : x ∈ R

m}, t ≥ 0.
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As will be seen in the proof of Theorem 1.1, if the solution satisfies the condition
(1.7), then Im(t) does not intersect the positive u-axis for all t > 0.

When the hypothesis of Theorem 1.1 fails to hold, in view of the dynamics of
the ODE system (1.5), it is not easy to see how the solution behaves. Therefore, it
is interesting to ask whether or not the blow-up occurs if v �≡ 0. Also, for parabolic
systems, it is interesting to determine whether all components blow up at the same
time (which is called simultaneous blow-up) or only one component blows up and
the other remains bounded. Such questions are considered in [24, 26, 34]. Roughly
speaking, their results claim that for a cooperative system, if the corresponding
ODE system enjoys simultaneous or nonsimultaneous blow-up, adding the linear
diffusion preserves the same phenomenon for the solution of a reaction-diffusion
system also. See [25] for more references.

Let us consider the existence of blow-up solutions of our problem first.

Theorem 1.2. Let m = 1. Suppose that

Θ(ω) :=

∫
R

{u0(x) cos(ωx) + v0(x) sin(ωx)}dx > 0,∫
R

{v0(x) cos(ωx)− u0(x) sin(ωx)}dx = 0,

for all ω ∈ R and Θ(ω) is continuous on R. Then the solution of the Cauchy
problem for (1.2) and (1.4) blows up in finite time.

Our equation has a strong relation with the viscous Constantin-Lax-Majda equa-
tion, which is a one-dimensional model for the vorticity equation. Let ν : R ×
[0, T ) → R be a solution of

νt = νxx + νHν,

where ν is a real-valued function and H is the Hilbert transformation defined by

[Hf ](x) =
1

π
p.v.

∫ ∞

−∞

f(y)

x− y
dy.

We can see from the fundamental properties of the Hilbert transformation that the
functions ν and Hν satisfy

νt = νxx + νHν, (Hν)t = (Hν)xx +
1

2
{(Hν)2 − ν2}.

Hence the function

z :=
1

2i
(ν + iHν)

satisfies zt = zxx + z2. In [29], the author constructed the explicit solution of this
problem which blows up in a finite time. It is also proved by [27, 28] that if Fourier
coefficients of ν about Fourier sine series are all positive, then the function ν blows
up in finite time. See also [22] for a generalization of the Constantin-Lax-Majda
equation. The results in [27, 28] give us some examples of Theorem 1.2 for spatially
periodic solutions. Here we provide more blow-up solutions without the restriction
of periodicity.

The following theorem shows that the diffusion can induce simultaneous blow-up.
This is not the case for an ODE system (1.5). Indeed, the only blow-up solution of
the ODE system (1.5) is the positive solution, i.e., U(t) > 0 and V (t) ≡ 0.
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Theorem 1.3. Let (u, v) be a solution of the one-dimensional Cauchy problem for
(1.2) with (1.4) such that u(x, 0) = u(−x, 0) and v(x, 0) = −v(−x, 0). Assume that
v0(x) > 0 for all x > 0. If the solution blows up in a finite time and its blow-up set
is compact, then both components u and v blow up simultaneously.

About the compactness of blow-up sets, Friedman-Giga [7] considered the system
ut = Δu + vq, vt = Δv + up with p = q > 1 and constructed a radially symmetric
solution that blows up only at the origin. A generalization of this result was recently
obtained by Souplet [33] for p, q > 1. It would be an interesting question to ask
under what condition the blow-up set is compact.

Next, let us consider the case where the initial data are asymptotically constants.
More precisely, we impose the following conditions on initial data:

u0, v0 ∈ C1(Rm), 0 ≤ u0 ≤ M, u0 �≡ M, 0 < v0 ≤ L,(1.8)

lim
|x|→∞

u0(x) = M, lim
|x|→∞

v0(x) = N(1.9)

for some constants L > 0 and M > N ≥ 0.
The following theorem indicates that the solution of (1.2) with initial data sat-

isfying the above conditions with N > 0 behaves like the solution of (1.5) with
(U(0), V (0)) = (M,N).

Theorem 1.4. Let (u, v) be a solution of (1.2) with initial data (u0, v0) satisfying
(1.8) and (1.9). If N > 0, then the solution of (1.2) with (1.4) exists globally in
time and converges to (0, 0) as t → ∞ uniformly in R

m.

On the other hand, if the initial data satisfy the conditions (1.8) and (1.9) with
N = 0, then the solution blows up nonsimultaneously and blow-up occurs only at
space infinity. More precisely, there are no (finite) blow-up points, but there exists
a sequence {(xj , tj)} such that |xj | → ∞, tj ↑ T and |u(xj , tj)| + |v(xj , tj)| → ∞
as j → ∞.

Theorem 1.5. Let (u, v) be a solution of (1.2) with initial data (u0, v0) satisfying
(1.8) and (1.9). If N = 0, then the solution of (1.2) with (1.4) blows up at time
t = T (M) with v �≡ 0. More precisely, the component u blows up only at space
infinity and v is bounded.

Note that the problem of blow-up at space infinity for scalar equations was
considered in [13, 30, 31], and the corresponding cooperative system was analyzed
in [32].

This paper is organized as follows. In Section 2, we give a sufficient condition
for the existence of global solutions and the convergence of solutions to the trivial
steady state. In Section 3, we show the existence of solutions such that u and v
blow up simultaneously in finite time. In Section 4, we consider a more general
system than (1.2) with asymptotically constant initial data.

2. Convergence to the trivial steady state

In this section we give a proof of Theorem 1.1.
Let D(t) be a domain in R

2 for each t ≥ 0. We say that {D(t)}t≥0 is (positively)
invariant under the flow (1.5) if (U(0), V (0)) ∈ D(0) implies (U(t), V (t)) ∈ D(t)
for all t > 0. We need the following two properties related to the invariance (cf.
Weinberger [37]).
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Lemma 2.1. Suppose that D(t) ⊂ R
2 is convex for each t ≥ 0 and {D(t)}t≥0 is

invariant under the flow (1.5). If Im(t0) ⊂ D(0) for some t0 ≥ 0, then Im(t) ⊂ D(t)
for all t > t0.

Lemma 2.2. Let {Hj}1≤j≤k be a set of C1 functions from R
3 to R. Suppose that

D(t) is expressed as

D(t) =

k⋂
j=1

{(u, v) ∈ R
2 : Hj(u, v, t) < 0}, t ≥ 0.

Then {D(t)}t≥0 is invariant under the flow (1.5) if

d

dt
Hj(U(t), V (t), t) ≤ 0 on {(u, v) ∈ ∂D : Hj(u, v, t) = 0}

for all j = 1, 2, . . . , k.

We introduce the polar coordinate system

U(t) = r(t) cos θ(t), V (t) = r(t) sin θ(t).

Then (1.5) is written as

rt cos θ − rθt sin θ = r2(cos2 θ − sin2 θ),

rt sin θ + rθt cos θ = 2r2 cos θ sin θ,

which yields

(2.1) rt = r2 cos θ, θt = r sin θ.

We first prove that Im(t) enters the left half-plane.

Proposition 2.3. Suppose that the hypothesis of Theorem 1.1 holds. Then the
solution of (1.2) with (1.4) is uniformly bounded for t ≥ 0, and there exist t1 > 0
and π/2 < α < π < β < 3π/2 such that

Im(t1) ⊂ {(u, v) = (r cos θ, r sin θ) : r > 0, α < θ < β}.

Proof. We consider the case A > 0 only, because the case A ≤ 0 can be discussed
in the same way.

For R > 0, we define a bounded region by

DR =

{
(u, v) ∈ R

2 : u−Av < 0, u2 +

(
v − R

2

)2

<
R2

4
for u ≥ 0,

u2 + v2 < R2 for u < 0
}
.

If (U, V ) is on the line u = Av, we have

d

dt
(U −AV ) = Ut −AVt = U2 − V 2 −AUV = A2(V 2 − V 2 −AV 2) ≤ 0.

If (U, V ) is on the circle u2 + (v −R/2)2 = R2/4, we have

d

dt

{
U2 +

(
V − R

2

)2

− R2

4

}
= 2UUt + 2

(
V − R

2

)
Vt

= 2U(U2 − V 2) + 2
(
V − R

2

)
(2UV )

= 2U
{
U2 +

(
V − R

2

)2

− R2

4

}
= 0.
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Finally, if (U, V ) is on the circle u2 + v2 = R2 and U < 0, we have

d

dt
(U2 + V 2 −R2) = 2UUt + 2V Vt

= 2U(U2 − V 2) + 2V (2UV )

= 2U(U2 + V 2) < 0.

Hence by Lemma 2.1, DR is invariant. Now if we take R > 0 so large that Im(0)
is contained in DR, then Im(t) remains in DR for all t > 0. Thus the solution is
uniformly bounded for t ≥ 0, and hence exists globally in time.

Set

D1(t) := {(u, v) ∈ R
2 : u− av + b(t) < 0},

where b(t) is a positive smooth function to be specified later. By assumption, we
can take a > 0 and b(0) > 0 such that Im(0) ⊂ D1(0). If (U, V ) is on the line
u− av + b(t) = 0, we have

d

dt
(U − aV + b) = Ut − aVt + bt

= U2 − V 2 − a(2UV ) + bt

= (aV − b)2 − V 2 − 2a(aV − b)V + bt

= −(a2 + 1)V 2 + b2 + bt.

Hence, from Lemma 2.2, {D1(t)}t≥0 is invariant if bt ≤ −b2, which is satisfied by

(2.2) b(t) =
b(0)

b(0)t+ 1
.

Next, we set

D2(t) := {(u, v) ∈ R
2 : u sinω(t)− v cosω(t) < 0},

where ω(t) is a smooth function satisfying 0 < ω(t) < π and ω(t) > tan−1(1/a).
We note that D1(t)∩D2(t) is convex and two lines ∂D1(t) and ∂D2(t) intersect at
a point, which is denoted by (p(t), q(t)). Clearly

(2.3)
√
p2(t) + q2(t) ≥ 1√

1 + a2
b(t).

We shall show that {D1(t) ∩D2(t)}t≥0 is invariant.
Since Im(0) is bounded, we can take ω(0) ∈ (tan−1(1/a), π/2) appropriately

so that Im(0) ⊂ D1(0) ∩ D2(0). If (U(t), V (t)) ∈ D1(t) ∩ ∂D2(t), using polar
coordinates, we have

d

dt
{U sinω − V cosω} = Ut sinω + Uωt cosω − Vt cosω + V ωt sinω

=
{
(r2 cos2 θ − r2 sin2 θ) sinω + r cos θ · ωt cosω

− 2r2 cos θ sin θ cosω + r sin θ · ωt sinω
}∣∣∣∣

θ=ω

= −r2 sinω + rωt.
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Hence, from Lemma 2.2, {D1(t) ∩D2(t)}t≥0 is invariant if ωt ≤ r sinω on D1(t) ∩
∂D2(t). By (2.3), this condition is satisfied if

ωt(t) =
1

1 + a2
b(t) sinω(t).

Therefore, if b(t) is given by (2.2), there is t = t1 such that π/2 < ω(t1) < π. Since
{D1(t) ∩D2(t)}t≥0 is invariant, by using Lemma 2.1, we obtain

Im(t1) ⊂ {(u, v) = (r cos θ, r sin θ) : r > 0, ω(t1) < θ < π + tan−1(1/a)}.
This completes the proof. �

Next we prove that once Im(t) enters a left half-plane, then it remains in the left
half-plane and approaches the origin.

Proposition 2.4. Suppose that

Im(t1) ⊂ {(u, v) = (r cos θ, r sin θ) : 0 < r < R, α < θ < β}
for some t1 > 0, R > 0 and π/2 < α < π < β < 3π/2. Then there exists a constant
C > 0 such that

Im(t) ⊂ {(u, v) = (r cos θ, r sin θ) : 0 ≤ r ≤ C/t, α < θ < β}
for all t > t1.

Proof. Set

D3(t) := {(u, v) = (r cos θ, r sin θ) : 0 ≤ r ≤ σ(t), α < θ < β}.
By Lemma 2.2 again, (2.1) implies that {D3(t)}t≥0 is invariant if σt ≥ σ2 max{cosα,
cosβ}. Solving this differential inequality with σ(t1) = R, we obtain the conclusion
by Lemma 2.1. �

Now Theorem 1.1 is proved as an immediate consequence of Propositions 2.3
and 2.4.

Remark 2.5. Theorem 1.1 also holds true for the initial-boundary value problem
under suitable boundary conditions. See Corollary on p. 50 or part (b) of Remarks
on p. 45 in [35] for positively invariant regions.

3. Simultaneous blow-up

In this section, we consider the one-dimensional case m = 1.

3.1. Proof of Theorem 1.2. First we shall show one criterion for blow-up. This
is a simple generalization of the argument in [23] to our complex parabolic system.
We define the Fourier transform of a measurable function f ∈ L2(R) by

f̂(ω) =
1√
2π

∫
R

f(x)e−iω·x dx

and denote its inverse by

f(x) =
1√
2π

∫
R

f̂(ω)eiω·x dω.

Then (1.1) is transformed into

(3.1) ẑt = −ω2ẑ + ẑ ∗ ẑ,
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where “∗” stands for the convolution with respect to ω and ẑ(ω, t) is the Fourier
transform of z(x, t) with respect to the space variable x. The solution of (3.1) can
be represented as

(3.2) ẑ(ω, t) = e−ω2tẑ(ω, 0) +

∫ t

0

e−ω2(t−s)(ẑ ∗ ẑ)(ω, s) ds.

In the following, we always assume that ẑ(ω, t) is continuous.
The following lemma is essential in our argument.

Lemma 3.1. Suppose that ẑ(ω, 0) > 0 for any ω ∈ R. Then ẑ(ω, t) > 0 for all
ω ∈ R for t > 0 as long as the solution of (3.1) exists.

Proof. To prove this lemma, we use the following iterations:

ẑ1(ω, t) = ẑ(ω, 0),

ẑn(ω, t) = e−ω2tẑ(ω, 0) +

∫ t

0

e−ω2(t−s)(ẑn−1 ∗ ẑn−1)(ω, s) ds, n ≥ 2.

Then the lemma follows easily by an iterated argument. �

Let z0 := u0+ iv0 and ẑ0 be its Fourier transform. Theorem 1.2 is a consequence
of the following theorem, since the conditions in Theorem 1.2 imply that ẑ0 =
Θ/

√
2π is positive and continuous.

Theorem 3.2. Let (u, v) be a solution of (1.2) with (1.4) on R. Assume that ẑ0(ω)
is positive and continuous in ω ∈ R. Then the solution (u, v) blows up in a finite
time.

Proof. We prove this theorem by contradiction. Assume that the solution exists
for all t > 0. By the continuity of ẑ0 at ω = 0, there is a positive constant δ such
that

min
|ω|≤δ/2

ẑ0(ω) > 8δ.

Choose a constant τ with τ ≥ ln 2/δ2. Set B = [−δ/2, δ/2] and divide B into N
intervals, namely,

Bj =

[
−δ

2
+

(j − 1))δ

N
,−δ

2
+

jδ

N

]
, j = 1, 2, . . . , N.

Next, we define the local mean value and its minimum by

Mj(t) = Mj(t; δ,N) :=
1

|Bj |

∫
ω∈Bj

ẑ(ω, t) dω, M(t) = M(t; δ,N) := min
1≤j≤N

Mj(t).

Using Lemma 3.1 and Lebesgue’s Differentiation Theorem, we may assume that

(3.3) ẑ(ω, t) ≥ M(t)

2
for ω ∈ B, 0 ≤ t ≤ τ,

by choosing N sufficiently large. Thus, by differentiating the function Mj(t) and
using (3.1) and (3.3), we obtain the following differential inequalities:

M ′
j(t) ≥ −δ2Mj(t) +

δ

4
M2(t), j = 1, 2, . . . , N.

Hence Mj(t) satisfies the integral inequality

eδ
2tMj(t) ≥ Mj(0) +

δ

4

∫ t

0

eδ
2sM2(s)ds ≥ M(0) +

δ

4

∫ t

0

eδ
2sM2(s)ds
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for each j. Since M(t) = Mj(t) for some j, we conclude that

eδ
2tM(t) ≥ M(0) +

δ

4

∫ t

0

eδ
2sM2(s)ds for 0 ≤ t ≤ τ.

This implies that M(t) blows up before the time τ , since M(0) > 4δ. Then by
taking x = 0 in the inverse Fourier transform we conclude that the function u(0, t)
of the solution (u, v) of (1.2) blows up in a finite time. �

Remark 3.3. Under the assumption of Theorem 3.2, we see that

u(x, t) =
1√
2π

∫
R

ẑ(ω, t) cosωx dω,

v(x, t) =
1√
2π

∫
R

ẑ(ω, t) sinωx dω,

and that u is an even function and v is an odd one with respect to x, in particular,

(3.4) u0(x) = u0(−x), v0(x) = −v0(−x) for x ∈ R.

Conversely if (u0, v0) satisfies (3.4), then ẑ0 is real. A typical example of such initial
data is

u0(x) = (3− 4x2)e−x2

, v0(x) = 2xe−x2

, ẑ0(ω) =
1 + ω + ω2

√
2

e−ω2/4.

3.2. Simultaneous blow-up for one-dimensional case. In this subsection we
shall give a proof of Theorem 1.3. Let (u, v) be a solution of the Cauchy problem
for (1.2) with (1.4) satisfying (3.4). Then we have u(x, t) = u(−x, t) and v(x, t) =
−v(−x, t), and especially, ux(0, t) = 0 and v(0, t) = 0 for all t ∈ (0, T ). Moreover,
we assume that

v0(x) > 0 for x > 0.

In order to exclude the blow-up at space infinity, we also assume the following
assumption:

(H) Blow-up set of the solution (u, v) is compact.

We first introduce a rescaling of variables to analyze the solution near a blow-up
point. For any η ∈ R and T > 0, we define W = Wη,T := W (ξ, s; η, T ) by

W (ξ, s; η, T ) := (T − t)u(x, t), ξ :=
x− η√
T − t

, s := − ln (T − t)

for ξ ∈ R and s > s0 := − lnT . Then W satisfies

Ws = Wξξ −
ξ

2
Wξ −W +W 2+ g, where g(y, s) := −e−2sv2(η+ e−s/2ξ, T − e−s)

and W (ξ, s0) = Tu0(η + ξ
√
T ). Now we introduce the energy functional

E[ϕ] =

∫
R

(ϕ2
ξ

2
+

ϕ2

2
− ϕ3

3

)
ρ dξ, ϕ ∈ H1

ρ ∩ L3
ρ,

where ρ(ξ) := (4π)−1/2e−ξ2/4 and

Lq
ρ = Lq

ρ(R) :=
{
ϕ ∈ Lq(R) :

∫
R

|ϕ|qρ dy < ∞
}
,

H1
ρ = H1

ρ(R) :=
{
ϕ ∈ L2

ρ(R) : ϕξ ∈ L2
ρ(R)

}
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for q ≥ 1. In the following, we simply write W (s) := W (·, s) and g(s) := g(·, s),
and so on. Now we set

F [g](s) :=
1

2

∫ s

s0

∫
R

g2(ξ, τ )ρ dξdτ, J [W (s)] := E[W (s)]− F [g](s).

If v is bounded for 0 ≤ t ≤ T , then there is a positive constant K1 satisfying

|F [g](s)| ≤ K1, s > s0.

By a simple calculation, we obtain
(3.5)
d

ds
J [W (s)]=−

∫
R

W 2
s (s)ρ dξ+

∫
R

g(s)Ws(s)ρ dξ−
1

2

∫
R

g2(s)ρ dξ ≤ −1

2

∫
R

W 2
s (s)ρ dξ

for any s > s0. This means that J [W (s)] is monotone decreasing in s > s0 and
that

E[W (s)] < J [W (0)] +K1 := K2, s > s0,

if v is bounded for 0 ≤ t ≤ T .
The local convergence result can be proved by the standard argument similar to

[10, 11, 12].

Proposition 3.4. Let (u, v) be a solution of (1.2) with (1.4) on R that blows up at
t = T ∈ (0,∞). Assume that v is uniformly bounded in R× [0, T ). Then u satisfies

lim
t→T

(T − t)u(a+ (T − t)1/2ξ, t) = 1

uniformly on |ξ| ≤ C for any C > 0.

Although the proof of this proposition is quite similar to that of Section 6.A of
[12] with a small modification, for the reader’s convenience we shall give a proof
here.

Proof. First, let us show that u is bounded from below. The assumption of the
uniform boundedness of v implies that there is a constant M > 0 such that
|v(x, t)| ≤ M for all x ∈ R and t ∈ [0, T ). Hence u satisfies a differential in-
equality ut ≥ uxx + u2 − M2. Thus by a simple comparison principle, we obtain
an inequality: u(x, t) ≥ infx∈R{u0(x)} −M2t. Hence u is uniformly bounded from
below.

Next, we show that there exist constants Ki (i = 3, 4, 5) and s∗ > − lnT such
that ∫ ∞

s∗

∫
R

|Ws|2ρ dξds ≤ K3,(3.6) ∫
R

|W (s)|2ρ dξ ≤ K4,(3.7)

∫ s+1

s

(∫
R

|W |3ρ dξ
)2

ds ≤ K5(3.8)

for all s ≥ s∗ for some s∗ > s0.
In the following, for any measurable function f(x), we define f−(x) by f−(x) =

−f(x) when f(x) < 0, and f−(x) = 0 otherwise. Note that W− converges to zero
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as s → ∞, due to the fact that u is bounded from below. Since W = |W | − 2W−,
we have

1

2

d

ds

∫
R

W 2(s)ρ dξ

=

∫
R

(
−W 2

ξ (s)−W 2(s) +W 3(s) + g(s)W (s)
)
ρ dξ

= −2E[W (s)] +
1

3

∫
R

W 3(s)ρ dξ +

∫
R

g(s)W (s)ρ dξ

= −2J [W (s)]− 2F [g](s) +
1

3

∫
R

W 3(s)ρ dξ +

∫
R

g(s)W (s)ρ dξ

≥ −2J [W (s)]−K6 +
1

3

∫
R

|W (s)|3ρ dξ − 2

3

∫
R

W 3
−(s)ρ dξ −

1

2

∫
R

W 2(s)ρ dξ.

The lower bound of u and the definition of ρ imply that

2

3

∫
R

W 3
−(s)ρ dξ ≤ K7

with some positive constant K7. Then we have
(3.9)
1

2

d

ds

∫
R

W 2(s)ρ dξ ≥ −2J [W (s)]−K6−K7+
1

3

(∫
R

W 2(s)ρ dξ
) 3

2 − 1

2

∫
R

W 2(s)ρ dξ

for some constant K7. Since W is defined for all s ≥ s0, the right-hand side of the
above inequality cannot be positive for all s. We obtain an L2-bound (3.7) for all
s ≥ s∗ for some s∗ > s0. Combining the monotonicity and (3.9), we also get a lower
bound of J [W (s)], which also yields a lower bound of E[W (s)]; namely, there is a
constant K8 such that

E[W (s)] ≥ −K8 for all s ≥ s∗.

Furthermore, by using (3.7) and an upper bound for E[W (s)], we obtain

1

3

∫
R

|W (s)|3ρ dξ =
2

3

∫
R

W 3
−(s)ρ dξ +

1

3

∫
R

W 3(s)ρ dξ

≤ K7 +

∫
R

W (s)Ws(s)ρ dξ + 2E[W (s)]−
∫
R

g(s)W (s)ρ dξ

≤ K7 +

∫
R

W (s)Ws(s)ρ dξ + 2K2 +
1

2

∫
R

g2(s)ρ dξ

+
1

2

∫
R

W 2(s)ρ dξ

≤ K7 +
1

2

∫
R

W 2
s (s)ρ dξ + 2K2 +

1

2

∫
R

g2(s)ρ dξ +

∫
R

W 2(s)ρ dξ

≤ K9 +
1

2

∫
R

W 2
s (s)ρ dξ ≤ K9 −

d

ds
E[W (s)] +K10e

−4s

with some positive constants K9 and K10. Hence we have (3.8). Combining (3.5)
and the bound for E[W (s)] gives us (3.6).

Now, we rewrite the equation for W as

Ws = Wξξ −
ξ

2
Wξ + (W − 1)W − e−2sv2.(3.10)
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Using

|W − 1|3 ≤ |W |3 + 3|W |2 + 3|W |+ 1

and (3.8), we can easily show that∫ s+1

s

(∫
|ξ|≤1

|W − 1|3ρ dξ
)2

ds ≤ K11, s ≥ s∗.

Applying this estimate, (3.7) and Theorem 8.1 in Chapter III of [16] to (3.10) yield
an L∞-bound:

|Wη,T (ξ, s)| ≤ K12 for |ξ| ≤ 1

2
, s ≥ s∗ + δ

for any δ > 0. The relation Wη,T (ξ, s) = W0,T (ξ+e
s
2 η, s) gives us a uniform bound

of |Wη,T (ξ, s)| for all |ξ| ≤ c and s ≥ s∗+δ, where c > 0 is any positive constant. By
(3.6) we conclude that the ω-limit set of Wη,T is a compact connected set contained
in the set of bounded solutions Φ = Φ(ξ) of the problem

Φξξ −
ξ

2
Φξ − Φ+ Φ2 = 0, ξ ≥ 0, Φξ(0) = 0.

It can be easily seen from the proof of Theorem 1 in [10] that the only bounded
solution of this one-dimensional elliptic problem is a constant solution. Thus the
ω-limit set of Wη,T is contained in the set {1, 0}. Furthermore, for a blow-up point
η = a, the possibility 0 is excluded from the ω-limit set in view of Theorem 2.1
of [12], since u satisfies the inequality |ut − Δu| ≤ K ′(1 + u2) for some constant
K ′ > 0 near x = a. This completes the proof. �

Note that v is bounded for a nonsimultaneous blow-up solution (u, v) of (1.2).
From the above proof, we have the following corollary.

Corollary 3.5. Let (u, v) be a nonsimultaneous blow-up solution of (1.2) with (1.4)
on R that blows up at t = T ∈ (0,∞). Then u is uniformly bounded from below.

Now, we prove that the simultaneous blow-up does occur under certain condi-
tions.

Proof of Theorem 1.3. We shall assume that v is uniformly bounded for all x ∈ R

and t ∈ [0, T ) to get a contradiction. By the assumption that the blow-up set is
compact and the symmetry, we only need to consider two cases for the blow-up
point a ≥ 0 of u. One is when a > 0 and the other case is a = 0.

First, we consider the case when a > 0. At any blow-up point a > 0 of u, there
exist c > 0 and δ ∈ [0, a/2] such that v(x, t) ≥ c for all (x, t) ∈ [a− δ, a+ δ]× [0, T ],
since v is positive for x > 0 by the strong maximum principle.

For any fixed θ ∈ (0, 1/4), choosing R � 1 so that π2/(4R2) < 1/2, by Proposi-
tion 3.4 there exists t0 ∈ (0, T ) sufficiently close to T such that

(3.11) u(x, t) ≥ 1− θ

T − t
for |x− a| ≤ R

√
T − t, t ∈ [t0, T ).

Here we may also assume that T − t0 � 1 so that a ≥ 2R
√
T − t0.
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Now, let us consider a rescaling at x = a, t = T to introduce W = Wa,T :=
W (ξ, s; a, T ) and Z = Za,T := Z(ξ, s; a, T ) by

W (ξ, s; a, T ) := (T − t)u(x, t), Z(ξ, s; a, T ) := (T − t)v(x, t),

ξ =
x− a√
T − t

, s = − ln (T − t)

for ξ ∈ R and s > s0 := − lnT . Then (W,Z) satisfies⎧⎪⎨
⎪⎩

Ws = Wξξ −
ξ

2
Wξ −W +W 2 − Z2,

Zs = Zξξ −
ξ

2
Zξ − Z + 2WZ.

Then we have from (3.11) the inequality

Zs ≥ Zξξ −
ξ

2
Zξ + (1− 2θ)Z

for all (ξ, s) ∈ (−R,R)× (− ln(T − t0),∞). Here we have used the fact that Z > 0
for ξ ∈ (−a/

√
T − t,∞), for any t > 0, and the fact that a/

√
T − t > R for all

t ≥ t0.
Let us define ψ(ξ) = ψR

1,D(ξ) = cos [πξ/(2R)]. Then we have

ψξξ −
ξ

2
ψξ + (1− 2θ)ψ = [1− 2θ − π2/(4R2)]ψ − ξ

2
ψξ ≥ 0 for ξ ∈ (−R,R).

By choosing sufficiently small ε > 0, we may assume Z(ξ,− ln (T − t0)) ≥ εψ(ξ) for
all |ξ| ≤ R. Here we used the positivity of v(·, t0) on {x ∈ R : |x−a| ≤ R

√
T − t0}.

Now, we can apply the comparison principle to conclude that Z(ξ, s) ≥ εψ(ξ) for
all ξ satisfying |ξ| ≤ R as long as s ≥ − ln (T − t0). This means that v(x, t) ≥
ε(T − t)−1ψ(|x − a|/

√
T − t) for all |x − a| ≤ R

√
T − t and t ≥ t0. Hence we

conclude that v(a, t) → ∞ as t → T . Thus we get a contradiction.
Next, we consider the second case when a = 0. Let λ(R) denote the first

eigenvalue of the Laplace operator on the three-dimensional ball of radius R > 0
centered at the origin under the zero Dirichlet boundary condition. Note that
λ(R) = R−2λ(1). By Proposition 3.4, for a given θ ∈ (0, 1/4) and R > 0 with
λ(R) < 1/2, there exists t0 ∈ (0, T ) sufficiently close to T such that

u(r, t) ≥ 1− θ

T − t
, r ≤ R

√
T − t, t ∈ [t0, T ).

When a = 0, we consider the transformation μ = v/r, where r = |x|. Then (1.2)
becomes

ut = urr + u2 − r2μ2, μt = μrr +
2

r
μr + 2uμ

with the zero Neumann boundary conditions for u and μ at the origin, due to the
symmetry assumption.

Again, we consider a rescaling W = W0,T := W (ξ, s; 0, T ) and Y = Y0,T :=
Y (ξ, s; 0, T ) by

W (ξ, s; 0, T ) := (T − t)u(r, t), Y (ξ, s; 0, T ) := (T − t)μ(r, t),

ξ =
r√
T − t

, s = − ln (T − t)
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for ξ ∈ R and s > s0 := − lnT . Then (W,Y ) satisfies⎧⎪⎪⎨
⎪⎪⎩

Ws = Wξξ −
ξ

2
Wξ −W +W 2 − Z2,

Ys = Yξξ +
2

ξ
Yξ −

ξ

2
Yξ − Y + 2WY

and

Yξ(0, s) = 0 for s > s0, W (ξ, s0) = Tu0(ξ
√
T ), Y (ξ, s0) =

√
T ξ−1v0(ξ

√
T ).

Now we start the same argument as in the case when a > 0 for a radially
symmetric extended function μ defined on R

3. Consider the corresponding positive
eigenfunction ϕ(ξ) = ϕR

1,D(ξ) of the Laplace operator on the three-dimensional ball
of radius R centered at the origin under the zero Dirichlet boundary condition.
Then ϕ satisfies

ϕξξ +
2

ξ
ϕξ −

ξ

2
ϕξ + (1− 2θ)ϕ = {1− 2θ − λ(R)}ϕ− ξ

2
ϕξ ≥ 0

for all 0 < ξ ≤ R, since ϕ is positive and monotone decreasing. Without loss of
generality, we assume that the maximum of ϕ(ξ) is equal to 1. Choosing sufficiently
small ε > 0, we may assume that Y (ξ,− ln (T − t0)) ≥ εϕ(ξ) for all 0 ≤ ξ ≤ R.
Here we use the positivity of μ(r, t0) for 0 ≤ r ≤ R

√
T − t0, which follows from

the strong maximum principle. Again, we can apply the comparison principle to
conclude that Y (ξ, s) ≥ εϕ(ξ) for all 0 ≤ ξ ≤ R and s ≥ − ln (T − t0). This
yields that r−1v(r, t) ≥ ε(T − t)−1ϕ(r/

√
T − t) for all 0 ≤ r ≤ R

√
T − t and t ≥ t0.

This inequality can be written as v(r, t) ≥ ε(T−t)−1rϕ(r/
√
T − t). By substituting

r =
√
T − t and letting t → T , we conclude that v blows up and get a contradiction.

This completes the proof. �

4. Asymptotically constant initial data

4.1. General system. In this subsection we consider the following more general
system than (1.2):

(4.1)

{
ut = DΔu+ f(u), x ∈ R

m, t > 0,

u(x, 0) = u0(x), x ∈ R
m,

where u(x, t) = (u1(x, t), . . . , uk(x, t) ) ∈ R
k, f = (f1, . . . , fk) is a smooth mapping

from R
k to R

k, D = diag(d1, . . . , dk) with dj > 0 for j = 1, 2, . . . , k. We assume

that u0 ∈
(
L∞(Rm)∩C(Rm)

)k
to ensure the existence of the local solution, and we

denote the maximal existence time of the classical solution of (4.1) by T (u0).
We shall prove the following theorem which describes the behavior of solutions

at space infinity. A similar lemma can also be found in [32] to analyze the blow-up
problem for a cooperative parabolic system.

Let us introduce several definitions. First we shall define

‖w(·)‖L∞(Rm) :=

k∑
j=1

‖wj(·)‖L∞(Rm)

for w = (w1, . . . , wk)∈
(
L∞(Rm)

)k
. We express u=(u1, . . . , uk) ≤ v = (v1, . . . , vk)

if uj ≤ vj for j = 1, 2, . . . , k whenever the functions u,v are defined. We also write
|u| := maxj |uj | for x = (u1, u2, . . . , uk) ∈ R

k.
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Theorem 4.1. Let u and û be solutions of (4.1) with initial data u0, û0∈
(
L∞(Rm)

∩ C(Rm)
)k
, respectively. Suppose that there exist sequences {rn}∞n=1 ⊂ (0,∞) and

{an}∞n=1 ⊂ R
m with rn → ∞ as n → ∞ such that

(4.2) lim sup
n→∞

‖u0 − û0‖L∞(B2rn (an)) = 0.

Then

lim sup
n→∞

‖u(·, t)− û(·, t)‖L∞(Brn (an)) = 0

for any t ∈ (0, T̃ ), where T̃ = min{T (u0), T (û0)}.

Proof. First, it is easy to see that the function X = u− û satisfies

Xt = DΔX+ f(u)− f(û), x ∈ R
m, 0 < t ≤ T̃ ,(4.3)

X(x, 0) = u0 − û0.(4.4)

Let ε > 0 and t0 ∈ (0, T̃ ) be given. By the assumption (4.2), there exists n0 ∈ N

such that

(4.5) ‖X0‖L∞(B2rn (an)) ≤ ε

for all n ≥ n0. Since the solutions do not blow up on (0, T̃ ), the functions∣∣∣∣ ∂fi∂xj
(θu+ (1− θ)û)

∣∣∣∣
are bounded by some constant K on (0, t0) for any θ ∈ [0, 1].

To prove this lemma, we construct a suitable supersolution of the problem (4.3).
For this, we define a vector-valued functionY as a solution of the following problem:

(4.6)

{
Yt = DΔY +KAY, x ∈ R

m, 0 < t ≤ T̃ ,

Y(x, 0) = X0(x), x ∈ R
m,

where A is an m×m matrix given by

A = (1)1≤i≤k,1≤j≤k.

Then the solution Y of the Cauchy problem (4.6) can be expressed as

Y(x, t) =

∫
Rm

G(x− y, t)X0(y) dy

=

∫
Rm\Brn (x)

G(x− y, t)X0(y) dy +

∫
Brn (x)

G(x− y, t)X0(y) dy,

where G = (Gi,j)1≤i,j≤k is the Green matrix of the system (4.6).
We shall now use the following estimate (cf. [3]):∣∣∣ ( ∂

∂x

)l

Gi,j(x, t)
∣∣∣ ≤ Clt

−m+|l|
2 e−C|x|2/t, 1 ≤ i, j ≤ k

for all x ∈ R
m and t ∈ (0, t0) for some positive constants Cl, C, where l is a multi-

index. Then the assumption rn → ∞ as n → ∞ and the above estimate imply
that

Gi,j(x− y, t) ≤
∫
|x−y|>rn

C0t
−m

2 e−C|x−y|2/t dy ≤ ε

β
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for any large n ∈ N, where β := ‖X0‖L∞(Rm). From this we can deduce that∣∣∣ ∫
Rm\Brn (x)

G(x− y, t)X0(y) dy
∣∣∣ ≤ β

∫
|x−y|>rn

C0t
−m

2 e−C|x−y|2/t dy ≤ ε

for any n large.
On the other hand, we note that x ∈ Brn(an) and y ∈ Brn(x) imply y ∈

B2rn(an). Thus, from (4.5), there exists a constant c > 0 such that∣∣∣ ∫
Brn (x)

G(x− y, t)X0(y) dy
∣∣∣ ≤ ε max

1≤i≤k

k∑
j=1

∫
Rm

Gi,j(x− y, t) dy ≤ cε

for any x ∈ Brn(an), t ∈ (0, t0) and n ∈ N. Consequently, |Y(x, t)| ≤ (1 + c)ε
for any x ∈ Brn(an), t ∈ (0, t0) and n ∈ N. By the comparison principle, we have
−Y ≤ X ≤ Y, so that

lim sup
n→∞

‖X(·, t)‖L∞(Brn (an)) ≤ lim sup
n→∞

‖Y(·, t)‖L∞(Brn (an)) = 0, t ∈ (0, t0).

Letting t0 vary over (0, T̃ ), the lemma follows. �
This lemma immediately implies the following corollary.

Corollary 4.2. If some solutions of

(4.7) Ut = f(U)

blow up in a finite time, then there are spatially inhomogeneous solutions of (4.1)
which blow up in a finite time.

Proof. By assumption, there are initial data U0 such that the solution of (4.7)
starting from U0 blows up at t = T (U0) < ∞. Let u0 be spatially inhomogeneous
initial data such that

u0 ∈ (L∞(Rm) ∩ C(Rm))k, lim
|x|→∞

u0(x) = U0.

Then Theorem 4.1 implies that the solution of (4.1) starting from u(x, 0) = u0

blows up in a finite time. Since the solution u is also spatially inhomogeneous, the
proof is complete. �

This corollary is applicable to our system (1.2). In the following subsections, we
investigate in more detail the behavior of solutions.

Remark 4.3. Fila, Ninomiya and Vázquez [5] constructed the two-component sys-
tem which exhibits the diffusion-eliminating blow-up. Namely, some solutions of
(4.7) blow up in a finite time, while all solutions of (4.1) in a bounded domain with
the homogeneous boundary condition converge to (0, 0) as t tends to infinity. This
corollary also indicates that the boundedness of the domain or the restriction of
the solutions at |x| → ∞ is required for diffusion-eliminating blow-up.

4.2. Global existence. Hereafter, we shall focus on the Cauchy problem for (1.2)
such that the initial data satisfy (1.8) and (1.9).

Let (U(t), V (t)) be the solution of (1.5) with the initial condition (U(0), V (0)) =
(M,N). Recall that the solution can be written explicitly as (1.6) with

TR =
M

M2 +N2
, TI =

N

M2 +N2
.

When N > 0, we can prove Theorem 1.4 by using Theorems 1.1 and 4.1.
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Proof of Theorem 1.4. First, we have the local existence of (u, v) for t ∈ [0, τ ] for
some τ > 0. By Theorem 4.1 and the explicit form of (U(t), V (t)) in (1.6), the
assumption of Theorem 1.1 is satisfied for all |x| ≥ R at t = τ for some constants
R � 1 and A > 0. By the strong maximum principle, we have v > 0 and u is
bounded in R

m × [0, τ ]. This implies that the assumption of Theorem 1.1 holds for
all x with |x| ≤ R at t = τ with the constant A (taking a larger one if necessary).
Hence, by Theorem 1.1 for the Cauchy problem starting at t = τ , the solution (u, v)
is global and converges to (0, 0) as t → ∞. This completes the proof. �

4.3. Upper bounds. In this subsection we consider the case N = 0. Since V (t) ≡
0 in this case, the equation for U becomes Ut = U2. We denote the solution of this
single equation with U(0) = M by U0(t) := UM,0(t) = 1/(M−1 − t). The blow-up
time of this solution is T (M) := M−1.

In order to estimate u(x, t) and v(x, t) from above, we consider the following
cooperative system:

(4.8)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut = Δu+ u2, x ∈ R
m, t > 0,

vt = Δv + 2u v, x ∈ R
m, t > 0,

u(x, 0) = u0(x), x ∈ R
m,

v(x, 0) = v0(x), x ∈ R
m.

Also, we consider the following kinetic system corresponding to the problem (4.8):

(4.9)

{
U t = U

2
, U(0) = M,

V t = 2U V , V (0) = L

for some M,L > 0. We note that the solution of (4.9) is given by

U(t) =
1

T − t
, V (t) =

L

M2

1

(T − t)2
, T = T (M) :=

1

M
.

The proof of the following lemma is based on Lemma 2.3 of [18] for the Fujita
equation. See also [30] for a quasilinear parabolic equation and [32] for a cooperative
parabolic system.

Lemma 4.4. Let (U, V ) be the solution of (4.9) and let (u, v) be a solution of
(4.8) defined on R

m × [0, T ) with T := M−1. Suppose that there exist t0 ∈ [0, T ),
r0 ∈ (0,∞) and a constant θ ∈ (0, 1) such that

0 ≤ u(x, t) ≤ θU(t), 0 ≤ v(x, t) ≤ θV (t) for |x| ≤ r0, t0 ≤ t < T.

Then u and v are uniformly bounded in {|x| ≤ r0/2} × [t0, T ).

Proof. We construct some suitable supersolutions as follows:

w(x, t) :=
θ̂

T − t+ h(r)
, w̃(x, t) :=

L

M2

θ̂

[T − t+ h(r)]2
, r := |x|,

where θ̂ ∈ (θ, 1) and

h(r) := ε cos2
( πr

2r0

)

Licensed to Tamkang University. Prepared on Tue Feb 19 21:52:14 EST 2013 for download from IP 163.13.113.67.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2464 J.-S. GUO, H. NINOMIYA, M. SHIMOJO, AND E. YANAGIDA

with small ε > 0 to be chosen later. We compute

wt −Δw − w2 =
w2

θ̂

{
1− θ̂ +Δh− 2|∇h|2

T − t+ h

}

≥ w2

θ̂

{
1− θ̂ + hrr +

m− 1

r
hr − 2

h2
r

h

}
.

Since, by the choice of h, we have hrr, hr/r and h2
r/h are of order ε for |r| ≤ r0,

we have
wt ≥ Δw + w2, |x| < r0, t0 ≤ t < T,

w(x, t0) ≥ u(x, t0), |x| ≤ r0,

w(x, t) ≥ u(x, t), |x| = r0, t0 ≤ t < T,

if we choose ε > 0 sufficiently small. Note that ε > 0 is chosen so that

ε ≤ (T − t0)

(
θ̂

θ
− 1

)
,

by θ̂ ∈ (θ, 1). By the comparison principle, we have u(x, t) ≤ w(x, t) for |x| ≤ r0
and t0 ≤ t < T . Thus we obtain

u(x, t) ≤ θ̂

T − t+ h(r0/2)
=

θ̂

T − t+ ε/2
≤ 2θ̂

ε
< ∞

for any |x| ≤ r0/2, t0 ≤ t < T . Applying a similar argument to v and w̃, we
complete the proof. �

In the following, we assume

u0, v0 ∈ C1(Rm), 0 ≤ u0 ≤ M, u0 �≡ M, 0 ≤ v0 ≤ L, v0 �≡ L,(4.10)

lim
|x|→∞

u0(x) = M, lim
|x|→∞

v0(x) = L(4.11)

for some constants M > 0 and L > 0. The following lemma shows that blow-up
can occur only at space infinity.

Lemma 4.5. Let (u, v) be a solution of (4.8) satisfying (4.10) and (4.11). Then
u and v blow up at the finite time t = T (M) := M−1. Moreover, u and v are
uniformly bounded in K × [0, T ) for any compact set K ⊂ R

m.

Proof. By the comparison principle, we have 0 ≤ u(x, t) ≤ U(t) and 0 ≤ v(x, t) ≤
V (t) for all x ∈ R

m and t > 0. On the other hand, applying Theorem 4.1 with
|an| = 4n and rn = n, we obtain

lim
|x|→∞

u(x, t) = U(t), lim
|x|→∞

v(x, t) = V (t), t ∈ [0, T (M)).

Combining the above two facts, we obtain the blow-up time T (u0, v0) = T (M) =
1/M .

It remains to prove the uniform boundedness of u and v in K × [0, T ) for any
given compact subset K of Rm. For this purpose, in view of Lemma 4.4, it suffices
to show that, for any given R > 0 there exist t0 ∈ [0, T ) and θ ∈ (0, 1) such that

(4.12) 0 ≤ u(x, t) ≤ θ

T − t
, 0 ≤ v(x, t) ≤ L

M2

θ

(T − t)2
, |x| ≤ 2R, t0 ≤ t < T.
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For this, we let γ(x, t) := u(x, t)/U(t). Then the function γ = γ(x, t) satisfies

γt = Δγ + U(γ2 − γ) ≤ Δγ,

since 0 ≤ γ ≤ 1. Moreover, by (4.10) and (4.11) we have

0 ≤ γ(·, 0) = u0

M
≤ 1, γ(·, 0) �≡ 1.

From the strong maximum principle, we see that 0 ≤ γ(x, t) < 1 for all x ∈ R
m

and t > 0. Therefore, for any R > 0 there exist θ ∈ (0, 1) and t0 ∈ (0, T ) such that

0 ≤ γ(x, t) ≤ θ, |x| ≤ 2R, t0 ≤ t < T.

This gives the first inequality in (4.12). Next, we define χ(x, t) := v(x, t)/V (t).
Arguing as above, this function χ = χ(x, t) satisfies

χt = Δχ+ 2Uχ(γ − 1) ≤ Δχ, 0 ≤ χ(·, 0) ≤ 1 and χ(·, 0) �≡ 1.

The second inequality of (4.12) can be proved similarly. Thus the proof is com-
pleted. �

4.4. Nonsimultaneous blow-up. Now we are in a position to complete the proof
of Theorem 1.5.

Proof of Theorem 1.5. First, we choose functions u0, v0 as u0 = u0 and v0 ≥ v0
such that v0 satisfies conditions (4.10) and (4.11) with the same constants M,L as
in (1.8) and (1.9). Then, by the comparison principle, we have

(4.13) u(x, t) ≤ u(x, t), 0 ≤ v(x, t) ≤ v(x, t), x ∈ R
m, t > 0.

By Lemma 4.5, the solution (u, v) blows up simultaneously at time t = T (M) =
1/M only at space infinity. Thus the inequality (4.13) implies that the component
v does not blow up until the time t = T (M) and limt→T (M) v(x, t) < ∞ for all fixed
x ∈ R

m. Furthermore, by using Theorem 4.1 with |an| = 4n and rn = n, we obtain

(4.14) lim
|x|→∞

u(x, t) = U0(t), lim
|x|→∞

v(x, t) = 0, t ∈ [0, T (M)).

Thus limt→T (M) ‖v(·, t)‖L∞(Rm) is bounded.
The boundedness of v implies that the component u is bounded below up to the

time t = T (M). Hence there exists a constant C > 0 such that

(4.15) −C < u ≤ u in R
m × [0, T (M)).

These inequalities and (4.14) imply that ‖u(·, t)‖L∞(Rm) → ∞ as t ↗ T (M). Hence
we obtain T (u0, v0) = T (M). On the other hand, from Lemma 4.5, u blows up only
at space infinity. Combining this with (4.15), we conclude that the blow-up of the
component u occurs only at space infinity. �
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