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a b s t r a c t

Two-stage multiple comparisons with the average for location parameters of two-para-
meter exponential distributions under heteroscedasticity are proposed by Wu and Wu
[Wu, S.F., Wu, C.C., 2005. Two stagemultiple comparisons with the average for exponential
location parameters under heteroscedasticity. Journal of Statistical Planning and Inference
134, 392–408].When the additional sample for the second stagemay not be available, one-
stage procedures including one-sided and two-sided confidence intervals are proposed in
this paper. These intervals can be used to identify a subset which includes all no-worse-
than-the-average treatments in an experimental design and to identify better-than-the-
average, worse-than-the-average and not-much-different-from-the-average products in
agriculture, the stock market, pharmaceutical industries. Tables of upper limits of critical
values are obtained using the technique given in Lam [Lam, K., 1987. Subset selection of
normal populations under heteroscedasticity. In: Proceedings of the Second International
Advanced Seminar/Workshop on Inference Procedures Associated with Statistical Ranking
and Selection. Sydney, Australia. August 1987. Lam, K., 1988. An improved two-stage
selection procedure. Communications in Statistics—Simulation and Computation 17 (3),
995–1006]. An example of comparing four drugs in the treatment of leukemia is given to
demonstrate the proposed procedures. The relationship between the one-stage and the
two-stage procedures is also elaborated in this paper.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Bechhofer (1954) and Gupta (1956) are two pioneers in the field of ranking and selection for normal distributions. For
exponential distributions, Wu and Chen (1998) proposed single-stage multiple comparison procedures with the average
within its own groups by subset selection and simultaneous confidence interval approaches are also discussed under the
assumption of common unknown scale parameters when sample sizes are equal. When sample sizes are unequal, Wu and
Chen (1997) have somemore generalized results. When scale parameters are unknown and unequal, two-stage procedures
for comparing several exponential location parameters with their average under heteroscedasticity using the techniques
given in Lam (1987, 1988) are proposed by Wu and Wu (2005). There are many applications of exponential distribution
in the analysis of reliability and life test experiments. See for example, Johnson et al. (1994), Bain and Engelhardt (1991),
Lawless and Singhal (1980) and Zelen (1966). The location parameters of two-parameter exponential distributions are so-
called threshold values or ‘‘guarantee time’’ parameters. The two-stage procedure inWu andWu (2005) is briefly introduced
as follows: consider k (≥ 2) independent exponential populations π1, . . . , πk and observations from population πi follow
an exponential distribution denoted by E(θi, σi), i = 1, . . . , k, where θ1, . . . , θk are unknown location parameters and
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σ1, . . . , σk are unknown and possibly unequal scale parameters. Take an initial sample Xi1, . . . , Xin0 of size n0 (≥ 2) from
πi, and let Ỹi = min(Xi1, . . . , Xin0) and Si =

n0
j=1(Xij − Ỹi)/(n0 − 1), i = 1, . . . , k. Given a fixed constant c > 0 to be chosen

to control the width of the confidence intervals for θi − θ̄ , the overall sample size Ni in population πi for the two-stage
procedure is given by

Ni = max

n0,


Si
c


+ 1


, i = 1, . . . , k, (1)

where [x] denotes the largest integer smaller than or equal to x. When Ni > n0, take Ni − n0 additional observations
Xi,n0+1, . . . , Xi,Ni from πi, then we have a total of Ni observations from πi and the sample values are denoted by
Xi1, . . . , Xin0 , Xi,n0+1, . . . , Xi,Ni . Let the minimum value of the combined sample be X̃i = min(Ỹi, Xi,n0+1, . . . , Xi,Ni) when

Ni > n0 and X̃i = Ỹi when Ni = n0. Let
¯̃X =

k
i=1 X̃i/k.

The upper bound, lower bound and the two-sided simultaneous confidence intervals for θi − θ̄ , i = 1, . . . , k are given by
(−∞, X̃i −

¯̃X +chU), (X̃i −
¯̃X −chL, ∞) and (X̃i −

¯̃X −cht , X̃i −
¯̃X +cht), where hU = hL = ht = ht = (k−1)/kF−1

2,2n0−2(P
∗1/k),

i = 1, . . . , k.
The two-stage procedures are design-oriented. However, the number of samples required at the second stage can be

large due to heterogeneous variances andmaymake the procedure impracticable.When the additional sample at the second
stage may not be available due to the experimental budget shortage or other factors in an experiment, one-stage multiple
comparison procedures with the average are proposed in this paper.

The one-stage multiple comparison procedures with the average using Lam’s (1987,1988) technique are proposed in
Section 2. In Section 3, an example of duration of remission by four drugs used in the treatment of leukemia is used
to illustrate the proposed procedures. Each group consists of 20 patients. Each of the data sets has been checked that
exponential model is correct by using the G test based on Gini statistic (Gail and Gastwirth, 1978) and the likelihood
ratio asymptotic χ2 test (Lawless, 2003) had shown a significant difference among the scale parameters of four two-
parameter exponential distributions. Thus, the one-stage multiple comparison procedures and the two-stage multiple
comparison procedures with the average using Lam’s (1987,1988) technique for exponential location parameters under
heteroscedasticity can be applied and the relationship between the one-stage and the two-stage procedures is also discussed
in Section 3. A simulation study of the performance of two procedures for different parameter configurations is given in
Section 4. The results show that all simulated coverage rates are higher than the nominal confidence coefficients. Finally,
our conclusions are summarized in Section 5.

2. One stage multiple comparisons with the average for exponential location parameters under heteroscedasticity
using Lam’s (1987,1988) technique

When the additional sample for the second stage may not be available due to the experimental budget shortage or other
factors in an experiment, the two-stage multiple comparison procedures with the average proposed by Wu andWu (2005)
cannot be used when k scale parameters are unknown and possibly unequal. Therefore, we proposed one-stage multiple
comparison procedures with the average as follows:

Take a one-stage sample Xi1, . . . , Xim of sizem (≥ 2) fromπi. Let Yi = min(Xi1, . . . , Xim) and Si =
m

j=1(Xij−Yi)/(m−1),
and let

c∗
= max

i=1,...,k

Si
m

. (2)

We now propose the one-sided and two-sided confidence intervals for θi − θ , i = 1, . . . , k, in the following theorem using
the one-stage procedure, where θ̄ =

k
i=1 θi/k. Let F−1

2,2m−2(P) be the 100Pth percentile of F distributionwith (2, 2m−2)df .

Theorem 1. For a given 0 < P∗ < 1 and letting Ȳ =
k

i=1 Yi/k, we have

(a) P(θi − θ ≤ Yi − Ȳ + c∗sU , i = 1, . . . , k) ≥ P∗ if sU = (k − 1)/kF−1
2,2m−2(P

∗1/k).

Thus, (−∞, Yi − Ȳ + c∗sU) is a set of upper confidence intervals for θi − θ with confidence coefficient P∗, i = 1, . . . , k.
(b) P(θi − θ ≥ Yi − Ȳ − c∗sL, i = 1, . . . , k) ≥ P∗ if sL = (k − 1)/kF−1

2,2m−2(P
∗1/k).

Thus, (Yi − Ȳ − c∗sL, ∞) is a set of lower confidence intervals for θi − θ with confidence coefficient P∗, i = 1, . . . , k.
(c) P(Yi − Ȳ − c∗st ≤ θi − θ̄ ≤ Yi − Ȳ + c∗st , i = 1, . . . , k) ≥ P∗ if st = (k − 1)/kF−1

2,2m−2(P
∗1/k).

Thus, (Yi − Ȳ ± c∗st) is a set of simultaneous two-sided confidence intervals for θi − θ with confidence coefficient
P∗, i = 1, . . . , k.

The techniques given in Lam (1987, 1988) are described in the following lemma:
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Lemma 2. Suppose X and Y are two random variables, a and b are two positive constants, then [aX ≥ bY − dmax(a, b)] ⊇

[X ≥ −d, Y ≤ d and X ≥ Y − d].

To prove Theorem 1, we will need the following distributional results (from Roussas (1997)):

(D1) 2(m − 1)Si/σi, i = 1, . . . , k, follows a chi-square distribution with 2m − 2df .
(D2) m(Yi − θi)/σi = Wi, i = 1, . . . , k, is obtained as the standard exponential distribution.
(D3) Si/σi andm(Yi − θi)/σi, i = 1, . . . , k, are stochastically independent.
(D4) m(Yi − θi)/Si = W ∗

i , i = 1, . . . , k, is distributed as an F distribution with (2, 2m − 2)df .

Proof of Theorem 1. For (a), we have

P(θi − θ ≤ Yi − Ȳ + c∗sU , i = 1, . . . , k)∗ = P


Yi − θi −

k
l=1

Yl − θl

k
≥ −c∗sU , i = 1, . . . , k



= P


Si
m

W ∗

i −

k
l=1

SlW ∗

l

mk
≥ −c∗sU , i = 1, . . . , k



= P


k − 1
k

Si
m

W ∗

i ≥

k
l≠i

SlW ∗

l

mk
− c∗sU , i = 1, . . . , k



= P


Si
m

W ∗

i ≥

k
l≠i

SlW ∗

l

m(k − 1)
−

k
k − 1

c∗sU , i = 1, . . . , k



≥ P


Si
m

W ∗

i ≥ max
l≠i

W ∗

l

k
l≠i

Sl
m(k − 1)

− dmax


Si
m

,

k
l≠i

Sl
m(k − 1)


, i = 1, . . . , k


,

where d = k/(k − 1)sU .
The above inequality holds because c∗

≥ Si/m for all i and hence we also have c∗
≥
k

l≠i
Sl

m(k−1) .

= ESi,...,SkP


Si
m

W ∗

i ≥ max
l≠i

W ∗

l

k
l≠i

Sl
m(k − 1)

− dmax


Si
m

,

k
l≠i

Sl
m(k − 1)


, i = 1, . . . , k


,

letting a = Si/m, b =
k

l≠i
Sl

m(k−1) and applying Lemma 2, we have

≥ ES1,...,SkP

W ∗

i ≥ −d,max
l≠i

W ∗

l ≤ d and W ∗

i ≥ max
l≠i

W ∗

i − d, i = 1, . . . , k


= P

max
l≠i

W ∗

l ≤ d, i = 1, . . . , k


= P(F2,2m−2 ≤ d)k = P∗.

So we have sU = (k − 1)/kF−1
2,2m−2(P

∗1/k). The proof is thus obtained.
For (b), we have

P(θi − θ ≥ Yi − Ȳ − c∗sL, i = 1, . . . , k) = P


Yi − θi −

k
l=1

Yl − θl

k
≤ c∗sL, i = i, . . . , k



= P


Si
m

W ∗

i −

k
l=1

SlW ∗

l

mk
≤ c∗sL, i = 1, . . . , k



= P


k − 1
k

Si
m

W ∗

i − c∗sL ≤

k
l≠i

SlW ∗

l

mk
, i = 1, . . . , k



= P


Si
m

W ∗

i −
k

k − 1
c∗sL ≤

k
l≠i

SlW ∗

l

m(k − 1)
, i = 1, . . . , k



≥ P


Si
m

W ∗

i −
k

k − 1
c∗sL ≤ min

l≠i
W ∗

l

k
l≠i

Sl
m(k − 1)

, i = 1, . . . , k


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≥ P


min
l≠i

W ∗

l

k
l≠i

Sl
m(k − 1)

≥
Si
Ni

W ∗

i

− dmax


k
l≠i

Sl
m(k − 1)

,
Si
m


, i = 1, . . . , k



= ES1,...,SkP


min
l≠i

W ∗

l

k
l≠i

Sl
m(k − 1)

≥
Si
Ni

W ∗

i

− dmax


k
l≠i

Sl
m(k − 1)

,
Si
m


, i = 1, . . . , k


,

letting a =
k

l≠i
Sl

Nl(k−1) , b =
Si
Ni

, X = minl≠i W ∗

i and Y = W ∗

i and applying Lemma 2, we have

≥ ES1,...,SkP

min
l≠i

W ∗

l ≥ −d,W ∗

i ≤ d and min
l≠i

W ∗

l ≥ W ∗

i − d, i = 1, . . . , k


= P(W ∗

i ≤ d, i = 1, . . . , k) = P(F2,2m−2 ≤ d)k = P∗.

Solving the above equation, then we have sL = (k − 1)/kF−1
2,2m−2(P

∗1/k) and the proof is thus obtained.
For (c), combining (a) and (b), we have

P(Yi − Ȳ − c∗st ≤ θi − θ̄ ≤ Yi − Ȳ + c∗st , i = 1, . . . , k)
= P(Yi − Ȳ − c∗st ≤ θi − θ̄ ∩ θi − θ̄ ≤ Yi − Ȳ + c∗st , i = 1, . . . , k)

≥ P

min
l≠i

W ∗

l ≥ −d,W ∗

i ≤ d and min
l≠i

W ∗

l ≥ W ∗

i

− d ∩ W ∗

l ≥ −d,max
l≠i

W ∗

i ≤ d and W ∗

i ≥ max
l≠i

W ∗

l − d, i = 1, . . . , k


= P

W ∗

i ≤ d ∩ max
l≠i

W ∗

l ≤ d, i = 1, . . . , k


= P(F2,2m−2 ≤ d)k = P∗.

Solving the above equation, then we have st = (k − 1)/kF−1
2,2m−2(P

∗1/k) and the proof is thus obtained. �

The approximate critical values sU = sL = st are listed in Table 1 for k = 3(1)10(2)18,m = 2(1)10(5)40, ∞ and
P∗

= 0.90, 0.95, 0.99 and 0.995. FromTable 1, it can be seen that the approximate critical values sU = sL = st are decreasing
whilem is increasing for any given k and P∗ or while P∗ is decreasing for any given k andm. Let L1 be the length of the two-
sided confidence intervals for θi − θ by the one-stage procedure, then we have L1 = 2c∗st . From this equation, we can see
that the larger the m, the smaller the value of st and the smaller the confidence length of L1 for any given k and P∗. We
can also see that the larger the P∗, the larger the value of st and the larger the confidence length of L1 for any given k and
m. Furthermore, we can also see that the larger the k, the larger the value of st and the larger the confidence length of L1
for any given m and P∗. Therefore, the length of simultaneous confidence interval (SCI) is getting wider when we compare
more populations for any given m and P∗. The approximate critical values of hU = hL = ht = sU = sL = st for two-stage
procedures under k = 3(1)10(2)18 and P∗

= 0.90, 0.95, 0.99, 0.995 with n0 = m = 2(1)10(5)40 can also be found in
Table 1.

Remark. (1) When the unequal scale parameters are known, the unbiased estimator Si of σi is replaced by σi throughout
Theorem 1 and the statistic W ∗

i which is distributed as a F distribution with (2, 2m − 2)df is replaced by the statistic
Wi which is distributed as a standard exponential distribution from (D3). Therefore, the approximate critical values are
hU = hL = ht = (k − 1)/k(− ln(1 − P∗1/k)) when the scale parameters are known.

(2) The proposed one-stagemultiple comparison procedurewith the control using Lam’s (1987, 1988) technique is expected
to perform better than using the Bonferroni inequality.

(3) In practice, we may not have the common sample size m. For unequal sample size mi for the ith population, the
procedures in Theorem 1 can be applied by taking c∗

= maxi=1,...,k
Si
mi

and replacingm bymi. The critical values become

sU = sL = st = (k − 1)/kd, where d is the solution of
k

i=1 P(F2,2mi−2 ≤ d) = P∗.
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Table 1
Approximate critical values of sU = sL = st .

P∗ m sU = sL = st
k
3 4 5 6 7 8 9 10 12 14 16 18

0.90

2 18.651 28.100 37.566 47.041 56.520 66.002 75.486 84.972 103.946 122.922 141.900 160.879
3 5.844 7.803 9.480 10.966 12.311 13.549 14.701 15.782 17.775 19.591 21.269 22.836
4 4.143 5.345 6.320 7.146 7.869 8.515 9.100 9.638 10.600 11.447 12.209 12.904
5 3.520 4.471 5.221 5.844 6.378 6.849 7.270 7.651 8.325 8.908 9.425 9.890
6 3.202 4.031 4.674 5.201 5.649 6.039 6.386 6.698 7.243 7.711 8.122 8.488
7 3.010 3.768 4.349 4.822 5.220 5.565 5.870 6.143 6.618 7.022 7.375 7.688
8 2.882 3.593 4.134 4.572 4.939 5.255 5.533 5.782 6.212 6.577 6.893 7.174
9 2.790 3.469 3.982 4.395 4.740 5.037 5.297 5.529 5.928 6.266 6.558 6.816

10 2.722 3.376 3.869 4.264 4.593 4.875 5.122 5.341 5.719 6.037 6.311 6.553
15 2.537 3.127 3.567 3.915 4.203 4.448 4.661 4.849 5.171 5.439 5.669 5.870
20 2.455 3.018 3.434 3.763 4.033 4.262 4.461 4.636 4.935 5.182 5.394 5.579
25 2.409 2.956 3.360 3.677 3.938 4.159 4.350 4.518 4.803 5.040 5.242 5.418
30 2.380 2.917 3.312 3.623 3.878 4.093 4.279 4.442 4.720 4.950 5.145 5.315
35 2.359 2.890 3.279 3.585 3.835 4.047 4.230 4.390 4.662 4.887 5.078 5.245
40 2.344 2.870 3.255 3.557 3.805 4.013 4.193 4.352 4.620 4.841 5.029 5.193

∞ 2.244 2.737 3.096 3.376 3.603 3.794 3.959 4.102 4.345 4.544 4.712 4.858

0.95

2 38.659 58.113 77.584 97.063 116.546 136.033 155.522 175.012 213.995 252.980 291.967 330.955
3 8.907 11.789 14.238 16.398 18.349 20.140 21.805 23.365 26.238 28.853 31.267 33.521
4 5.785 7.383 8.664 9.744 10.684 11.520 12.276 12.969 14.207 15.295 16.272 17.161
5 4.724 5.929 6.868 7.641 8.301 8.879 9.394 9.861 10.681 11.390 12.016 12.579
6 4.201 5.224 6.007 6.642 7.179 7.644 8.055 8.425 9.069 9.618 10.100 10.529
7 3.892 4.811 5.506 6.065 6.534 6.937 7.292 7.609 8.157 8.623 9.028 9.387
8 3.689 4.541 5.180 5.691 6.117 6.482 6.801 7.085 7.576 7.989 8.347 8.663
9 3.545 4.351 4.952 5.430 5.826 6.164 6.460 6.722 7.173 7.551 7.878 8.166

10 3.439 4.211 4.783 5.237 5.612 5.931 6.210 6.456 6.878 7.232 7.536 7.804
15 3.155 3.839 4.340 4.732 5.053 5.324 5.559 5.766 6.118 6.409 6.658 6.876
20 3.032 3.678 4.148 4.514 4.813 5.065 5.282 5.472 5.795 6.061 6.288 6.485
25 2.963 3.588 4.042 4.394 4.680 4.921 5.128 5.310 5.617 5.870 6.085 6.271
30 2.919 3.531 3.974 4.317 4.596 4.830 5.031 5.207 5.504 5.748 5.956 6.136
35 2.888 3.491 3.927 4.264 4.537 4.767 4.964 5.136 5.426 5.665 5.867 6.042
40 2.865 3.462 3.892 4.225 4.494 4.720 4.914 5.084 5.369 5.604 5.802 5.974

∞ 2.718 3.272 3.668 3.972 4.217 4.421 4.596 4.748 5.002 5.210 5.385 5.536

0.99

2 198.67 298.12 397.60 497.08 596.57 696.06 795.55 895.04 1094.0 1293.0 1492.0 1691.0
3 21.722 28.444 34.105 39.073 43.544 47.639 51.437 54.993 61.529 67.469 72.949 78.060
4 11.374 14.307 16.623 18.556 20.228 21.708 23.041 24.259 26.428 28.329 30.031 31.578
5 8.422 10.404 11.917 13.147 14.188 15.094 15.897 16.621 17.889 18.979 19.939 20.800
6 7.090 8.670 9.852 10.798 11.588 12.267 12.865 13.399 14.323 15.109 15.794 16.402
7 6.344 7.707 8.714 9.511 10.171 10.734 11.226 11.663 12.415 13.049 13.597 14.082
8 5.869 7.099 7.999 8.706 9.287 9.781 10.210 10.590 11.240 11.784 12.253 12.665
9 5.542 6.682 7.510 8.157 8.686 9.134 9.522 9.864 10.447 10.933 11.350 11.716

10 5.304 6.379 7.156 7.760 8.252 8.668 9.026 9.342 9.879 10.324 10.705 11.038
15 4.691 5.604 6.253 6.752 7.154 7.491 7.779 8.031 8.455 8.803 9.099 9.355
20 4.432 5.279 5.877 6.333 6.700 7.005 7.265 7.492 7.872 8.183 8.445 8.672
25 4.290 5.101 5.671 6.104 6.451 6.740 6.985 7.199 7.556 7.846 8.092 8.303
30 4.200 4.988 5.541 5.960 6.295 6.573 6.810 7.015 7.357 7.636 7.870 8.072
35 4.137 4.910 5.451 5.861 6.188 6.459 6.689 6.889 7.221 7.492 7.719 7.915
40 4.092 4.854 5.386 5.789 6.110 6.376 6.601 6.797 7.122 7.387 7.609 7.800

∞ 3.800 4.491 4.968 5.327 5.612 5.845 6.043 6.213 6.495 6.722 6.912 7.075

0.995

2 398.67 598.123 797.598 997.081 1196.57 1396.06 1595.55 1795.05 2194.04 2593.03 2992.03 3391.02
3 31.299 40.887 48.946 56.008 62.360 68.173 73.563 78.608 87.878 96.299 104.067 111.310
4 14.859 18.624 21.584 24.048 26.174 28.055 29.748 31.292 34.041 36.447 38.600 40.557
5 10.526 12.947 14.786 16.275 17.532 18.624 19.591 20.461 21.983 23.289 24.438 25.467
6 8.644 10.522 11.918 13.030 13.956 14.750 15.448 16.069 17.145 18.057 18.850 19.555
7 7.614 9.206 10.374 11.294 12.052 12.698 13.261 13.760 14.617 15.337 15.960 16.509
8 6.969 8.389 9.419 10.224 10.884 11.442 11.927 12.354 13.084 13.694 14.218 14.679
9 6.529 7.834 8.773 9.503 10.098 10.599 11.033 11.414 12.062 12.601 13.063 13.467

10 6.211 7.433 8.308 8.985 9.535 9.996 10.394 10.743 11.335 11.825 12.243 12.608
15 5.404 6.424 7.142 7.690 8.130 8.496 8.809 9.081 9.539 9.914 10.231 10.505
20 5.069 6.007 6.662 7.159 7.556 7.885 8.165 8.408 8.815 9.145 9.424 9.664
25 4.886 5.779 6.401 6.871 7.246 7.555 7.818 8.045 8.424 8.732 8.991 9.214
30 4.770 5.637 6.238 6.691 7.051 7.349 7.600 7.818 8.181 8.475 8.721 8.933
35 4.691 5.539 6.126 6.567 6.918 7.207 7.452 7.663 8.015 8.299 8.537 8.742
40 4.633 5.467 6.044 6.477 6.821 7.104 7.344 7.550 7.894 8.171 8.404 8.603

∞ 4.264 5.012 5.525 5.907 6.207 6.454 6.661 6.839 7.133 7.368 7.564 7.732
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Table 2
The required statistics and critical values.

Statistics Drug1 Drug2 Drug3 Drug4

Yi 1.013 2.214 3.071 4.498
Si 1.238 1.530 3.233 4.075
c∗ 0.204
Yi − Ȳ −1.686 −0.485 0.372 1.799

P∗ 0.90 0.95 0.995

sU = sL = st 3.018 3.678 6.007

Table 3
The 90%, 95% and 99.5% one-stage one-sided confidence intervals for all drugs compared with the average.

Parameter (−∞, Yi − Ȳ + c∗sU ), (Yi − Ȳ − c∗sL, ∞)

90% 95% 99.5%

1. θ1 − θ̄ (−∞, −1.070), (−2.301, ∞) (−∞, −0.937), (−2.435, ∞) (−∞, −0.461), (−2.911, ∞)

2. θ2 − θ̄ (−∞, 0.131), (−1.100, ∞) (−∞, 0.264), (−1.234, ∞) (−∞, 0.740), (−1.710, ∞)

3. θ3 − θ̄ (−∞, 0.988), (−0.243, ∞) (−∞, 1.121), (−0.377, ∞) (−∞, 1.597), (−0.853, ∞)

4. θ4 − θ̄ (−∞, 2.415), (1.184, ∞) (−∞, 2.548), (1.050, ∞) (−∞, 3.024), (0.574, ∞)

Table 4
The 90%, 95% and 99.5% one-stage two-sided confidence intervals for all drugs
compared with the average.

Parameter (Yi − Ȳ + c∗st , Yi − Ȳ + c∗st )
90% 95% 99.5%

1. θ1 − θ̄ (−2.301, −1.070) (−2.435, −0.937) (−2.911, −0.461)
2. θ2 − θ̄ (−1.100, 0.131) (−1.234, 0.264) (−1.710, 0.740)
3. θ3 − θ̄ (−0.243, 0.988) (−0.377, 1.121) (−0.853, 1.597)
3. θ4 − θ̄ (1.184, 2.415) (1.050, 2.548) (0.574, 3.024)

3. Example

Referring to Table 1 of Wu and Wu (2005), the duration of remission achieved by four drugs used in the treatment of
leukemia is used to illustrate our proposed one-stage multiple comparison procedures with the control. Four groups of 20
patients each were used and the data of duration of remission by four drugs is given in Table 2. It is shown that each of the
four groups of data is exponentially distributed byusing theG test based on theGini statistic (Gail andGastwirth, 1978) inWu
andWu (2005). It is also shown that the scale parameters of four two-parameter exponential distributions are significantly
different by the likelihood ratio asymptotic χ2 test (Lawless, 2003). The data-analysis one-stage multiple comparison
procedures with the average proposed in Theorem 2 for exponential location parameters under heteroscedasticity can be
applied. The required statistics and critical values of sU = sL = st for P∗

= 0.90, 0.95 and 0.995 are summarized in Table 2.
Using parts (a) and (b) of Theorem 1, we can obtain the one-stage one-sided confidence bounds with confidence

coefficients 0.90, 0.95 and 0.995 given in Table 3. Since the upper confidence bound for θ1 − θ̄ is less than zero and the
lower confidence bound for θ4 − θ̄ is greater than zero, we can conclude that drug 1 is selected in a worse than the average
subset and drug 4 is selected in a better than the average subset with the probability of correct selection being at least 0.90,
0.95 and 0.995.

Using parts (c) of Theorem 1, we can obtain the one-stage two-sided confidence bounds with confidence coefficients
0.90, 0.95 and 0.995 given in Table 4. For confidence coefficients 0.90, 0.95 and 0.995, we can conclude that drug 1 is worse
than the average; drug 4 is better than the average and drugs 2, 3 are not significantly different from the average.

Let L1 and L2 be the lengths of the two-sided confidence intervals for θi − θ̄ , i = 1, . . . , 4, by using the one-stage and the
two-stagemethods, respectively. From Table 4, we can obtain the lengths of one-stage procedures as L1 = 1.230, 1.499 and
2.45 for confidence coefficients 0.90, 0.95 and 0.995, respectively. For the two-stage procedure, take the initial sample size
as n0 = 20. From Table 3 of Wu and Wu (2005), the confidence lengths with two-stage procedures are L2 = 0.821, 1.000
and 1.436 for confidence coefficients 0.90, 0.95 and 0.995 which are smaller than L1 since the required overall sample size
(N1,N2,N3,N4) = (20, 20, 24, 30) for two-stage procedures is greater than m = 20 for one-stage procedures. But one-
stage procedure is a good remedy for two-stage procedure when the additional sample of second stage is not available due
to the experimental budget shortage or other factors in an experiment.

Under the same confidence coefficient P∗, the comparisons between the one-stage procedure and the two-stage
procedure are elaborated as follows.
Case 1. If c∗

= c , then we have L1 = L2. The one-stage procedure and the two-stage procedure have the same overall sample
size, except for a rounding error in sample size by definition (2).
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Table 5
The coverage rates of lower, upper and two-sided confidence intervals under structure of scale parameters (σ1, σ2, σ3, σ4) = (1.0, 1.0, 1.0, 1.0).

n0 P∗ 0.9 0.95
L2 Lower Upper Two Ratio Lower Upper Two Ratio

One-
stage

Two-
stage

One-
stage

Two-
stage

One-
stage

Two-
stage

One-
stage

Two-
stage

One-
stage

Two-
stage

One-
stage

Two-
stage

15

1.0 0.989 1.000 1.000 1.000 0.989 1.000 1.000 0.996 1.000 1.000 1.000 0.996 1.000 1.000
0.8 0.988 0.999 1.000 1.000 0.988 0.999 1.000 0.996 0.999 1.000 1.000 0.996 0.999 1.004
0.5 0.988 0.990 1.000 1.000 0.988 0.990 1.041 0.995 0.992 1.000 1.000 0.995 0.992 1.137
0.3 0.985 0.962 1.000 0.999 0.984 0.962 1.438 0.993 0.978 1.000 1.000 0.993 0.978 1.744
0.1 0.975 0.950 1.000 0.998 0.975 0.950 4.202 0.988 0.975 1.000 0.999 0.988 0.974 5.153

25

1.0 0.983 1.000 1.000 1.000 0.983 1.000 1.000 0.994 1.000 1.000 1.000 0.994 1.000 1.000
0.8 0.983 1.000 1.000 1.000 0.983 1.000 1.000 0.993 1.000 1.000 1.000 0.993 1.000 1.000
0.5 0.983 1.000 1.000 1.000 0.983 1.000 1.000 0.993 1.000 1.000 1.000 0.993 1.000 1.000
0.3 0.983 0.989 1.000 1.000 0.983 0.989 1.012 0.993 0.991 1.000 1.000 0.993 0.991 1.067
0.1 0.975 0.953 1.000 0.998 0.975 0.953 2.385 0.988 0.976 1.000 1.000 0.988 0.976 2.891

35

1.0 0.980 1.000 1.000 1.000 0.980 1.000 1.000 0.992 1.000 1.000 1.000 0.992 1.000 1.000
0.8 0.980 1.000 1.000 1.000 0.980 1.000 1.000 0.992 1.000 1.000 1.000 0.992 1.000 1.000
0.5 0.980 1.000 1.000 1.000 0.980 1.000 1.000 0.992 1.000 1.000 1.000 0.992 1.000 1.000
0.3 0.980 0.998 1.000 1.000 0.980 0.998 1.000 0.992 0.998 1.000 1.000 0.992 0.998 1.000
0.1 0.975 0.954 1.000 0.998 0.975 0.954 1.666 0.988 0.977 1.000 1.000 0.988 0.977 2.010

Table 6
The coverage rates of lower, upper and two-sided confidence intervals under structure of scale parameters (σ1, σ2, σ3, σ4) = (1.0, 2.0, 3.0, 4.0).

n0 P∗ 0.9 0.95
L2 Lower Upper Two Ratio Lower Upper Two Ratio

One-
stage

Two-
stage

One-
stage

Two-
stage

One-
stage

Two-
stage

One-
stage

Two-
stage

One-
stage

Two-
stage

One-
stage

Two-
stage

15

1.0 0.982 0.974 1.000 1.000 0.982 0.974 1.265 0.992 0.986 1.000 1.000 0.992 0.986 1.449
0.8 0.981 0.968 1.000 0.999 0.981 0.968 1.468 0.991 0.983 1.000 1.000 0.991 0.983 1.722
0.5 0.980 0.961 1.000 0.999 0.980 0.961 2.162 0.991 0.980 1.000 1.000 0.991 0.980 2.613
0.3 0.979 0.953 1.000 0.998 0.979 0.953 3.512 0.991 0.976 1.000 1.000 0.991 0.976 4.300
0.1 0.979 0.949 1.000 0.998 0.979 0.949 10.46 0.990 0.974 1.000 0.999 0.990 0.974 12.83

25

1.0 0.982 0.990 1.000 1.000 0.982 0.990 1.016 0.992 0.993 1.000 1.000 0.992 0.993 1.056
0.8 0.981 0.982 1.000 1.000 0.981 0.982 1.066 0.991 0.989 1.000 1.000 0.991 0.989 1.151
0.5 0.980 0.968 1.000 0.999 0.980 0.968 1.354 0.991 0.983 1.000 1.000 0.991 0.983 1.565
0.3 0.979 0.961 1.000 0.999 0.979 0.961 2.042 0.990 0.980 1.000 1.000 0.990 0.980 2.436
0.1 0.979 0.952 1.000 0.998 0.979 0.952 5.932 0.990 0.976 1.000 1.000 0.990 0.976 7.196

35

1.0 0.981 0.998 1.000 1.000 0.981 0.998 1.000 0.991 0.998 1.000 1.000 0.991 0.998 1.002
0.8 0.981 0.993 1.000 1.000 0.981 0.993 1.003 0.991 0.994 1.000 1.000 0.991 0.994 1.019
0.5 0.980 0.975 1.000 1.000 0.980 0.975 1.102 0.991 0.986 1.000 1.000 0.991 0.986 1.210
0.3 0.979 0.964 1.000 0.999 0.979 0.964 1.506 0.990 0.982 1.000 1.000 0.990 0.982 1.758
0.1 0.979 0.953 1.000 0.998 0.979 0.953 4.142 0.990 0.977 1.000 1.000 0.990 0.977 5.001

Case 2. If c∗ < c , then we have L1 < L2. Then there is no need to draw the second stage sample for the two-stage procedure.
Under the same total sample size m = n0, the one-stage procedure has shorter confidence length than the two-stage
procedure. Hence, the one-stage procedure is recommended.

Case 3. If mini=1,...,k
Si
m > c , then we have L1 > L2. The overall sample size of the one-stage procedure is smaller than that of

the two-stage procedure.

4. Simulation study

A simulation study of the proposed lower, upper and two-sided confidence intervals for θi − θ̄ , i = 1, . . . , k using
one-stage and two-stage procedures is investigated based on 500,000 simulation runs in this section. For the given con-
fidence lengths of two stage procedures L2 = 1.0, 0.8, 0.5, 0.3, 0.1 under k = 4 and n0 = 15, we can obtain the value
of c =

L2
2ht

= 0.160, 0.128, 0.080, 0.048 and 0.016 for P∗
= 0.90 and c =

L2
2ht

= 0.130, 0.104, 0.065, 0.039 and
0.013 for P∗

= 0.95. Then the required overall sample size for two-stage procedure can be determined by the use of
Eq. (1). For the plausibility of comparison of two procedures, we take the sample size for each population in the one-
stage procedure as [

k
i=1 Ni/k], where [x] stands for the greatest integer less than and equal to x. The coverage rates of

the proposed lower, upper and two-sided confidence intervals for P∗
= 0.90, 0.95, n0 = 15, 25, 35 and the given two-

stage confidence length L2 = 1.0, 0.8, 0.5, 0.3, 0.1 are listed in Table 5–Table 6 for various structures of scale parameters
(σ1, σ2, σ3, σ4) = (1.0, 1.0, 1.0, 1.0), (1.0, 2.0, 3.0, 4.0), respectively. The sample ratios (denoted as ratio) are defined as
the average of the ratios of the required total sample size for the two-stage SCI over the total initial sample size after 500,000
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simulation runs and they are listed in Table 5–Table 6 followed by the coverage rates. Based on Table 5–Table 6, the findings
are summarized as follows.

(1) All simulated coverage rates are higher than the nominal confidence coefficients for both procedures. It can also be seen
that both procedures are quite conservative. But, one cannot deny that these two procedures are practical solutions for
the problem of comparing several exponential location parameters with their average.

(2) For a two-stage procedure, the required sample ratio is larger for smaller n0 with fixed P∗ and L2 and also for larger P∗

with fixed n0 and L2 under various structures of scale parameters. Furthermore, the required sample ratio is larger for
smaller L2 with fixed n0 and P∗.

(3) For a two-stage procedure, the coverage rates are higher for larger n0 with fixed P∗ and L2 and also for larger P∗ with
fixed n0 and L2.

(4) When the sample ratio approaches 1, the overall sample size for a two-stage procedure is approximately equal to
the initial sample size n0 and also equal to the sample size for a one-stage procedure for each population. Under this
condition, the one-stage procedure has coverage rates closer to the nominal confidence coefficients than the two-stage
procedure. That is, the one-stage procedure is less conservative than the one-stage procedure when the sample ratio is
approaching 1. When the sample ratio is greater than 1, the two-stage procedure is less conservative than the one-stage
procedure. Under the structure of scale parameters (σ1, σ2, σ3, σ4) = (1.0, 2.0, 3.0, 4.0), all sample ratios are greater
than one. For this case, the two-stage procedure has coverage rates closer to the nominal confidence coefficients than the
one-stage procedure for most cases. That is, the two-stage procedure is less conservative than the one-stage procedure.

(5) Comparing Table 5with Table 6, the coverage rates under two different structures of scale parameters are approximately
the same for any given n0, L2 and P∗. The sample ratios for unequal scale parameters are 1.0–2.489 times of those
for structure of scale parameters (σ1, σ2, σ3, σ4) = (1.0, 1.0, 1.0, 1.0) for confidence coefficient P∗

= 0.90 and
1.002–2.490 times of those for structure of scale parameters (σ1, σ2, σ3, σ4) = (1.0, 1.0, 1.0, 1.0) for confidence
coefficient P∗

= 0.95.

5. Conclusion

The two-stage procedure is a design-oriented procedure. The constant c is chosen to control the confidence length L2
for θi − θ̄ , i = 1, . . . , k so that the overall sample size for each population can be determined by the use of Eq. (1). Under
the same total sample sizes, the one-stage procedure may be better than, worse than or not much different from the two-
stage procedure depending on the various structures of scale parameters and different sample ratios. However, the two-
stage multiple comparison procedure with the average requires additional samples at the second stage, which can be large
due to heterogeneous variances. The additional sample at the second stage may not be obtained due to time limitation
and budgetary reasons in an experiment. In this situation, a one-stage multiple comparison procedure with the average
proposed in Theorem 1 should be employed after the data have been collected. The data-analysis one-stage procedure
provides a practicable remedy to the two-stage procedure when its required additional sample observations for the second
stage are incomplete due to the early termination for some factors in an experiment. The example in Wu and Wu (2005)
is given to demonstrate the practical use of one-stage procedure and the results are compared with the results under two-
stage procedures. At last, a simulation study is done to investigate the relationship between two procedures for different
parameter configurations under a given sample ratio. The results show that all simulated coverage rates are higher than the
nominal confidence coefficients for both procedures. Both procedures are the practical solutions of the problemof comparing
several exponential location parameters with their average. It is hoping that the possibility of improving one-stage and two-
stage procedures can be opened eventually.
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