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Abstract

This paper proposed two models with extreme
average clustering coefficients and small path length
properties for high edge density network. High
density networks are common in the analysis ofsocial
networks and biological networks. In addition to
those properties, the proposed models indicated that
in addition to the existing small-world network model
and random network model, there are other network
models that may produce clustering coefficients
filling the gap between those two models and the
maximal achievable clustering coefficients.

1. Introduction

Clustering coefficient [5] is an important vertex
measure to estimate the degree of tightness between
neighbors of that node. The average clustering
coefficient of all the vertices is used to determine
whether a graph is a small-world network. A network
is small-world if its average clustering coefficient is
significantly higher while its average distance between
vertices is lower than those of a corresponding random
network.

High edge density networks often appear as a clique
in a larger network, and are encountered frequently in
studies of social networks and biological networks [2].
In studying those high edge density networks, it is
quite natural to use existing high clustering coefficient
network models such as the popular small-world
networks. The small-world network model provides
useful insights into the structure and possibly provides
explanation to the function and formation of many
real-world networks. However, the defmition of small­
worldness involves the evaluation of a corresponding
random network, thus there are some research efforts
to define it in a more quantitative way [4]. Some other
studies are aiming at designing tunable clustering
coefficient algorithms for generating different scale-
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free networks [1, 3]. Nevertheless, those models are
not suitable for high edge density networks. At high
edge density, in addition to the trivial clustering
coefficient upper bound of 1, and 0 for lower bound,
more realistic upper and lower bounds are not
available. The two network models proposed in this
paper can serve as upper and lower bounds for
clustering coefficients. In addition to clustering
coefficients, we also show that average network
distances have become less important as distinguishing
network characteristics in high edge density networks.

2. Definitions

Given a undirected, simple (no self-loops, no
multiple edges) network (graph) G = {V, E} ,

V ={I,2, · · · , n} is the set of vertices and

E = {eij Ii, j E V} is the set of edges. The number of

nodes is n and the number of edges is denoted by m.
Let P(i) be the set of neighboring nodes of i ,

P(i) ={vIvE V, evi E E} , eij is an edge connecting

node i andj, and the number of elements in set P(i) is

denoted by ~ = Ip(i)1 and is equal to its node degree

d, =/3;. The intersection of two sets P(i) and P(j)

is represented by 8(i, j) = P(i) n P(j) and the

number of elements in that set is ~,j = IJ(i, j)l. The

clustering coefficient of node i is defmed as the ratio
of the number of links between neighboring nodes of
i and the maximal possible number of links between
all of its neighboring nodes,

cCi = LVjE p(i)8
i
,j / Pi (Pi -1) · The clustering

coefficient of network G is therefore the average of all
clustering coefficient of the vertices in the network

cCG =~~ cc./n..L.J1=1 I



As clustering coefficient of a node i is a value
between 0 and I, thus in order to facilitate the process
of presentation, we use filled circle for clustering
coefficient of I while gray circle represents
intermediate values (including zero) of clustering
coefficient. We are interested in studying networks
with high edge density, to be more specific, networks

with more than (n2
- 5n +12)/2 edges for a size n

network. When we divide edge count by the maximum
number of possible edges for a size n network, the

edge density is 1- 4(n - 3)/(n2
- n) , which is close

to one for even a moderate size n. At such high edge
density, we show some properties related to network
clustering coefficients. First, we define a quantity

m" =(n2
- n)/2 - m as a measure of the number of

edges needed to form a complete network.

3. Network Models
3.1. Maximal Clustering Coefficients

The proposed network model for high clustering
coefficient is by adding one edge at a time. At each
step, one edge is added and the network is reorganized
to produce the highest possible clustering coefficients.
For a given n , the process begins with a network that

contains exactly m = (n
2

- 5n + 12)/2 edges. This

network, as shown in Figure I(a), has a m" = 2(n-3)

and it has only one gray node.

XI = 2 , x
2

= n-3 , which corresponds to min(m-)

=2(n-3).

The proof of 3. is by dividing (n -1) into k sets,

and denoting them as Xl' X 2 ,"', X k , (n - I) = I:=1 Xi '

Proposition 1 When m > (n 2
- 5n +12)/2, and

m < (n 2
- n)/2 , the number ofgray nodes in a size

n network is greater than 1. The network in Figure 1(b) has a m- value of I and

its total number of edges is m = (n2
- n)/2 -I , it has

exactly (n - 2) gray nodes. The edges difference

between networks of Figure I(a) and Figure I(b) is
(2n - 7), and the difference between the number of

gray nodes is (n - 3) . Thus the minimum increase of

gray nodes per edge addition is 2 -I/(n - 3), which is

roughly 2 for large n. Suppose the clustering
coefficient of the only gray node in Figure I(a) is

denoted as cCI ' cCI = (n - 5)/(n -I) . The network

average clustering coefficient is cCnet

= 1- (I-CCl)/n =1- 4j(n(n -I) .

Now we illustrate the process of forming a network
of size n and given m edges,
(n2-5n+12)/2<m«n2-n)/2-1, by adding one
edge at a time and readjusting the resulting network.
Adding one edge to the network in Figure lea) will
produce a network with two less than I clustering
coefficient nodes, as indicated by the gray node in
Figure 2(a). This is achieved by joining one black node
on the left wing of the network in Figure lea) and one
of the black nodes in the right sub-network. Next,
breaking apart the edge between the two black nodes
on the left wing and joining the other black node to the
one on the right sub-network. Now, all nodes in the
network other than the two gray nodes, colored in
black, have a clustering coefficient of I. The node

(a) m" = 2(n-3) network (b) m" = I network
Figure 1

,andI k
2 IX +2 xxi=1I i<j I ]

The proof is based on the following inference steps:
1. A fully connected network is the only connected

network without any gray node. When
m < (n 2

- n)/ 2 , at least a gray node will present in

the network.
2. When there is exactly one gray node in the network,

all other black nodes have a direct link connected to
the gray node.

3. The minimum value of m' for a one-gray node
network is 2(n - 3) , which corresponds to

m =(n 2
- 5n +12)/2 network.

4. Therefore, for any m" less than 2(n - 3) , the

network must have more than one gray node, thus
completes the proof.

and 2::; Xi ::; (n - 1) for i =1,2,. .. ,k . We know

(2::=I Xir=

- 2 z; 2" .x x = m>, therefore, 2m = (n -1) -_IXi •
~i<} i J 1-

The minimum value of m- occurs when k = 2 and

that
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(b) m- = 2(a) m =3

The clustering coefficient for a complete bipartite
network is zero and the maximal number of edges for
a n-node bipartite network is ln2/4J. Thus, for a

connected network with edge counts less than ln2/4J
and larger than (n -1) , its minimum clustering

coefficients is trivially zero. For edge counts larger
than ln2/4J. the exact bound for minimal clustering

coefficient is unknown. The proposed network model
begins with a maximal edge complete bi-partite
network and adding edges in a recursive fashion.
When the required network edges m is more than
ln2/4J ' define an amount m' =m-ln2/4J and

connecting nodes within the half sub-network in a bi­
partite network fashion. If more edges is needed, then,
divide the two sub-sub-network into further smaller
networks and connecting edges within those smaller
networks according to bi-partite network rules. In the
extreme, this can produce a complete network if the
number of required network edges is exactly

(n 2 -n)/2 .

Consequently, adding one edge to the network in
Figure 4(a) will produce the one in Figure 4(b). And
two more edges connecting the one black node on the
lower part of the network with the two black nodes on
the upper part will produce a complete network. If only
one edge instead of two is added to the network of
Figure 4(b), we will reach the network in Figure l(b) .

Figure 4
The preceding process can produce a size n network

with any given m edges,
(n 2

- 5n +12)/2 < m < (n 2
- n)/2 -1, starting from a

network of (n2
- 5n + 12)/2 edges. The increase of

gray nodes per edge addition is kept at a minimum
value of 2 during the process. Therefore, we can
conclude that the proposed network model has reached
a maximum network clustering coefficient achievable
for that given number of edges.

3.2. Minimal Clustering Coefficients

The addition of one edge to network in Figure 2(a)
between the two black nodes will produce a network
topology, as shown in Figure 2(b), with very similar
clustering characteristics as the network in Figure 2(a).
All nodes in the network other than the two gray
nodes have a clustering coefficient of 1. The node
degree of the gray node in Figure 2(b) is n - 1 while
the total number of edges between these (n-I)

neighbors is (n2 -7n+ 18)/2 . Consequently, the
clustering coefficient of the gray node is
CC2 =(n2 -7n+18)/(n-1Xn-2). The network average

clustering coefficient is cCnet =1-2(1- CC2)/ n •

By adding one network edge at a time, starting from

network of Figure 1(a), at step k
k = 1,2"", 2(n - 3) , the number of gray nodes in the

network is x =L(k +1)/2J+1.

(a) m- =2(n-3)-k (b) m =2(n-3)-(k+l)

Figure 3

(a)m-=2n-7 (b)m-=2n-8

Figure 2

degree of one of the two gray nodes in Figure 2(a) is
n -1 while the total number of edges between these
(n-I) neighbors is (n-3Xn-4)/2+ 2 =(n2 -7n+ 16)/2.

Thus the clustering coefficient of the gray node is
cc2 =(n 2 -7n+16)/(n-l)(n-2).

As shown in Figure 3(a), when k is odd, the two
black nodes on the upper portion of the network are
separated. When k +1 is even, as indicated by Figure
3(b), the two black nodes on the upper portion of the
network is connected. When the number of added
edges reaches k =2n - 9 , which is an odd number, the
resulting network is shown in Figure 4(a).
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4. Experiments and Results

To understand the behavior of the proposed network
models, we compare the network clustering
coefficients and average network distances with two
well-known network models: the random network
model and the small-world network models. The
results for network of size n=30 are shown in Figure
5(a) and 5(b).
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Figure 6 n =50 networks

In this paper we propose two network models with
extreme properties for high edge density networks, that
is, for a size n network, the number of edges is m , and

(n 2
- 5n +12)/2 5, m 5, (n 2

- n)/2 . This work

provide as a foundation for further study of small­
world property and the effects of clustering coefficient
on various network collective phenomenon. The
results also indicate that there exist network models
that can produce intermediate clustering coefficients
other than small-world network models.
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(b) Average network distances

Figure 5 n =30 networks

For high edge density networks, Figure 5(a), the
clustering coefficients of random network are shown in
the middle and it increases linearly as the number of
edges in the network increases. As expected, the
clustering coefficients of the proposed
maximum/minimum model produced the highest/lowest
curves among the four models. The small-world
network model has a higher clustering coefficient than
random network. Clustering coefficients of all these
models converge to 1 when the number of edges
increased to near fully connected network. There is a
huge gap between the proposed maximum model and
the other three network models. This is a clear
indication that there exist other network models which
will generate those intermediate clustering coefficients.

Similar results can be observed for a different sized
network, as shown in Figure 6(a), which are simulation
results for size n=50 networks for a edge count range
starting from ln2/4J.This is to show the behavior of

the proposed minimum clustering coefficient model in
those ranges. As for average network distances, it is
rather interesting to observe that all network models
have the same average network distances in high edge
density.

-e 0 .95

~

"[
~ 0 .9

450


