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Abstract 

 

We derive the pricing formulae for the financial contracts, such as guaranteed investment 
contracts (GICs), life insurance contracts, pension plans, and others, with the guaranteed 
minimum rate of return set relative to a LIBOR interest rate. Further, we analyze the 
guaranteed contracts in which the asset that provides the underlying return for the contract 
and the guaranteed interest rate are denominated in different currencies, which is a common 
practice. The guaranteed contracts with the above characteristics are called “cross-currency 
interest rate guaranteed contracts” (CIRGCs). To value CIRGCs, a cross-currency LIBOR 
market model is introduced. The LIBOR market model for a single-currency economy is 
extended to a cross-currency economy which incorporates the traded-asset prices and 
exchange rate processes into the model setting. The cross-currency LIBOR market model 
(CLMM) is suitable and applicable to pricing a variety of CIRGCs. The pricing formulas 
derived under the CLMM are more tractable and feasible for practice than those derived 
under the instantaneous short rate model or the HJM model. Four different types of CIRGCs 
are priced in this article. Calibration procedures are also discussed for practical 
implementation. In addition, Monte-Carlo simulation is provided to evaluate the accuracy of 
the theoretical prices. 
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1. Introduction 

Many real-word financial contracts have embedded some sort of minimum rate of return 

guarantee. Examples of such contracts could be guaranteed investment contracts (GICs), life 

insurance contracts, pension plans, and index-linked bonds. This leads to a tremendous 

amount of money managed by life insurance companies and pension funds. As a result, a 

further analysis of rate of return guarantees is warranted. 

There are a variety of guarantee designs in financial contracts with guaranteed return in 

practice. One class of these guarantees is absolute guarantees, where the minimum rate of 

return is set to be deterministic. The other is the so-called relative guarantees in the literature 

(Lindset, 2004), where the minimum guaranteed rate of return is linked to a stochastic asset 

such as an index, a reference portfolio, an interest rate, a specific asset traded in financial 

markets, etc.  

The purpose of this research is to extend the previous analysis to set up a theoretical 

framework that analyzes the financial contracts of the guaranteed minimum rate of return set 

relative to a LIBOR interest rate. Further, we analyze the guaranteed contracts in which the 

asset that provides the underlying return for the contract and the guaranteed interest rate are 

denominated in different currencies, which is a common practice. The guaranteed contracts 

with the above characteristics are called “cross-currency interest rate guaranteed contracts” 

(CIRGCs, hereafter). This type of contracts is quite different from previously-studied 

contracts regarding the minimum rate of return guarantee since they all assume that 

underlying assets in guaranteed contracts are denominated in a single (domestic) currency. 

The motivation of our paper is inspired by the scarcity in the researches regarding the 

relative guarantees, especially under stochastic interest rates. Previous research on valuing 

guarantees for life insurance products or pension funds has focused on absolute guarantees, 

which provide participants with a constant or predetermined minimum rate of return. The 

existing literature which analyzes absolute guarantees under the assumption of deterministic 

interest rate includes Brennan and Schwartz (1976), Boyle and Schwartz (1977), Boyle and 

Hardy (1997), and Grosen and Jorgensen (1997, 2000). Other researches conducted by 

adopting the Vasicek stochastic interest rate model (1977) include Persson and Aase (1997) 

and Hansen and Miltersen (2002). Miltersen and Persson (1999), Lindset (2003), and Bakken, 

Lindset and Olson (2006) adopt the Heath-Jarrow-Morton framework (HJM, 1992). 

However, granting a deterministic guaranteed rate results in the inability to attract 

contract participants by a low guaranteed rate, while contract issuers bear financial burdens to 

attract contract participants with a high guaranteed rate. Consequently, a stochastic 
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guaranteed rate, such as rate of return guarantees set relative to an interest rate or the rate of 

return on a mutual fund, has become more popular in recent developments. Despite the 

popularity of relative rate of return guarantees, especially those issued in Latin America, the 

relevant research is significantly less in number than absolute guarantees. Only a few articles 

were written on the relative rate of return guarantees. Ekern and Persson (1996) investigated 

unit-linked life insurance contracts with different types of relative guarantees. Pennacchi 

(1999) valued both the absolute and the relative guarantee provided for Chilean and 

Uruguayan defined contribution pension plans by employing a contingent claim analysis. 

Both papers assumed that interest rate was deterministic. However, Lindset (2004) analyzed a 

wide range of different kinds of minimum guaranteed rates of return within the HJM 

framework. The guaranteed rate of return examined in the above papers was set relative to the 

rates of return on equity-market assets. Moreover, Yang, Yueh and Tang (2008) extended their 

analysis to study rate of return guarantees relative to a return measured by market realized 

δ-year spot rates. The guarantees they examined were applied to all contributions in the 

accumulation period of a pension plan under the HJM model. 

To value the CIRGCs, the cross-currency LIBOR Market Model (CLMM), which is 

derived by Wu and Chen (2007) via extending an original (single-currency) LIBOR market 

model (LMM) to a cross-currency LMM (CLMM), is adopted in this research.  

There are several incentives to use the CLMM. First, the guaranteed return contracts 

reflect the volatile nature of rates of return due to the fact that that market interest rates 

influence any rate of return process. A proper valuation model should consider the stochastic 

behavior of interest rates. We have to choose a suitable interest rate model for valuation. 

Pricing CIRGCs under the LMM is more tractable for practice and avoids the problems 

caused by using other interest rate models. The short rate models, such as the Vasicek model, 

the Cox, Ingersoll and Ross (CIR) model, and the HJM instantaneous forward rate model 

have been extensively used for pricing contingent claims. However, some problems should be 

noted for using the short rate modes or the HJM model: (1) The instantaneous short rate or 

the instantaneous forward rate is abstract and market-unobservable, and the underlying rate is 

continuously compounded, thus contradicting the market convention of being discretely 

compounded on the basis of the LIBOR rates. So the recovery of model parameters from 

market-observed data is a difficult and complicated task. (2) The pricing formulae of widely 

traded interest rate derivatives, such as caps, floors, swaptions, etc., based on the short rate 

models or the Gaussian HJM model are not consistent with market practice. This results in 

some difficulties in the parameter calibration procedure. (3) As examined in Rogers (1996), 
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Gaussian term structure models have an important theoretical limitation: the rates can attain 

negative values with positive probability, which may cause pricing errors in many cases. 

Second, the “quanto-effect” should be considered for pricing CIRGCs since the CIRGCs 

are linked to cross-currency assets. To achieve the goal, the pricing models derived from the 

CLMM are more adequate and suitable for pricing CIRGCs. If the model setting degenerates 

to the single-currency case, the pricing CIRGCs model becomes the pricing model of the 

single-currency interest-rate guaranteed contract in the LMM framework. 

Third, the equity-type asset should be studied since the equity-type asset is also included 

in CIRGCs. The dynamics of equity-type asset is incorporated in the CLMM framework. 

Under the CLMM, the market is arbitrage-free and complete and contingent claims can be 

priced by the risk-neutral valuation method. 

Our article has several contributions to relative guarantee contracts. First, we use CLMM 

to derive the pricing formulae for the minimum return guaranteed contracts in which the 

guaranteed rate is set relative to the level of a stochastic LIBOR rate, which is different from 

the setting of the previous literatures based on continuous short rates or instantaneous 

forward rates. The interest rates used in the CLMM are consistent with conventional market 

quotes. As a result, all the model parameters can be easily obtained from market quotes, thus 

making the pricing formulae under the CLMM more tractable and feasible for practitioners.  

Second, we analyze the cross-currency interest rate guarantee contracts which have not 

yet been studied in previous researches. The guaranteed contracts are often linked to 

cross-currency assets in practice. The interest rate guarantee embedded in cross-currency 

guaranteed contracts can be represented as an option which is equivalent to the quanto-type 

option in the finance literature. As a result, the quanto-effect will appear in the pricing 

formulae of CIRGCs. The pricing models derived are more general and suitable for pricing 

Quanto interest-rate guarantees.  

Third, the derived pricing formulae can be directly applied to pricing both maturity 

guarantees and multi-period interest guarantees with an arbitrary guarantee period. The 

pricing formula given by Yang, Yueh and Tang (2008) is available only for the guarantee 

period of one year. A maturity guarantee is binding only at the contract expiration. The cash 

flows connected to maturity guarantees are closely related to those of European options. For 

multi-period guarantees, the contract period is divided into several subperiods. A binding 

guarantee is specified for each subperiod. Many life insurance contracts and guaranteed 

investment contracts (GIC) sold by investment banks, cf. e.g., Walker (1992), are examples of 

multi-period guarantees. In addition, the derived pricing formulae of CIRGCs represent the 
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general formulae for the interest rate guarantee under the CLMM. They can be applied to 

pricing the guarantees measured by the forward LIBOR rate and those measured by the spot 

rate which has been commonly used in the previous literature. 

Fourth, using our pricing formulae is more efficient than adopting simulation, especially 

for those guaranteed contracts with long duration such as life insurance products and pension 

plans. The cross-currency interest rate guarantees embedded in contracts can be valued by 

recognizing their similarity to various Quanto types of “exotic” options. As a result, the 

pricing formulae of the CIRGCs within the CLMM framework can be derived via the 

martingale pricing method. 

Fifth, we provide the calibration procedure for practical implementation and examine the 

accuracy of the pricing formulae via Monte-Carlo simulation. 

The remainder of this paper is organized as follows. Section 2 briefly describes the results 

of the CLMM extended by Wu and Chen (2007). In Section 3, four different types of 

CIRGCs are defined and their pricing formulae based on the CLMM are derived. In Section 4, 

the calibration procedure for practical implementation is provided and the accuracy of the 

pricing formulae is examined via Monte-Carlo simulation. In Section 5, the results of the 

paper are concluded with a brief summary. 

 

2. Arbitrage-Free Cross-Currency LIBOR Market Model 

We briefly specify the results of Amin and Jarrow (1991; AJ) in the first subsection. Wu 

and Chen (2007) have extended their results to the cross-currency LMM, which is introduced 

in the second subsection. The CLMM will be utilized to price different types of CIRGOs in 

Section 3. 

2.1 The Results in AJ (1991) 

Assume that trading takes place continuously in time over an interval  0, ,0    . 

The uncertainty is described by the filtered spot martingale probability space 

    0,
, , ,

t t
F Q F


  where the filtration is generated by independent standard Brownian 

motions         1 2
, , ...,

m
W t W t W t W t . Q denotes the domestic spot martingale probability 

measure. The filtration    0,t t
F


 which satisfies the usual hypotheses represents the flow of 

information accruing to all the agents in the economy.1 The notations are given below with d 

for domestic and f for foreign: 

 ,kf t T  =  the kth country’s forward interest rate contracted at time t for instantaneous 
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borrowing and lending at time T with 0 t T    , where  ,k d f . 

 ,kP t T  =  the time t price of the kth country’s zero coupon bond (ZCB) paying one dollar 

at time T. 

 kS t   = the time t price of the kth country’s asset (stock, index, or portfolio) 

  kr t  =  the kth country’s risk-free short rate at time t. 

  k t  =   
0

exp
t

kr u du 
   , the kth country’s money market account at time t with an 

initial value  0 1k  . 

  X t  =  the spot exchange rate at  0,t   for one unit of foreign currency expressed 

in terms of domestic currency. 

Based on the insights of Harrison and Kreps (1979), AJ (1991) extended the HJM model 

to a cross-currency case and clarified some conditions of the instantaneous forward rate 

process. Under these conditions, the market is arbitrage-free and complete and contingent 

claims can be priced by the risk-neutral valuation method. Their results are provided in the 

following proposition. 

Proposition 2.1 THE DYNAMICS UNDER THE DOMESTIC MARTINGALE MEASURE IN AJ 

(1991) 

For any  0,T  , the dynamics of the forward rates, the ZCB prices, the asset prices 

and the exchange rate under the domestic martingale measure Q are given as follows: 

         , , , ,d fd Pd fddf t T t T t T dt t T dW t     
 

           , , , ,f ff Pf X ffdf t T t T t T t dt t T dW t           

 
       ,

,
,

d
d Pd

d

dP t T
r t dt t T dW t

P t T
  

 
 
           

,
, ,

,
f

f k Pf Pf
f

dP t T
r t t t T dt t T dW t

P t T
        

 
 
       ,d

d sd
d

dS t
r t dt t T dW t

S t
    

 
           f

f X Sf Sf
f

dS t
r t t t dt t dW t

S t
          

 
         d f X

dX t
r t r t dt t dW t

X t
       

where  ,fk t T  denotes the forward rate volatility of the domestic (k=d) or the foreign  

(k=f) country. Other double-subscript notations can be explained accordingly. The 

relationship between  ,fk t T  and  ,Pk t T  is given as follows: 
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   , ,
T

Pk fkt
t T t u du    

The drift and volatility terms in Proposition 1 are subject to some regularity conditions.2 

It is worth emphasizing that even in a cross-currency environment the drift term of the 

domestic forward rate under the domestic martingale measure Q  still remains unchanged. 

However, for the foreign case, the drift has one additional term,    ,ff Xt T t  , which 

specifies the instantaneous correlation between the exchange rate and the foreign forward rate. 

It is also observed that the drift terms of the foreign assets are augmented by the 

instantaneous correlations between the exchange rate and the assets. 

These arbitrage-free relationships between the volatility and the drift terms as given in 

Proposition 2.1 can be employed to derive the arbitrage-free cross-currency LMM, which can 

be applied to pricing cross-currency interest rate guarantees. 

2.2 The Cross-Currency LIBOR Market Model 

The CLMM derived by Wu and Chen (2007) is briefly reported in this subsection. It is 

important to note that, thereafter, the term structure of interest rates is modeled by specifying 

the LIBOR rates dynamics, rather than the instantaneous forward rates dynamics. However, 

we still use the same notations and the same economic environment. 

For some  0, 0,T    and  ,k d f , define the forward LIBOR rate process 

  , ;0kL t T t T   as given by 

   
 

,
1 ,

,
k

k
k

P t T
L t T

P t T



 


  exp ,

T

kT
f t u du


   (2.1) 

Assumption 1. A FAMILY OF LIBOR RATE PROCESSES 

Under the measure Q,  ,kL t T ,  ,k d f  is assumed to have a lognormal volatility 

structure and its stochastic process is given by 

         , , , ,k Lk k LkdL t T t T dt L t T t T dW t       (2.2) 

where    , : 0, m
Lk T T    is a deterministic, bounded, and piecewise continuous 

volatility function and    , : 0,Lk t T T   is some unspecified drift function. 

Assumption 2. THE ASSET PRICE DYNAMICS 

Under the measure Q,  ,kS t T ,  ,k d f  is assumed to have a lognormal volatility 

structure and its stochastic process is given by 
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           k k Sk k SkdS t S t t dt S t t dW t       (2.3) 

where    : 0, m
Sk t    is a deterministic volatility vector function satisfying the 

standard regularity conditions and  Sk t  is some drift function. 

Assumption 3. THE SPOT EXCHANGE RATE DYNAMICS 

Under the measure Q, the stochastic process of the spot exchange rate  X t  is given as 

follows: 

           X XdX t X t t dt X t t dW t       (2.4) 

where    : 0,X t    is some unspecified drift function and    : 0, m
X t    is a 

deterministic process. 

It is important to emphasize that the drift terms of the above stochastic processes are not 

yet determined. The specific forms of the drift terms must be chosen to make the economy 

arbitrage-free. The arbitrage-free relationship between the drift and the volatility terms in 

Proposition 2.1 is used by Wu and Chen (2007) to determine the drift terms in (2.2), (2.3), 

and (2.4) and given by: 

   Sd dt r t  , 

       Sf f X Sft r t t t     , 

     X d ft r t r t   . 

The above results lead to the following Proposition. 

Proposition 2.2 THE CLMM UNDER THE MARTINGALE MEASURE 

Under the domestic spot martingale measure, the processes of the forward LIBOR rates and 

the exchange rate are expressed as follows: 

 
         ,

, , ,
,

d
Ld Pd Ld

d

dL t T
t T t T dt t T dW t

L t T
          (2.5) 

 
            

,
, , ,

,
f

Lf Pf X Lf
f

dL t T
t T t T t dt t T dW t

L t T
           (2.6) 

 
       d

d Sd
d

dS t
r t dt t dW t

S t
    (2.7) 

 
           ,f

f X Sf Sf
f

dS t
r t t t dt t T dW t

S t
          (2.8) 
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 
          d f X

dX t
r t r t dt t dW t

X t
     (2.9) 

where    0, , 0,t T T    and    , , ,Pk t T k d f  , is defined below. 

 
 
       

 1

1

,
, 0, , 0, 0,

, 1 ,

0 .

T t
k

Lk
Pk j k

L t T j
t T j t T T T

t T L t T j

otherwise

  
      

  



 
      

  



  (2.10) 

Unlike the abstract short rates in the instantaneous short rate models or the instantaneous 

forward rates in the HJM model, the forward LIBOR rates in the CLMM are 

market-observable. Furthermore, the cap pricing formula in the CLMM framework is 

consistent with the Black formula which is widely used in market practice and makes the 

calibration procedure easier. As a result, the volatility  , ,Lk t T   ,k d f , can be inverted 

from the interest rate derivatives traded in the market and  ,Pk t T  and  ,k d f  can be 

calculated from equation (2.10). 

According to the bond volatility process (2.10),     0,
,Pk t T

t T


 
 

  is stochastic rather 

than deterministic. To solve equation (2.5) and (2.6) for  ,kL T T , Wu and Chen (2007) fix 

at initial time s and approximate  ,Pk t T  by  ,
s
Pk t T  given below: 

 
 
     

 1

1

,
, 0, & 0,

, 1 ,

0 .

T t
k

s
Lk

Pk j k

L s T j
t T j t T T

t T L s T j

otherwise

  
     

  



 
     

  



  (2.10) 

where 0 s t T     . Hence, the calendar time of the process     0,
,k t T j

F t T j



 

  in 

(2.10) is frozen at its initial time s  and the process   
 ,

,
s
Pk

t s T
t T


 becomes deterministic. 

By substituting  ,
s
Pk t T   for  ,Pk t T   into the drift terms of (2.5) and (2.6), the 

drift and the volatility terms become deterministic, so we can solve (2.5) and (2.6) and find 

the approximate distribution of  ,kL T T  to be lognormal. 

The Wiener chaos order 0 approximation used in (2.10) is first utilized by BGM (1997) 

for pricing interest rate swaptions, developed further in Brace, Dun and Barton (1998), and 

formalized by Brace and Womersley (2000). It also appeared in Schlogl (2002). This 

approximation has been shown to be very accurate. 

The cross-currency LIBOR market model is very general. It is useful for pricing many 
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kinds of quanto interest-rate guarantees. In Section 3, four variants of the cross-currency 

interest-rate guaranteed contracts are priced based on the CLMM. 

3. Valuation of Cross-Currency Interest Rate Guarantee Embedded in 

Financial Contracts 

In this section, we define each type of financial contracts with cross-currency interest rate 

guarantees which are embedded in financial contracts as options. Then we derive the pricing 

formulae of four different types of cross-currency interest rate guarantees and the guaranteed 

contracts based on the cross-currency LIBOR market model. Introduction and analysis of 

each guarantee are presented sequentially as follows. 

3.1 Valuation of First-Type Cross-Currency Interest Rate Guarantee 

We define the guaranteed contracts first and then represent the interest rate guarantee as 

an option. 

Definition 3.1.1 A financial contract with the payoff specified in (3.1.1) is called a First-Type 

Financial Contract with Cross-Currency Interest Rate Guarantee (FC1CIRG) 

        1
, 1 ,

d df fFC T N Max L T TS T S T        (3.1.1) 

where  

 dN  =  notional principal of the contract, in units of domestic currency 

  f
S   =  the underlying foreign asset price at timeη,  0, , ,t T T    

  ,
d

L T T  =  the domestic T-matured LIBOR rates with a compounding period   

 ,
d

P t    =  the time t price of the domestic zero coupon bond (ZCB) paying one dollar at 

time λ,  ,T T   . 
 T   = the start date of the guaranteed contract 
 T    = the expiry date of the guaranteed contract 

  x
  =  , 0Max x  

 1
FC T   can be rewritten as 

             1
1 ,

d f f d f f
FC T N S T S T L T T S T S T   



          (3.1.2) 

                   1 , 1 ,
d d f f d

N L T T S T S T L T T   


         (3.1.3) 

Equation (3.1.2) shows the payoff as the uncertain amount    f f
S T S T  plus the 

maturity payoff of a put option written on the return of a reference foreign asset with a 

forward-start exercise price   1 ,
d

L T T . Alternatively, equation (3.1.3) indicates the 
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payoff as the sum of the guaranteed amount   1 ,
d

L T T  and the final payoff of a call 

option to purchase the return of the reference foreign asset for the price   1 ,
d

L T T . Note 

that the exercise price, the guaranteed interest rate, is not decided at time t but is to be 

determined at future time T. For simplicity, the FC1CIRG in (3.1.2) will be used for later 

analysis hereafter, which is employed in most guaranteed contracts in practice. 

According to (3.1.2), we represent the interest rate guarantee embedded in the FC1CIRG 

as an option below. 

Definition 3.1.2 An option with the payoff specified in (3.1.4) is called a First-Type 

Cross-Currency Interest Rate Guarantee Option (C1IRGO) 

        1
1 ,

d f f
C IRGO T L T T S T S T  



       , (3.1.4) 

There are several points worth noting. First, the guarantee of a minimum return, 

  1 ,
d

L T T , is set relative to the LIBOR rate, which is different from the setting of the 

previous literature that the interest rate is measured by continuous short rates or instantaneous 

forward rates. In addition, the LIBOR rate is quoted in markets. As a result, the CLMM is 

more appropriate for pricing C1IRGOs, and all the parameters in the pricing formula can be 

easily obtained from market quotes, thus making the pricing formula more tractable and 

feasible for practitioners. 

Second, we extend the analysis on the guaranteed contracts to the case where the 

underlying asset and the guaranteed interest rate are denominated in different currencies. An 

C1IRGO is an option on the foreign-currency underlying asset    
f f

S T S T  with the 

domestic-currency exercise price   1 ,
d

L T T


 , and its final payments are denominated in 

domestic currency without directly incurring exchange rate risk. The previous researches on 

the minimum return guarantees use the assumption that both the underlying asset and the 

guaranteed interest rate are denominated in a single (domestic) currency. In practice, the 

guarantees (options) are often linked to a cross-currency asset. This is equivalent to a 

quanto-type option in the financial literature. As a result, the quanto-effect will be reflected in 

the pricing model of CIRGOs which is more suitable for pricing Quanto interest-rate 

guarantees, and if the model setting degenerates to the single-currency case, it reduces to the 

pricing model of interest rate guarantees in the LMM framework. 

Third, the interest rate guarantee is set to begin at some future date T, rather than at 
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current time t, and lasts for δ periods. The “forward-start” exercise price of this option, 

 1 ,
d

L T T , is unknown at date t and to be determined at some future date T. Hence, the 

guarantee for a minimum return over the period T to T+δ is analogous to a “forward-start” 

option. Setting the guarantee as the “forward-start” type has a notable advantage that the 

derived pricing formula of the maturity-guarantee can be directly applied to pricing the 

multi-period interest guarantees. However, only the pricing formulae for maturity-guarantee 

are presented for the parsimony sake.3 In addition, the “forward-start” setting represents the 

general form of the interest guarantees. Specially, the guaranteed interest rate for the period t 

to t+δ (T=t) as measured by the spot rate in the previous literature can be obtained by setting 

T=t. As a result, the pricing formula of CIRGOs represents the general formulae for the 

interest rate guarantees under the CLMM and can be applied for pricing the guarantees 

measured by the spot LIBOR rates. Moreover, our formulae can be derived for arbitrary 

values of δ. In contrast, the formula of Yang, Yueh and Tang (2008) is available only for the 

special case where the interest rate guarantee is linked to the one-year spot rate, i.e. δ=1, 

which will be examined later in Theorem 3.3.2. In addition, the “forward-start” pricing 

formulae provide more flexibility in the product design of interest-rate guarantees in practice. 

Fourth, the cross-currency interest rate guarantees embedded in contracts can be valued 

by recognizing their similarity to various Quanto types of “exotic” options, such as “forward 

start options”, “options to exchange one asset for another”, and “options on the maximum of 

two risky assets”. As a result, the pricing formulae of the CIRGCs within CLMM framework 

can be derived via the martingale pricing method.  

The C1IRGO pricing formula is expressed in the following theorem, and the proof is 

provided in Appendix A. 

Theorem 3.1.1 The pricing formula of a C1IRGO with the final payoff as specified in (3.1.4) 

is expressed as follows:  

 1
C IRGO t               11 12

12 11
, 1 , 1 ,

T T

t T
u du u du

d d d f
N P t T L t T N d L t T e N d


    



               (3.1.5) 

where 

 
 

    2

11 12 1

11 12 11

1

1

1 , 1
ln

1 , 2
,

T Tf

t T
d

L t T
u du u du V

L t T
d d d V

V







 




  


  

 
 
 

 
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    2 22

1 13 14

T T

t T
V u du u du



 


    

           11
, , , ,

f d f f
P P P PX

t t t T t T t T t T                       

           12
, , ,

f d f
f

P P PX S
t t t T t T t T t                       

         13
, , , ,

f f d d
P P P Pt t T t T t T t T               

     14
,

f
f

PS
t t t T     

 

   , , ,
s
Pk t k d f    is defined as (2.10). 

The pricing equation (3.1.5) resembles the Margrabe (1978) type or the Black-type 

formula, but in the framework of the cross-currency LMM. Note that the terms, θ11(t) and 

θ12(t), appearing in (3.1.5) represent the effects of the exchange rate on pricing, which is 

induced by the fact that expected foreign cash flow is expressed under the domestic 

martingale measure and by the compound correlations between all the involved factors (the 

exchange rate and the domestic and foreign bonds). 

 Equation (3.1.5) can be used to price the market value of FC1CIRGs at time t, and the 

pricing formula is given in the following theorem, and the proof is provided in Appendix A. 

Theorem 3.1.2 The time t market value of FC1CIRGs with the final payoff as specified in 

(3.1.1) is given as follows: 

 1
FC t               11 12

12 11
, 1 , 1 ,

T T

t T
u du u du

d d d f
N P t T L t T N d L t T e N d


    



              (3.1.6) 

Note that the advantage of adopting the cross-currency BGM model rather than other 

interest-rate models is that all the parameters in (3.1.5) and (3.1.6) can be easily obtained 

from market quotes, thus making the pricing formula more tractable and feasible for 

practitioners. 

3.2 Valuation of Second-Type Cross-Currency Interest Rate Guarantee 

Definition 3.2.1 A financial contract with the payoff specified in (3.2.1) is called a 

Second-Type Financial Contract with Cross-Currency Interest Rate Guarantee (FC2CIRG)  

        2
, 1 ,

d d d f
FC T N Max S T S T L T T         (3.2.1) 

 d
S   =  the underlying domestic asset price at timeη,  0, , ,t T T    

 ,
f

L T T  =  the foreign T-matured LIBOR rate with a compounding period   
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Similar to FC1CIRG，the maturity payoff of FC2CIRG can be rewritten as follows. 

             2
1 ,

d d d f d d
FC T N S T S T L T T S T S T   



          (3.2.2) 

Definition 3.2.2 An option with the payoff specified in (3.2.3) is called a Second-Type 

Cross-Currency Interest Rate Guarantee Option (C2IRGO), 

        2
1 ,

f d d
C IRGO T L T T S T S T  



        (3.2.3) 

The difference between C2IRGO and C1IRGO is that C2IRGO is written on the domestic 

underlying asset,    d d
S T S T , with the foreign exercise price,  1 ,

f
L T T . C2IRGO 

bears much resemblance to C1IRGO as mentioned in the previous section. 

Next, we begin with pricing the C2IRGO. The resulting formula of the C2IRGO is then 

used to value FC2CIRGs. The C2IRGOs pricing formula is given in Theorem 3.2.1 below and 

the proof is provided in Appendix B. 

Theorem 3.2.1 The pricing formula of C2IRGOs with the final payoff as specified in (3.2.3) is 

presented as follows: 

              21

2 22 21
, 1 , 1 ,

T

t
u du

d d f d
C IRGO t N P t T L t T e N d L t T N d

   
              (3.2.4) 

 
 

2

21 2

21 22 21 2

2

1 , 1
ln ( )

1 , 2
,

T
d

t
f

L t T
u du V

L t T
d d d V

V











 


  

 
 
 


 

    2 22

2 22 23

T T

t T
V u du u du


 



    

           21
, , , ,

f d f f
P P P PX

t t t T t T t T t T                       

         22
, , , ,

d d f f
P P P Pt t T t T t T t T               

     23
,

d
d

PS
t t t T         

Similar to C1IRGOs, the effect of the exchange rate θ21(t) still appears in (3.2.4), although 

the maturity payoff is denominated in domestic currency without directly incurring exchange 

rate risk. Note that the influence of the exchange rate on C2IRGOs lasts only from period t to 

T while it lasts from t to T+δ on C1IRGOs. In addition, the foreign-currency denominated 

exercise price,   1 ,
f

L T T , in C2IRGOs is stochastic from period t to T, but known over 

the period from T to T+δ. In contrast, the counterpart asset,    f f
S T S T , in C1IRGOs is 

stochastic from period t to T+δ, and hence the exchange rate impact on the C1IRGOs pricing 
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extends further to the period from T to T+δ. 

Equation (3.2.4) is utilized to price FC2CIRGs at time t, and the pricing formula is given 

in the following theorem. The proof is provided in Appendix B. 

Theorem 3.2.2 The market value at time t of FC2CIRGs with the final payoff as specified in 

(3.2.1) is expressed as follows: 

              21

2 22 21
, 1 , 1 ,

T

t
u du

d d f d
FC t N P t T L t T e N d L t T N d

                (3.2.5) 

3.3 Valuation of Third-Type Cross-Currency Interest Rate Guarantee 

Definition 3.3.1 A financial contract with the payoff specified in (3.3.1) is called a 

Third-Type Financial Contract with Cross-Currency Interest Rate Guarantee (FC3CIRG)     

        3
, 1 ,

d f f f
FC T N Max S T S T L T T         (3.3.1) 

Once again, the expiry payoff of the FC3CIRG is rewritten as follows. 

             3
1 ,

d f f f f f
FC T N S T S T L T T S T S T   



          (3.3.2) 

Based on (3.3.2), we define the option embedded in the FC3CIRG below. 

Definition 3.3.2 An option with the payoff specified in (3.3.3) is called a Third-Type 

Cross-Currency Interest Rate Guarantee Option (C3IRGO) 

        3
1 ,

d f f f
C IRGO T N L T T S T S T  



       , (3.3.3) 

Different from C1IRGOs and C2IRGOs, an C3IRGO is an option written on the difference 

between the return on the foreign underlying asset,    f f
S T S T , and the foreign interest 

rate,  1 ,
f

L T T , for period t to T+δ, but the final payment is measured in domestic 

currency. The holders of this guaranteed contract also have the advantage of avoiding direct 

exchange rate risk.  

Since the C3IRGO can be priced in a similar way as the C2IRGO, we omit the proof for 

the sake of parsimony.4 

Theorem 3.3.1 The pricing formula of C3IRGOs with the final payoff as specified in (3.3.3) is 

presented as follows: 

 

                31 31 32

3

32 31
, 1 , 1 ,

T T T

t t T
u du u du u du

d d f f

C IRGO t

N P t T L t T e N d L t T e N d


     


              
 (3.3.4) 
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where 

  2

32 3

31 32 31

3

3

1

2 ,

T

T
u du V

d d d V
V







  


 

  22

3 33

T

T
V u du






   

           32
, , ,

f d f
f

P P PX S
t t t T t T t T t                       

           31
, , , ,

f d f f
P P P PX

t t t T t T t T t T                       

     33
,

f
f

PS
t t t T       

Similarly, although the maturity payoff is measured in domestic currency without directly 

involving the exchange rate, the exchange rate impact still is presented in (3.3.4) as shown by 

 31
t  and  32

t . Note that the exchange rate impact on C3IRGOs lasts for the whole period 

from t to T+δ. The foreign-currency denominated interest rate,   1 ,
f

L T T , in C3IGOs is 

stochastic from period t to T, but known over the period from T to T+δ, while the stochastic 

nature of the foreign-currency denominated asset,    f f
S T S T , prevails over the whole 

period from t to T+δ. As a result, the exchange rate affects the C3IGOs pricing in a different 

way over the intervals [t, T] and [T, T+δ]. 

Once again, (3.3.4) is used to price FC3IRGs at time t, and the pricing formula is given in 

the following theorem. 

Theorem 3.3.2 The market value at time t of FC3IRGs with the final payoff as specified in 

(3.3.1) is expressed as follows: 

                  33 31 32

3 32 31
, 1 , 1 ,

T T T

t t T
u du u du u du

d d f f
FC t N P t T L t T e N d L t T e N d


     



               (3.3.5) 

Yang, Yueh and Tang (2008) have derived under the HJM framework the pricing formulae 

for interest rate guarantee options, which are written on the underlying difference between the 

return on a domestic asset and a domestic interest rate, denominated in domestic currency. 

However, their pricing formula can not be used for pricing the options which are linked to the 

cross-currency assets. In comparison with their pricing formula, the major difference between 

Theorem 3.3.2 and their formula lies in the fact that not only the “quanto-effect” is 

considered in Theorem 3.3.2, but also all the parameters in Theorem 3.3.2 can be extracted 

from market quotes, which makes our pricing formula more tractable and feasible for 

practitioners. Besides, their setting of the guaranteed interest rate measured by the spot rate is 

a special case of our types. Moreover, our formula can be derived for arbitrary values of δ. In 
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addition, their formula derived under the HJM framework is available only for the special 

case where the interest rate guarantee is linked to the one-year spot rate, i.e. δ=1, in the 

pricing of multi-period rate of return guarantee. 

3.4 Valuation of Fourth-Type Cross-Currency Interest Rate Guarantee 

Definition 3.4.1 A financial contract with the payoff specified in (3.4.1) is called a 

Fourth-Type Financial Contract with Interest Rate Guarantee (FC4CIRG)     

          4
, 1 ,

f f f f
FC T X T N Max S T S T L T T           (3.4.1) 

 X T   = the floating exchange rate at time T+δ expressed as the domestic currency 
value of one unit of foreign currency. 

 fN  = notional principal of the contract, in units of foreign currency. 

The expiry payoff of FC4CIRGs can be expressed as follows. 

               4
1 ,

f f f f f f
FC T X T N S T S T L T T S T S T    



           (3.4.2) 

We define the option embedded in this contract below. 

Definition 3.4.2 An option with the payoff specified in (3.4.2) is called a Fourth-Type 

Cross-Currency Interest Rate Guarantee Option (C4IRGO) 

          4
1 ,

f f f f
C IRGO T X T N L T T S T S T   



        , (3.4.3) 

From the viewpoint of domestic investors, holding an C4IRGO acts much in the same 

way as longing an option, whose payoff is based on the difference between the foreign 

interest rate and the return on the underlying foreign asset, both denominated in foreign 

currency. The foreign-currency payoff is converted via multiplying the floating exchange rate 

into the domestic-currency payoff. The structure of an C4IRGO is different from that of an 

C3IRGO in that this option is directly affected by movements in the exchange rate. If the 

exchange rate moves upward, a holder of this option may enhance profits from the exchange 

rate gain when the option is in the money at expiry.  

Since the C4IRGO can be priced in a similar way as the C3IRGO, we omit the proof.5 The 

pricing formula of C4IRGOs is given below. 

Theorem 3.4.1 The pricing formula of C4IRGOs with the final payoff as specified in (3.4.2) is 

presented as follows: 

              4 42 41
, 1 , 1 ,

f f f f
C IRGO t X t N P t T L t T N d L t T N d                 (3.4.4) 
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41 42 41 4
,

1

2
d d d VV    

  22

4 4

T

T
V u du






   

     4
,

f
f

PS
t t t T         

By observing (3.4.3), the option pricing formula is directly affected by unanticipated 

changes in the exchange rate since the expiry payoff is determined by the spot exchange rate 

at time T+δ. The pricing formula shows that the option can be first priced under the foreign 

forward martingale measure and then the foreign-currency fair price is converted via 

multiplying the time t spot exchange rate X(t) into the domestic-currency market fair value. 

Equation (3.4.4) is used to price FC4IRGs, and the pricing formula is represented in the 

following theorem. 

Theorem 3.4.2 The market value at time t of FC4IRGs with the final payoff as specified in 

(3.4.1) is expressed as follows: 

              4 42 41
, 1 , 1 ,

f f f f
FC t N X t P t T L t T N d L t T N d                (3.4.5) 

The above four different pricing formulae of cross-currency interest rate guarantees have 

been derived. In section 4, we are devoted to some practical issues regarding a calibration 

procedure and numerical examples. 

4. Calibration Procedure and Numerical Examples 

In this section, we first provide a calibration procedure for practical implementation and 

then examine the accuracy of the derived pricing formulae via a comparison with Monte 

Carlo simulation. 

4.1 Calibration Procedure 

With the pricing formulae for caps and floors consistent with the popular Black formula 

(1976), the cross-currency LIBOR market model is easier for calibration. Wu and Chen (2007) 

introduced the mechanism presented by Rebonato (1999) to engage in a simultaneous 

calibration of the cross-currency LIBOR market model to the percentage volatilities and the 

correlation matrix of the underlying forward LIBOR rates, the exchange rate, and the 

domestic and foreign equity assets (which are assumed to be stock indexes hereafter and 

could be stocks, mutual funds, or reference portfolios). We briefly report it below.6 

Assume that there are n domestic forward LIBOR rates, n foreign forward LIBOR rates, a 
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domestic stock index, a foreign stock index, and an exchange rate in an m-factor framework. 

The steps to calibrate the model parameters are briefly presented below: 

First, as given in Brigo and Mercurio (2001), the domestic forward and the foreign 

LIBOR rates,  ,kL t  , are assumed to have a piecewise-constant instantaneous total volatility 

structure depending only on the time-to-maturity (i.e., ,
k k

i j i jV   ). The instantaneous total 

volatility k
i j   applied to each period for each rate as shown in Exhibit 1 can be stripped 

from market data. A detailed computational process is presented in Hull (2003).  

In addition, the domestic and foreign stock indexes  kS t  and the exchange rate  X t  

are also assumed to have piecewise-constant instantaneous total volatility structures. The 

instantaneous total volatilities, k
i and i , applied to each period for the domestic and 

foreign stock indexes and the exchange rate as shown in Exhibit 2 can be calculated from the 

prices of the on-the-run options in the market. For the durations shorter than one year of the 

options on the stock indexes and the exchange rate, the implied (or historical) volatilities of 

the underlying stock indexes and the exchange rate are used and the term structures of 

volatilities are assumed to be flat (i.e.,  X Xt   and  K k
S St   for 0( , ]nt t t ). 

Exhibit 1: Instantaneous Volatilities of     ,
,k k d f

L t


  

Instant. Total Vol. Time 0 1( , ]t t t  1 2( , ]t t  2 3( , ]t t  … 1( , ]n nt t  

Fwd. Rate:  1,kL t t  1,1 0
k kV   Dead Dead … Dead 

 2,kL t t  2,1 1
k kV   2,2 0

k kV   Dead … Dead 

…
 … … … … … 

 ,k nL t t  ,1 1
k k

n nV    ,2 2
k k

n nV    ,3 3
k k

n nV    … , 0
k k

n nV   

 

Exhibit 2 : Instantaneous Volatilities of the Stock Indexes and the Exchange Rate 

Instant. Total Vol. Time 0 1( , ]t t t  1 2( , ]t t  2 3( , ]t t  … 2 1( , ]n nt t   

 kS t  1 1
k k

SV   2 2
k k

SV   3 3
k k

SV   … k k
Sn nV   

 X t  1 1XV   2 2XV   3 3XV   … Xn nV   

Second, the historical price data of the domestic and foreign forward LIBOR rates, the 

domestic and foreign stock indexes, and the exchange rate are used to derive a full-rank 

(2n+3)×(2n+3)  instantaneous-correlation matrix   such that 'H H    where H  is a 
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real orthogonal matrix and   is a diagonal matrix. Let 1/ 2A H   and thus 'AA   . 

Then, a suitable m-rank matrix B  can be found such that the m-rank matrix 'B BB   can 

be used to mimic the market correlation matrix  , where m ≤  　 2n+3. 

By following Rebonato (1999), a suitable matrix B can be found with the ith row of B  
computed by 

          
1

, 1 ,

, 1
1 ,

cos sin 1, 2,..., 1

sin

k
i k j i j

i k k
j i j

if k m
b

if k m

 









    
 

 

for 1,2,..., 2 3i n  . A   is estimated by solving the optimization problem 

          
2 3 2

, ,
, 1

min
n

B
i j i j

i j





   

and thereby substituting   into B , a suitable matrix B  can be found such that 

  'B BB   is an approximate correlation matrix for  . 

Finally, the matrix B  can be used to distribute the instantaneous total volatilities to each 

Brownian motion at each period for the stock indexes and the exchange rate and to each 

LIBOR rate without changing the amount of the instantaneous total volatility. 

That is, 

                      , 1 2,1 , , 2 ,..., , , , , ,..., , ,k
i j Lk i Lk i Lkm iV B i B i B i m t t t t t t    

                    1 22 1,1 , 2 1, 2 ,..., 2 1, , ,..., ,d
j Sd Sd SdmB n B n B n m t t t        

                    1 22 2,1 , 2 2, 2 ,..., 2 2, , ,..., ,f
j Sf Sf SfmB n B n B n m t t t        

                    1 22 3,1 , 2 3, 2 ,..., 2 3, , ,..., ,j X X XmB n B n B n m t t t        

where 1,2,...,i n  and 1( , ]j jt t t , for each 1,2,...,j n . 

Via the distributing matrix B , the individual instantaneous volatility applied to each 

Brownian motion at each period for each process can be derived and used to calculate the 

prices of the CIRGOs and the guaranteed contracts as derived in Theorem 3.1.1 to 3.4.2. 

4.2 Numerical Analysis 

Some practical examples are given to examine the accuracy of the pricing formulae 

derived in the previous section and compare the results with Monte Carlo simulation. Based 

on actual 2-year market data,7 four types of FCIRGs with different guarantee periods are 

priced at the date, 2008/6/30, and the results are listed in Exhibit 3 and 4. The notional value 

is assumed to be $1. The simulation is based on 50,000 sample paths. The domestic country is 

the U.S. and the foreign country is the U.K in the examples. The domestic stock index is the 

Dow Jones Industrials and the foreign index is the FTSE index.  
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Exhibit 3 and 4 show the prices of four types of FCIRGs with δ=1 and δ=0.5. 

Observing the numerical results yields several notable points. First, the pricing formulae have 

been shown to be accurate and robust in comparison with Monte Carlo simulation for the 

recent market data. Second, Exhibit 4 shows that our formulae can be applied for arbitrary 

values of δ (other than δ=1). The formula of Yang, Yueh and Tang (2008) is available only for 

the special case where the interest rate guarantee is linked to the one-year spot rate, i.e. δ=1. 

Third, the value of FCIRGs decreases with the longer start date T for each type of FCIRGs 

with a fixed guarantee periodδ. Fourth, the value of FC4IRGs is higher than those of the 

other three FCIRGs since FC4IRG is directly affected by the spot exchange rate. Finally, 

using the derived formulae is more efficient than adopting simulation for those guaranteed 

contracts with long duration such as life insurance products and pension plans. 

Exhibit 3. The Prices of Four Types of FCCIRGs with δ=1 Year 

 FC1CIRG FC2CIRG 

(t,T,T+δ) FC MC SE FC MC SE
(0,1,2) 104.9482% 105.0205% 0.0573% 105.5409% 105.4854% 0.0518%

(0,2,3) 100.5584% 100.5033% 0.0530% 101.1014% 101.1056% 0.0516%

(0,3,4) 96.1686% 96.1535% 0.0507% 96.6757% 96.6476% 0.0502%

(0,4,5) 92.0138% 91.9323% 0.0476% 92.4900% 92.5183% 0.0490%

(0,5,6) 88.1651% 88.2050% 0.0458% 88.6139% 88.5980% 0.0473%

(0,10,11) 72.4778% 72.4630% 0.0366% 72.8369% 72.8375% 0.0392%

(0,15,16) 61.3509% 61.3433% 0.0309% 61.6537% 61.6381% 0.0333%

(0,20,21) 53.2200% 53.2309% 0.0270% 53.4808% 53.4672% 0.0288%

(0,25,26) 47.0944% 47.1129% 0.0234% 47.3252% 47.3243% 0.0255%

(0,30,31) 42.3865% 42.3714% 0.0212% 42.5952% 42.5597% 0.0228%

 FC3CIRG FC4CIRG 

(t,T,T+δ) FC MC SE FC MC SE
(0,1,2) 106.0262% 105.9490% 0.0539% 201.8597% 201.6028% 0.1859%

(0,2,3) 101.0910% 101.1032% 0.0521% 190.2855% 190.4313% 0.1873%

(0,3,4) 96.4282% 96.4194% 0.0497% 180.2621% 180.2126% 0.1825%

(0,4,5) 92.0806% 92.0704% 0.0473% 171.5524% 171.4857% 0.1785%

(0,5,6) 88.0760% 88.0850% 0.0456% 164.0535% 164.0666% 0.1743%

(0,10,11) 72.2113% 72.2085% 0.0372% 136.8541% 136.7752% 0.1616%

(0,15,16) 61.1070% 61.1089% 0.0314% 118.9955% 118.8971% 0.1583%

(0,20,21) 52.9729% 52.9796% 0.0271% 106.6352% 106.7059% 0.1616%

(0,25,26) 46.8762% 46.8679% 0.0239% 97.8470% 97.7910% 0.1686%

(0,30,31) 42.2142% 42.2089% 0.0217% 91.1130% 91.0398% 0.1795%

 
 

The abbreviations FC, MC and SE represent the results of the formula, Monte Carlo simulations, and the 
standard error, respectively. The current time, the start date, and the expiry date of the guaranteed contract 
are represented by t, T and T+δ, respectively.
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Exhibit 4. The Prices of Four Types of FCCIRGs with δ=0.5 Year 

 FC1CIRG FC2CIRG 

(t,T,T+δ) FC MC SE FC MC SE

(0,1,1.5) 101.7899% 101.7872% 0.0359% 102.0085% 102.0480% 0.0383%

(0,2,2.5) 97.9812% 97.8913% 0.0343% 98.1916% 98.1481% 0.0361%

(0,3,3.5) 93.9803% 93.9930% 0.0334% 94.1842% 94.1955% 0.0352%

(0,4,4.5) 90.0914% 90.1058% 0.0322% 90.2872% 90.2243% 0.0332%

(0,5,5.5) 86.4618% 86.4668% 0.0310% 86.6498% 86.6385% 0.0321%

(0,10,10.5) 71.2645% 71.2810% 0.0255% 71.4198% 71.4003% 0.0264%

(0,15,15.5) 60.3258% 60.3029% 0.0213% 60.4563% 60.4680% 0.0225%

(0,20,20.5) 52.2998% 52.3037% 0.0186% 52.4107% 52.4330% 0.0198%

(0,25,25.5) 46.2952% 46.2872% 0.0163% 46.3939% 46.4037% 0.0174%

(0,30,30.5) 41.6685% 41.6493% 0.0146% 41.7580% 41.7679% 0.0156%

 FC3CIRG FC4CIRG 

(t,T,T+δ) FC MC SE FC MC SE
(0,1,1.5) 101.5601% 101.5855% 0.0368% 204.1894% 204.2528% 0.1438%

(0,2,2.5) 97.7516% 97.7789% 0.0352% 198.4813% 198.2691% 0.1569%

(0,3,3.5) 93.8237% 93.7891% 0.0336% 191.7518% 191.6992% 0.1612%

(0,4,4.5) 89.9498% 89.9635% 0.0325% 184.9873% 185.1965% 0.1652%

(0,5,5.5) 86.3292% 86.3034% 0.0309% 178.4444% 178.6016% 0.1679%

(0,10,10.5) 71.1653% 71.1760% 0.0258% 150.7148% 150.8163% 0.1673%

(0,15,15.5) 60.2162% 60.2380% 0.0218% 130.1908% 130.1983% 0.1683%

(0,20,20.5) 52.1325% 52.1312% 0.0190% 118.5521% 118.1314% 0.1770%

(0,25,25.5) 46.1628% 46.1707% 0.0166% 110.8434% 110.8827% 0.1922%

(0,30,30.5) 41.5718% 41.5984% 0.0152% 104.4679% 104.4739% 0.2038%

5. Conclusions 

Four different types of CIRGOs and FCCIRGs have been developed via the 

cross-currency LMM. The guaranteed contracts with the underlying asset and the guaranteed 

interest rate denominated in different currencies have been analyzed, and the guaranteed rate 

is set relative to the level of the LIBOR rate. The pricing formulae derived are more 

consistent with market practice than those given in the previous researches. They can also be 

applied to both maturity-guarantees and multi-period guarantees with an arbitrary guarantee 

period δ. The derived pricing formulae represent the general formulae of the Margrabe (1978) 

type or the Black type in the framework of the cross-currency LMM and are easy for practical 

implementation. In addition, the pricing formulae have been shown numerically to be very 

accurate as compared with Monte-Carlo simulation. Pricing the guaranteed contracts with the 
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derived formulae can be executed more efficiently than by adopting simulation, especially for 

the guaranteed contracts with a long duration such as life insurance or pension plans. Thus, 

the pricing formulae of FCCIRGs derived under the cross-currency LIBOR market model are 

more tractable and feasible for practical implementation. 

Appendix A: Proof of Theorem 3.1 

A.1 Proof of Equation (3.1.5) 

By applying the martingale pricing method, the price of an C1IRGO at time t, 

0 t T T     , is derived as follows: 

      
 1 1 ,

T

s s
t

r d
fQ

d d t
f

S T
C IRGO t N E e L T T F

S T



 


   
 

       
    

 (A.1) 
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 (A.2) 
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 (A.4) 

where 

 QE   denotes the expectation under the domestic martingale measure Q. 

 TE    denotes the expectation under the domestic forward martingale measure QT+δ 

defined by the Radon-Nikodym derivative    
   
, ,d d

d d

P T T P t TT
T t

dQ dQ   
  
  
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IA is an indicator function with 
      1, 1 ,

0,

d f fif L T T S T S T
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
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The dynamics of  fS T ,  fS T  , and     , ,d dP T T P T T   are determined below. 
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We define each variable at time t as follows. 

     ( ) ,f dA t S t X t P t T    (A-5) 

     ( ) , ,f dB t X t P t T P t T     (A-6) 

     ( ) , ,f dD t X t P t T P t T    (A-7) 

   ( ) , ,d dE t P t T P t T    (A-8) 

     
     

, ( )
( )

, , ( )
f d

f d

S t X t P t T A t
Y t

X t P t T P t T B t


 


 

 
 (A-9) 

 
     

     
, ( )

( )
, , ( )

f d

f d

S t X t P t T A t
Z t

X t P t T P t T D t





 


 (A-10) 

From proposition 2.2, the dynamics of (A-5) from (A-10) under the forward measure 
TQ  can be obtained by Ito’s Lemma as given below. 

 
       

 

 ,d

A

T T
PSf X t A t

t

dA t
t t t T dW t dW

A t
 



     
 
        
  


 (A-11) 

 
       

 

 , ,f d

B

T T
P PX t B t

t

dB t
t t T t T dW t dW

B t
 



      
 
        
 
  


 (A-12) 

 
       

 

 , ,f d

D

T T
P PX t D t

t

dD t
t t T t T dW t dW

D t
 



     
 
       
 
  
  (A-13) 

   
 

 ( )
, ,

( )
d d

E

T T
P P t E t

t

dE t
t T t T dW t dW

E t
 



    
 
       
 
  
  (A-14) 
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 
 

            
 

 
( )

( ) ( )

( ) ( )

( )

YY

T
B A B A B t

tt

T
Y Y t

dY t d A t B t
t t t dt t t dW

Y t A t B t

t dt t dW







    

 





   
             

     

  

  (A-15) 

 
 

            
 

 
( )

( ) ( )

( ) ( )

( )

ZZ

T
D A D A D t

tt

T
Z Z t

dZ t d A t D t
t t t dt t t dW

Z t A t D t

t dt t dW







    

 





   
             

     

  

  (A-16) 

Solving the stochastic differential equations from (A-11) to (A-16), we obtain: 

     
 

 
 

   21
2( )

T T T
Y Y Y u

t t
u u du u dW

f

A T A t
S T Y T e

B T B t

    
 



       
      


 (A-17) 

     
 

 
 

   21
2( )

T T T
Z Z Z u

t t
u u du u dW

f

A T A t
S T Z T e

D T D t

             (A-18) 

 
 

 
 

   
   

 
 

                2 2
11 12

1 1
, 2 2

,

T T T TT T T T
Y Z Y Z u Y Y uf t t T Tt T

f

f

f

u u du u u dW u du u dWu du u duP t T

P t T

S T Y T A T B T

S T Z T A T D T

e e
         



   

             


   
 

    

  (A-19) 

where 

       

         

2

11 ( ) ( )

, , , ,f d f f

Y Z Y Z Z

P P P PX

t t t t t t

t t T t T t T t T

     

       

          
             

 (A-20) 

 
         

12 ( )

, , ,f d f f

Y

P P PX S

t t

t t T t T t T t

 

       



               (A-21) 

 
     

 
   21

2
, ,

, ,

T T T
E E u

t t
u dt u dWd d

d d

P T T P t T
E T e

P T T P t T

 

 

    
 

 (A-22) 

Part (A1) and (A2) are solved, respectively, as follows. 

 
 

   21

2
,

( 1)
,

T T T
E E u

t t
u du u dWd T

t A
d

P t T
A E e I

P t T

 



         
   

 
 

   21
1 1 2

,

,

T T T
E E u

t t
u du u dWd T

t AT T
d

P t T dR dR
E I where e

P t T dQ dQ

 
 

  
 

       
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 
 

 
 

 
 

 
   

   

1
12

12

, , ,

, , ,

1 ,

fd d dR
r

d d f d

d

S TP t T P T T P t T
P N d

P t T P T T S T P t T

L t T N d


  



 
        
    

 (A-23) 

where the measure 1R  is defined by the Radon-Nikodym derivative 1
TdR dQ  . 

We next show that    
 

 
   1 1

12

,

,
T

fdR dRT
t A rdQ

d f

S TP T T
E I P N d

P T T S T


 



           

 

From the Radon-Nikodym derivative, we know that the relation of the Brownian motions 

under the different measures can be shown as: 

For time interval  ,t T :  1RT
t t EdW dW t dt      (A-24) 

For time interval  ,T T  : 1RT
t tdW dW   (A-25) 

Substituting (A-24) and (A-25) into (A-19) and (A-22), we can obtain the dynamics under 

measure 1R . 

 
 
 

 
                      2 21 1

11 12
1 1

2, 2 2
,

T T T TT T R R
Y Z Y Z E Y Z u Y Y uf t t T Tt T

f

f

f

u u u u u du u u dW u du u dWu du u duP t T

P t T

S T

S T

e e
 

         





 
                





    

 (A-26) 

 
 

 
 

   2 11

2
, ,

, ,

T T R
E E u

t t
u du u dWd d

d d

P T T P t T
e

P T T P t T

 

 
  

 
 (A-27) 

By inserting (A-26) and (A-27) into  1R
rP  , the probability can be obtained after 

rearrangement as follows: 

 
 

 
   1

12

,

,
fdR

r
d f

S TP T T
P N d

P T T S T




 
     

 

 
      2

11 12 1

12
1

1 , 1
ln

1 , 2

T Tf

t T
d

L t T
u du u du V

L t T
d

V







 


 

     
 

 (A-28) 

    2 22
1 13 14

T T

t T
V u du u du


 


    (A-29) 

               13 , , , ,f f d dP P P PY Z Et t t t t T t T t T t T                     (A-30) 

       14 ,ff
PY St t t t T         (A-31) 
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The procedure to solve (A2) is similar to that of (A1). 

 
 

   

            

 
 
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11 12
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e N d

P t T

L t T e



  



  
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 
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
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 
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          




      

   

  
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   
     11 12

11

T T

t T
u du u du

N d




  

 (A-32) 

We next show that 

 
 

 
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T

fdR dRT
t A rdQ
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E I P N d

P T T S T

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


           

  

From the Radon-Nikodym derivative, we can obtain the relations as below : 

For time interval  ,t T :    2RT
t t Y ZdW dW t t dt         (A-33) 

For time interval  ,T T  :  2RT
t t YdW dW t dt     (A-34) 

 Substituting (A-33) and (A-34) into (A-22) and (A-25), we obtain the dynamics under the 

measure 2R . 
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 
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 (A-35) 
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 
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 
 (A-36) 

Inserting (A-35) and (A-36) into  2R
rP   and rearranging them, we obtain 
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 

 
   1

11 11 12 1

,
,

,
fdR

r
d f

S TP T T
P N d where d d V

P T T S T


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 
       

 

By combining (A-23) with (A-32), equation (3.1.5) of Theorem 3.1.1 is obtained. 

A.2 Proof of Equation (3.1.6) 

By using the martingale pricing method, FC1IRGs can be valued as follows. 
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 
 
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By equation (A-19) and the stochastic calculus, we obtain the result as below.  

(A3)    
 

, fT
d
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P t T E
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
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

     (A-37) 

(A4) is equal to the pricing formula of C1IRGOs in Theorem 3.1.1, i.e., equation (3.1.5). 

Hence, combining (A-37) and (3.1.5), (3.1.6) in Theorem 3.1.2 can be obtained. 

 

Appendix B: Proof of Theorem 3.2.1 

B.1 Proof of Equation (3.2.4) 

By applying the martingale pricing method, the price of an C2IRGO at time t, 

0 t T T     , is derived as follows: 

      
 2 1 ,

T
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r d
dQ
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 (B-1) 
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 (B-2) 
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The dynamics of  dS T ,  dS T   and    , ,f fP T T P T T   are determined below. 

   
 

( )
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d
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d

S T
S T M T
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
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
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 

    (B-4) 
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     
   
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d d

d
d d
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Hence, each variable at time t is defined as follows. 

   ( ) ,d dM t S t P t T     (B-8) 

   ( ) , ,d dE t P t T P t T    (B-9) 

     
   
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



 


 (B-10) 

     V t D t B t ,  B t  and  D t  are defined as (A-6) and (A-7) in the appendix A. (B-11) 

From proposition 2.2, the dynamics of (B-8) from (B-11) under the forward measure 
TQ  can be obtained by using Ito’s Lemma and given below. 
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Solving the stochastic differential equations (A-12), (A-13) and from (B-12) to (B-14), we 

obtain: 

       21

2

T T T
M M u

t t
u du u dW

M T M t e
   


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Part (B-I) and (B-II) are solved, respectively, as follows. 
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where the measure 1R  is defined by the Radon-Nikodym derivative 1
TdR dQ  . 

We next show that    
 

 
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From the Radon-Nikodym derivative, we know that the relation of the Brownian motions 

under different measures can be shown as: 

For time interval  ,t T :  1RT
t t VdW dW t dt     (B-21) 

For time interval  ,T T  : 1RT
t tdW dW   (B-22) 
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Substituting (B-21) and (B-22) into (B-18) and (B-19), we can obtain the dynamics under 

measure 1R . 

 
 
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By inserting (B-23) and (B-24) into  1R
rP  , the probability can be obtained after 

rearrangement as follows: 
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Since the procedure to solve (B2) is similar to that of (B1), we present the result without 

showing the derivation processes.8 
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21 22 2d d V   

By combining (B-20) with (B-30), equation (3.1.5) of Theorem 3.2.4 is obtained. 
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B.2 Proof of Equation (3.2.5) 

By using the martingale pricing method, FC2IRGs can be valued as follows. 
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By equation (B-21) and the stochastic calculus, we obtain the result below.  
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(B4) is equal to the pricing formula of C2IRGOs in Theorem 3.2.1, i.e., equation (3.2.4). 

Hence, combining (B-31) and (3.2.4), (3.2.5) in Theorem 3.2.2, the final result can be 

obtained. 

 

Endnotes 

1. The filtration    0,t t
F


 is right continuous and 0F  contains all the Q -null sets of F . 

2. See AJ (1991) for more details regarding the regularity conditions. 
3. The results for multi-period guarantees are available from the authors upon request. 
4. The result is available upon request from the authors. 
5. The result is available upon request from the authors. 
6. See Wu and Chen (2007) for more details. 
7. All data are drawn and computed from the DataStream database. All the market data 

associated with the domestic and foreign stock indexes, the exchange rates, domestic and 

foreign cap volatilities in the U.S. and U.K. markets, and initial forward LIBOR rates are 

available upon request from the authors. 
8. The derivation process is available upon request from the authors. 
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