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When the sampling distribution of a parameter estimator is unknown, using normality
asymptotically, the Shewhart-type chart may provide improper control limits. To monitor
Burr type-X percentiles, two parametric bootstrap charts (PBCs) are proposed and
compared with the Shewhart-type chart via a Monte Carlo simulation. Simulation
results exhibit that the proposed PBCs perform well with a short average run length
to signal out-of-control when the process is out-of-control, and have more adequate
control limits than the Shewhart-type chart in view of in-control false alarm rate. An
example regarding single fiber strength is presented for illustrating the proposed PBCs.

Keywords Average run length; Control charts; False alarm rate; Parametric bootstrap;
Percentile; Shewhart chart.

Mathematics Subject Classification Primary 62F40; secondary 62P30.

1. Introduction

Burr (1942) was the pioneer to introduce the Burr type-X (BTX) distribution in the literature.
Since then, the BTX distribution has received special attention in reliability study and failure
time modeling. The cumulative distribution function (CDF) of the BTX distribution can be
defined as follows:

F (t ; α, λ) = (
1 − e−(λt)2)α

, t > 0, (1)

where α > 0 and λ > 0 are shape and scale parameters, respectively. The BTX distribution
of Eq. (1) is a generalized Rayleigh distribution with no shift parameter and a special
distribution of the exponentiated Weibull distribution, which was introduced by Mudholkar
and Srivastava (1993, 1995). Many aspects of the BTX distribution had been studied by
Sartawi and Abu-Salih (1991), Ahmad et al. (1997), Jaheen (1995, 1996), Kundu and Raqab
(2005), Raqab (1998), and Surles and Padgett (1998, 2001).

In many industrial applications, a specific quality condition of the product’s lifetime
is often required for engineering design consideration. Surles and Padgett (2001) observed
that the BTX distribution could be used quite effectively in modeling strength data as
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762 Lio et al.

well as modeling general lifetime data. However, to our best knowledge, no control charts
for monitoring BTX lifetime percentiles have been presented in the literature, yet. The
well-known Shewhart-type control chart is constructed based on the assumption that data
come from a near-normal distribution. Although the sampling distribution of the maximum
likelihood estimator of the BTX percentile can be shown as a normal distribution, asymp-
totically, the exact sampling distribution of the maximum likelihood estimator of a BTX
percentile is unknown. In this case, the Shewhart-type control chart using a finite subgroup
size may not provide appropriate control limits. Therefore, computer-based methods such
as bootstrap methods could be good candidates to establish the control limits for monitoring
BTX percentiles. Efron and Tibshirani (1993), Gunter (1992), and Young (1994) provided
comprehensive discussions of bootstrap techniques.

Bootstrap methods are helpful to establish control chart limits when the sampling
distribution of a parameter estimator is not available. Many authors have studied the con-
structions of bootstrap charts. Bajgier (1992) developed a bootstrap chart to monitor the
process mean, which was a competitor to the Shewhart X chart. However, if all pre-samples
were not in control, the bootstrap chart could become conservative due to producing too
wide control limits, regardless of the underlying distribution of the process variable. Many
referred articles, such as Jones and Woodall (1998), Liu and Tang (1996), and Seppala et al.
(1995), had pointed out that bootstrap charts could alarm for out-of-control status quicker
than the Shewhart-type chart could if the underlying distribution of process variable was
skewed. An advantage of bootstrap method is to release the restriction from the theoret-
ical sampling distribution of an estimator. The computation time of a bootstrap method
is perhaps a perceived disadvantage, but actually is not, considering today’s computer
power availability. Based on the advent of modern powerful and accessible computers, any
simulation-based estimation can be more easily implemented to obtain computation results
in an affordable amount of time.

Nichols and Padgett (2005) developed a parametric bootstrap chart (PBC) based on
Weibull distribution for monitoring the tensile strength percentile in the production process
of carbon fiber. They found that the PBC could alarm for an out-of-control process quicker
than the Shewhart-type chart, proposed by Padgett and Spurrier (1990). Lio and Park
(2008) investigated PBCs for Birnbaum-Saunders percentiles based on maximum likelihood
estimation method and moment method. According to their simulation results, they found
that both bootstrap charts provided a shorter average run length (ARL) when the process was
shifted to out-of-control. Lio and Park (2010) studied PBCs for inverse Gaussian percentiles
and showed that the bootstrap charts performed better than the percentile control chart using
Bonferroni bounds, which was provided by Onar and Padgett (2000). The bootstrap method
only uses bootstrap samples, which are generated by using a sample data of an estimator, to
generate the sampling distribution of the estimator, and then provides appropriate control
limits for a control chart. Only the usual conditions for a control chart setting, i.e., Phase
I in-control pre-samples are available and subgroup observations are independent and
identically distributed, are assumed.

In this article, a Shewhart-type chart and two PBCs, named maximum likelihood
estimation bootstrap (MLE-b) chart and moment estimation bootstrap (MME-b) chart, for
monitoring BTX percentiles are studied. The rest of this article is organized as follows: a
brief introduction to the estimation methods of maximum likelihood and moment for BTX
distribution parameters and percentiles are addressed in Section 2. Algorithms for building
the Shewhart-type chart, the MLE-b chart, and the MME-b chart for BTX percentiles are
provided in Section 3. Intensive Monte Carlo simulations are conducted in Section 4 to
evaluate the implementations of Shewhart-type, MLE-b and MME-b charts for monitoring
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Control Charts for Monitoring Burr Type-X Percentiles 763

BTX percentiles. An example is presented in Section 5 for illustration. Some conclusions
are made in Section 6.

2. The Burr Type-X Distribution

Let �T = (α, λ); the BTX distribution of Eq. (1) has probability density function (PDF)
and percentile function, respectively, defined as:

f (t ; �) = αλ22te−λ2t2(
1 − e−(λt)2)α−1

, t > 0, (2)

and

Qp(�) = λ−1
√

−ln(1.0 − p1/α), 0 < p < 1. (3)

LetT = {t1, t2, . . . , tn} denote a size n random sample drawn from the BTX distribution
with PDF defined by Eq. (2). Then the log-likelihood function can be presented as

L(�) = nln(α) + 2nln(λ) +
n∑

i=1

ln(2ti) −
n∑

i=1

λ2t2
i + (α − 1)

n∑
i=1

ln
(
1 − e−λ2t2

i

)
. (4)

The maximum likelihood estimate (MLE), �̂T
n = (α̂n, λ̂n), of � can be obtained by solving

the following two nonlinear equations simultaneously,

α̂n = n∑n
i=1 −ln

(
1.0 − eλ̂2

nt
2
i

) , (5)

λ̂n

n∑
i=1

t2
i = λ̂n(α̂n − 1)

(
n∑

i=1

t2
i e−λ̂2

nt
2
i

1 − e−λ̂2
nt

2
i

)
+ n

λ̂n

. (6)

Based on �̂n, the MLE of the 100pth percentile is given as:

Q̂p,n(�̂n) = λ̂−1
n

√
−ln(1.0 − p1/α̂n ); 0 < p < 1. (7)

The exact sampling distributions of α̂n and λ̂n are not available, neither is the exact sampling
distribution of Q̂p,n(�̂n). Surles and Padgett (2001) showed that the BTX distribution
satisfied the regularity conditions required for the asymptotic normality of the MLE, �̂n.
Hence, it can be shown that

√
n(�̂n − �) → N (0, I−1(�)), where 0 is a two-dimensional

column vector of zeros and I(�) is the Fisher information matrix defined by:

I(�) = −1

n

⎡
⎢⎢⎢⎣

E

(
∂2L(�)

∂α2

)
E

(
∂2L(�)

∂α∂λ

)

E

(
∂2L(�)

∂λ∂α

)
E

(
∂2L(�)

∂λ2

)
⎤
⎥⎥⎥⎦ = −

[
I11 I12

I21 I22

]
. (8)

Surles and Padgett (2001) gave an infinite series presentation for each entry of I(�), and
Kundu and Raqab (2005) studied the BTX distribution and provided other two different
representations for each entry of I(�). When α − 3 is a non-negative integer, following
the same derivation process as the one used by Surles and Padget (2001), each entry of
I(�) can be expressed as a finite term summation. Here, the results from Kundu and Raqab
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764 Lio et al.

(2005) are presented as follows: If α > 2,

I11 = − 1

α2
,

I12 = I21 = 2

λ2(α − 1)

(
(ϕ(α) − ϕ(1)) − α − 1

α

)
,

I22 = − 2

λ2
[1 + ϕ(α + 1) − ϕ(1)] − 2α

λ3
[ϕ(1) − ϕ(α)] − 2(α − 1)

λ3

− 4α

λ3(α − 2)
[(ϕ(2) − ϕ(α))2 + ϕ′(2) − ϕ′(α)],

and if 0 < α ≤ 2,

I11 = − 1

α2
,

I12 = I21 = 2α

λ2

( ∫ ∞

0
xe−2x(1 − e−x)α−2dx

)
,

I22 = − 2

λ2
[1 + ϕ(α + 1) − ϕ(1) − α(α − 1)

λ

∫ ∞

0
xe−2x(1 − 2x − e−x)(1 − e−x)α−3dx],

where ϕ(t) is the digamma function and ϕ′(t) is the derivative of ϕ(t). It can be shown that

Q̂p,n(�̂n) − Q(p; �)

σ 2
p,n

→ N (0, 1),

where

σ 2
p,n = 1

n
∇Q(�)T I−1(�)∇Q(�),

and ∇Q(�) is the gradient of Q(�) with respect to �. Therefore, the Shewhart-type chart
can be constructed, based on asymptotical normal distribution, to monitor the BTX per-
centile. Because the evaluations of Fisher information matrix formulas, provided by Surles
and Padgett (2001) and Kundu and Raqab (2005), respectively, need complicate compu-
tation skills, both Fisher information matrix formulas are difficult to be used practically.
Therefore, the observed Fisher information matrix without taking expectation, presented
as follows, is used instead of I(�):

În(�̂n) = −1

n

⎡
⎢⎢⎢⎣

∂2L(�)

∂α2

∂2L(�)

∂α∂λ

∂2L(�)

∂λ∂α

∂2L(�)

∂λ2

⎤
⎥⎥⎥⎦

�=�̂n

. (9)

Denote ARL0 and ARL1 as in-control and out-of-control ARLs, respectively. Accord-
ing to simulation results, reported in Section 4, it could be found that the simulated ARL0 of
the Shewhart-type chart seriously underestimates the corresponding nominal ARL0. Hence,
the Shewhart-type chart based on the MLE, Q̂p,n, will not be recommended to monitor
BTX percentiles in practice.
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Control Charts for Monitoring Burr Type-X Percentiles 765

Let T be the BTX distribution random variable. The following moments for the BTX
distribution have been provided by Kundu and Raqab (2005) and also can be found in Lio
et al. (2011):

E(T 2) = (ϕ(α + 1) − ϕ(1))/λ2, (10)

E[T 4] − [E[T 2]]2 = (−ϕ′(α + 1) + ϕ′(1))/λ4. (11)

Equating sample moments to the corresponding population moments, the following
equations can be used to find the moment method estimate (MME), �̃T

n = (α̃n, λ̃n), of
�T = (α, λ):

ϕ(α̃n + 1) − ϕ(1) = λ̃2
n

n

[
n∑
i

t2
i

]
, (12)

−ϕ′(α̃n + 1) + ϕ′(1) = λ̃4
n

n

[
n∑
i

t4
i

]
− λ̃4

n

n2

[
n∑
i

t2
i

]2

. (13)

After a simple algebra process, the solution for α̃n can be obtained via the following
equation:

[ϕ(α̃n + 1) − ϕ(1)]2

[ϕ(α̃n + 1) − ϕ(1)]2 + ϕ′(1) − ϕ′(α̃n + 1)
=

[ ∑n
i t2

i

]2

n
[∑n

i t4
i

] (14)

and the solution of λ̃n can be obtained via the following equation:

λ̃n =
[
nϕ(α̃n + 1) − ϕ(1)∑n

i t2
i

]1/2

. (15)

Then, the BTX percentile Qp(�) based on MME, �̃n, can be computed and denoted by
Q̃p,n(�̃n). However, the exact sampling distributions of �̃n and Q̃p,n(�̃n) are not available.

3. The Shewhart-Type and Parametric Bootstrap Charts

In Phase I, it is assumed that k in-control pre-samples of each size m are drawn from the
BTX distribution of Eq. (1) for the control chart setting. Let n = m × k denote the total
sample size used in Phase I. A Shewhart-type chart and two PBCs are constructed in the
following subsections.

3.1. Shewhart-Type Chart

According to the estimation procedure described in Section 2, the MLE of the 100pth
percentile based on each size m pre-sample from a Phase I in-control process can be
obtained via Q̂p,m(�̂m) = λ̂−1

m

√
−ln(1.0 − p1/α̂m ), where �̂m is the MLE of �. Then, the

Shewhart-type chart for monitoring the 100pth percentile, Qp(�), can be constructed as
follows:

1. Using n sample observations from Phase I in-control process, the MLE, �̂T
n =

(α̂n, λ̂n), via Eqs. (5) and (6), is obtained and the asymptotic standard error of
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766 Lio et al.

Q̂p,m(�̂m) can be estimated by

SEQm
=

√
1

m
∇QT

p (�̂n)În(�̂n)∇Qp(�̂n).

2. For the jth pre-sample of size m, the MLE of Qp(�) is obtained using Eqs. (5)–(7)
and denoted by Q̂

j
p,m(�̂j

m), j = 1, 2, . . . , k. The sample mean of Q̂
j
p,m(�̂j

m), j =
1, 2, . . . , k, is computed and labeled as

¯̂Qp,m(�̂m) = 1

k

k∑
j=1

Q̂j
p,m

(
�̂j

m

)
.

3. The control limits of the Shewhart-type chart are presented as follows:

UCLSH = ¯̂Qp,m(�̂m) + z(1−γ /2) × SEQm
,

LCLSH = ¯̂Qp,m(�̂m) − z(1−γ /2) × SEQm
,

and the center line (CL) is CLSH = ¯̂Qp,m(�̂m), where 	(zδ) = δ, 0 < δ < 1, 	(.)
is the standard normal CDF, and γ is a given false alarm rate (FAR).

After the control limits of the Shewhart-type chart are determined based on Phase
I in-control samples, future samples of each size m (Phase II samples) are drawn from
the BTX process to compute the plot statistic Q̂p,m(�̂m). If Q̂p,m(�̂m) is plotted between
control limits, LCLSH and UCLSH, then the process is assumed to be in control. Otherwise,
signal the process out-of-control.

3.2. Bootstrap Charts

The PBC based on MLE for monitoring BTX percentiles is constructed according to the
following steps:

1. Use n sample observations from Phase I in-control process, to obtain the MLE,
�̂T

n = (α̂n, λ̂n), via Eqs. (5) and (6).
2. Generate m parametric bootstrap observations from the BTX distribution of Eq. (1)

but replacing α and λ by the corresponding MLEs, α̂n and λ̂n, obtained from Step
1. Denote these parametric bootstrap observations by x∗

1 , x∗
2 . . . , x∗

m.
3. Find the MLEs of α and λ using parametric bootstrap observations, x∗

1 , x∗
2 . . . , x∗

m,
and denote the obtained MLEs by α̂∗

m and λ̂∗
m, respectively.

4. Compute the bootstrap estimate of the 100pth percentile according to the formula:

q̂∗
p = Q̂∗

p,m(�̂) =
√

−ln
(
1.0 − p1/α̂∗

m

)
/λ̂∗

m.

5. Repeat Steps 2–4 B times to obtain a size B bootstrap sample, q̂∗
p,1, q̂

∗
p,2, . . . , q̂

∗
p,B ,

where B is a given large positive integer.
6. Given a FAR γ , find the (γ /2)th and (1−γ /2)th empirical quantiles of the bootstrap

sample, q̂∗
p,1, q̂

∗
p,2, . . . , q̂

∗
p,B as the lower control limit (LCL) and upper control limit

(UCL), respectively. The method to find sample quantiles, proposed by Hyndman
and Fan (1996), will be used for the simulation study in Section 4.
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Control Charts for Monitoring Burr Type-X Percentiles 767

The above bootstrap chart is called MLE-b chart. Similarly, if the MLEs, α̂(α̂∗) and
λ̂(λ̂∗), of α and λ are replaced by the MMEs, α̃(α̃∗) and λ̃(λ̃∗), respectively, and MLE method
is replaced by MME method from Step 1 to Step 3, then the corresponding bootstrap chart
is constructed based on moment method, and is called MME-b chart. The plot statistic for
MLE-b chart is Q̂p,m(�̂m) and the plot statistic for MME-b chart is Q̃p,m(�̃m).

4. Simulation Study

To examine the performance of these three BTX percentile control charts, discussed in
Section 3, an intensive Monte Carlo simulation study was conducted using R language (R
Development Core Team, 2006) that was originally developed by Ihaka and Gentleman
(1996). The R source codes can be obtained from authors upon request.

The performance of BTX percentile control charts are investigated in terms of simulated
ARL0 and ARL1 and the standard errors of run lengths (SERLs), respectively. Moreover, the
average of UCLs and LCLs and their associated standard errors are also evaluated through
simulation. Simulation has been carried out with different sample sizes, different percentiles
of interest, and different levels of FARs. Ten thousand bootstrap repetitions, B = 10, 000,
have been used to determine the control limits for each bootstrap chart. Moreover, all
complete procedures, introduced in Section 3, have been repeated 10,000 times to evaluate
the ARL values, the associated SERL values, and the standard errors of control limits. For
brevity, some simulation results are displayed in Tables 1–9. It should be mentioned that
when subgroup size is small such as m = 4, 5, or 6, the iterative procedure for solving the

Table 1
Simulated ARL0 and SERL values from the Shewhart-type chart for p = 0.1, k = 20, and

λ = 1

m = 4 m = 5 m = 6
Nominal
ARL0 α ARL0 SERL ARL0 SERL ARL0 SERL

10 0.5 6.105 0.063 6.587 0.067 7.257 0.073
1.0 7.977 0.077 8.226 0.079 8.500 0.081
2.0 8.649 0.086 8.865 0.088 8.928 0.089
5.0 8.888 0.089 8.772 0.088 8.758 0.086

100 0.5 17.665 0.228 18.792 0.237 21.448 0.277
1.0 54.147 0.723 57.071 0.729 60.110 0.754
2.0 82.353 1.008 82.866 1.027 82.226 0.962
5.0 83.101 1.209 80.882 1.005 81.336 1.001

370 0.5 25.979 0.429 27.297 0.363 32.634 0.462
1.0 114.741 1.741 127.015 1.885 135.596 1.922
2.0 264.998 3.802 265.860 3.641 266.605 3.521
5.0 295.222 4.724 279.897 4.148 286.145 3.872

500 0.5 28.446 0.509 29.624 0.400 35.924 0.511
1.0 136.543 2.080 152.967 2.289 161.178 2.319
2.0 338.687 4.956 339.096 5.082 346.583 4.884
5.0 391.220 6.352 369.691 5.451 378.485 5.464
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768 Lio et al.

Table 2
Simulated ARL0 and SERL values from the MLE-b chart for p = 0.1, k = 20, and λ = 1

m = 4 m = 5 m = 6

Nominal ARL0 α ARL0 SERL ARL0 SERL ARL0 SERL

10 0.5 9.361 0.092 9.38 0.092 9.32 0.091
1.0 9.453 0.094 9.32 0.093 9.31 0.094
2.0 9.413 0.095 9.57 0.097 9.31 0.092

100 0.5 92.329 1.126 92.365 1.091 90.913 1.016
1.0 97.578 1.257 93.864 1.143 91.292 1.078
2.0 97.815 1.367 97.043 1.233 94.976 1.216

370 0.5 354.592 5.177 352.867 4.882 336.705 4.407
1.0 366.589 5.707 365.999 5.538 355.775 4.964
2.0 396.656 6.808 383.682 5.860 361.026 5.217

500 0.5 485.613 7.233 485.095 6.779 453.055 6.040
1.0 509.068 8.262 510.362 8.141 477.215 6.718
2.0 542.770 9.574 519.847 8.065 498.641 7.457

MMEs of BTX parameters is often divergent. Hence, only some simulation results with
subgroup size, m = 10, for the MME-b chart are given in Tables 3, 7 and 8.

Table 1 shows that the simulated ARL0 for the Shewhart-type chart seriously
underestimates the nominal ARL0 due to producing a narrow band of control limits. This
means that the Shewhart-type chart will incur a higher FAR than expectation. Tables 2 and 3

Table 3
Simulated ARL0 and SERL values from the MME-b chart for p = 0.10, m = 10, k = 20,

and λ = 1

m = 4 m = 5 m = 6

Nominal ARL0 α ARL SERL ARL SERL ARL SERL

10 0.5 9.050 0.0872 9.079 0.0909 9.2659 0.09458
1.0 9.074 0.0881 9.109 0.0903 9.425 0.0971

10.0 9.423 0.0980 9.431 0.0982 9.422 0.0961
100 0.5 84.857 0.9567 87.743 1.0411 94.0007 1.33539

1.0 88.830 1.0018 93.182 1.1219 96.6795 1.3739
10.0 91.192 1.0731 95.358 1.2645 96.196 1.3069

370 0.5 314.030 3.9772 332.903 4.5686 372.3344 6.8524
1.0 329.580 4.0352 342.444 4.6120 396.4732 7.7491

10.0 361.294 4.7038 361.989 5.3724 389.464 6.8079
500 0.5 427.093 5.7029 450.158 6.4289 505.2284 9.95987

1.0 445.364 5.7365 467.153 6.4625 544.0697 7.74910
10.0 484.452 6.3274 502.739 7.9250 544.070 10.1513
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Control Charts for Monitoring Burr Type-X Percentiles 769

Table 4
Simulated ARL0 and SERL values from the MLE-b chart for (α, λ) = (10, 1) and k = 20

p = 0.10 p = 0.25 p = 0.50

Nominal ARL0 m ARL0 SERL ARL0 SERL ARL0 SERL

10 4 9.6474 0.101 9.463 0.100 9.258 0.093
6 9.3354 0.093 9.373 0.094 9.425 0.093

10 9.2757 0.093 9.525 0.093 9.180 0.089
100 4 102.983 1.532 100.517 1.507 97.489 1.354

6 95.890 1.280 95.672 1.238 93.979 1.156
10 93.220 1.125 93.478 1.113 89.046 1.019

370 4 408.713 7.235 386.656 6.585 366.975 5.781
6 376.712 5.790 363.965 5.682 362.571 5.464

10 353.738 4.843 350.907 4.928 333.125 4.442
500 4 543.428 9.193 509.780 8.387 495.615 7.981

6 500.991 7.740 490.212 7.798 484.795 7.344
10 481.410 6.639 473.318 6.730 455.741 6.470

show that the simulated ARL0s for MLE-b and MME-b charts are close to their correspond-
ing nominal ARL0s. In general, MLE-b and MME-b charts outperform the Shewhart-type
chart in terms of the simulated ARL0. Table 4 gives the simulated ARL0 and the associated
SERL when the MLE-b chart is used with various subgroup sizes for numerous percentiles.
It could be found that the MLE-b chart performs satisfactorily in terms of the simulated

Table 5
Simulated average estimates of LCL and UCL from the MLE-b chart for (α, λ) = (10, 1)

and k = 20

p = 0.10 p = 0.25 p = 0.50

Nominal ARL0 m LCL UCL LCL UCL LCL UCL

10 4 1.042 1.662 1.218 1.763 1.382 1.937
6 1.068 1.573 1.248 1.691 1.427 1.882

10 1.100 1.490 1.282 1.624 1.473 1.826
100 4 0.886 1.862 1.089 1.952 1.253 2.128

6 0.939 1.732 1.139 1.837 1.317 2.032
10 0.998 1.610 1.196 1.733 1.385 1.938

370 4 0.820 1.966 1.034 2.051 1.198 2.228
6 0.883 1.811 1.093 1.911 1.270 2.107

10 0.954 1.667 1.158 1.786 1.347 1.992
500 4 0.804 3.264 1.021 3.052 1.184 3.524

6 0.869 1.825 1.082 1.925 1.258 2.122
10 0.943 1.678 1.149 1.795 1.337 2.002
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Table 6
The standard errors of the control limits in Table 5

p = 0.10 p = 0.25 p = 0.50

Nominal ARL0 m SELCL SEUCL SELCL SEUCL SELCL SEUCL

10 4 0.0005 0.0003 0.0004 0.0004 0.0003 0.0005
6 0.0004 0.0002 0.0003 0.0003 0.0002 0.0003

10 0.0003 0.0002 0.0002 0.0002 0.0002 0.0002
100 4 0.0006 0.0004 0.0005 0.0005 0.0004 0.0006

6 0.0004 0.0003 0.0003 0.0003 0.0003 0.0004
10 0.0003 0.0002 0.0002 0.0002 0.0002 0.0003

370 4 0.0006 0.0006 0.0005 0.0006 0.0004 0.0007
6 0.0005 0.0004 0.0004 0.0004 0.0003 0.0005

10 0.0003 0.0002 0.0003 0.0002 0.0002 0.0003
500 4 0.0006 0.4821 0.0005 0.4382 0.0004 0.5206

6 0.0005 0.0004 0.0004 0.0004 0.0003 0.0005
10 0.0003 0.0002 0.0003 0.0003 0.0002 0.0003

ARL0. Tables 5 and 6 show the average values of simulated LCLs and UCLs and their
associated standard errors when the MLE-b chart is used. Tables 7 and 8 exhibit the average
values of simulated LCLs and UCLs and their associated standard errors for the MME-b
chart. Again, it can be seen that the standard errors of the LCL and UCL are usually smaller
for both MLE-b and MME-b charts. That is, the proposed constructing procedures for

Table 7
Simulated average estimates of LCL and UCL from the MME-b chart for p =

0.10, 0.25, 0.50, m = 10, k = 20, and λ = 1

p = 0.10 p = 0.25 p = 0.50

Nominal ARL0 α LCL UCL LCL UCL LCL UCL

10 0.5 0.031 0.421 0.120 0.595 0.330 0.855
1.0 0.163 0.680 0.346 0.853 0.608 1.106

10.0 1.086 1.514 1.280 1.638 1.476 1.829
100 0.5 0.004 0.576 0.040 0.752 0.205 1.022

1.0 0.057 0.838 0.196 1.004 0.476 1.259
10.0 0.921 1.633 1.173 1.748 1.387 1.941

370 0.5 0.001 0.651 0.022 0.827 0.158 1.101
1.0 0.031 0.914 0.138 1.075 0.414 1.331

10.0 0.829 1.689 1.117 1.800 1.349 1.994
500 0.5 0.001 0.665 0.019 0.841 0.148 1.115

1.0 0.026 0.927 0.125 1.088 0.399 1.344
10.0 0.804 1.699 1.101 1.810 1.340 2.004
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Table 8
The standard deviations of the control limits in Table 7

p = 0.10 p = 0.25 p = 0.50

Nominal ARL0 α LCL UCL LCL UCL LCL UCL

10 0.5 0.0001 0.0003 0.0003 0.0003 0.0004 0.0004
1.0 0.0003 0.0003 0.0004 0.0003 0.0004 0.0003

10.0 0.0004 0.0002 0.0003 0.0002 0.0002 0.0002
100 0.5 0.0000∗ 0.0003 0.0001 0.00040 0.0004 0.0005

1.0 0.0002 0.0003 0.0004 0.00037 0.0004 0.0004
10.0 0.0005 0.0002 0.0004 0.00027 0.0002 0.0003

370 0.5 0.0000 0.0004 0.0001 0.0004 0.0003 0.0005
1.0 0.0001 0.0003 0.0003 0.0004 0.0005 0.0005

10.0 0.0006 0.0002 0.0004 0.0003 0.0002 0.0003
500 0.5 0.0000∗ 0.0004 0.0000∗ 0.0004 0.0003 0.0005

1.0 0.0001 0.0003 0.0003 0.0004 0.0005 0.0005
10.0 0.0006 0.0002 0.0004 0.0003 0.0003 0.0003

*Indicates the value < 0.0001.

MLE-b and MME-b charts can provide stable control limits and are helpful to construct
a MLE-b or MME-b chart in practical applications. Hence, the Shewhart-type chart will
not be recommended and only two proposed PBCs will be examined in the following
study.

Table 9
Simulated ARL1 and SERL values when α shifts to α1 from α0 for m = 10, k = 20, and

λ = 1

γ p α0 α1 ARL1(MLE) SERL ARL1(MME) SERL

0.1 0.10 1.0 0.5 1.4395 0.008 2.424 0.021
10.0 5.0 1.4597 0.008 1.783 0.013
10.0 8.0 5.3278 0.056 6.635 0.072

0.25 2.0 0.5 1.0091 0.001 1.032 0.001
0.01 0.10 1.0 0.5 2.4548 0.020 10.078 0.130

10.0 5.0 2.6212 0.023 6.797 0.091
10.0 8.0 31.2233 0.430 61.988 0.896

0.25 2.0 0.5 1.0368 0.002 1.233 0.005
0.0027 0.10 1.0 0.5 3.541 0.034 23.667 0.367

10.0 5.0 3.973 0.042 20.465 0.350
10.0 8.0 92.378 1.696 233.799 3.762

0.25 2.0 0.5 1.065 0.002 1.603 0.012
0.002 0.10 1.0 0.5 3.897 0.039 29.390 0.462

10.0 5.0 4.439 0.048 28.030 0.536
10.0 8.0 120.113 2.302 330.704 5.577

0.25 2.0 0.5 1.074 0.002 1.759 0.014
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The main concern is the downward shift of distribution percentile, which indicates
a deteriorating quality in the product lifetime. First, control limits of the MLE-b and
MME-b charts are established based on generated in-control Phase I subgroups; then
further subgroups are generated from an out-of-control process and used for evaluating
the ARL1 and its standard errors. It could be shown that the BTX percentile decreases
with respect to α when λ is given. Hence, to implement an out-of-control process from an
in-control process, we may decrease the value of shape parameter, α, from α0 value for an
in-control process to a smaller value, α1, for an out-of-control process. For brevity, part
of out-of-control cases and the corresponding ARL1 values for MLE-b and MME-b charts
are displayed in Table 9. In view of Table 9, the ARL1 values and the associated SERLs
are very small. Therefore, these simulation results support that both MLE-b and MME-b
charts are capable of monitoring out-of-control BTX percentiles.

5. Illustrative Examples

Bader and Priest (1982) obtained strength data (measured in GPa) for single carbon fibers
and impregnated 1,000 carbon fiber tows. Single fibers were tested under tension at gauge
lengths of 1, 10, 20, and 50 millimeter (mm). Impregnated tows of 1,000 fibers were tested
at gauge lengths of 20, 50, 150, and 300 mm. Durham and Padgett (1997) demonstrated that
the Weibull model did not provide a goodness of fit to these datasets. Surles and Padgett
(1998, 2001) suggested that the BTX distribution could be used with pleasing results
to model these datasets. Surles and Padgett (1998, 2001) provided maximum likelihood
estimation results for the single fibers of 20 and 50 mm in gauge length under BTX
model with common scale parameter or different scale parameter model setting. In their
studies, the MLEs of shape parameters in the 20 mm single fiber modeling and the 50 mm
single fiber modeling were around 10 and the MLEs of scale parameters under different
scale parameter setting were very close to 1. Surles and Padgett (2001) also conducted an
intensive simulation study based on what they called typical case with α = 10.

In this section, the MLE-b and MME-b charts are applied to monitoring the strength of
single fiber of 20 mm in gauge. Since the datasets provided by Bader and Priest (1982) were
not for the purpose of constructing control charts originally, hence the reported datasets by
Bader and Priest (1982) cannot be used directly. In this example, 20 subgroups of each 10
fiber strengths are simulated independently from an in-control BTX process with α0 = 10
and λ = 1 of which 10th percentile is found as Q(0.10, α, λ) = 1.258. These 20 in-control

20 25 30 35 40

0.
5

1.
5

subgroup

Figure 1. The MLE-b chart for the strength data of single fiber with FAR = 0.0027.
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Table 10
Top 20 subgroups of strength of single fiber of 20 mm in gague length generated from the

BTX distribution with α0 = 10 and λ = 1

Subgroup
number Strength observations

1 1.558 1.043 2.131 1.555 2.004 1.237 1.038 1.367 1.116 1.480
2 1.741 1.634 2.450 1.948 1.585 1.559 1.658 2.006 1.100 2.009
3 1.573 1.624 2.236 2.010 1.856 2.840 1.677 1.993 1.334 1.663
4 1.599 2.518 1.693 1.772 1.930 1.367 1.675 0.958 1.283 1.716
5 1.799 2.525 1.847 1.711 1.748 1.619 1.490 2.956 1.334 1.832
6 1.581 1.629 1.370 1.379 1.337 1.751 1.537 1.822 1.367 1.550
7 1.439 1.887 1.378 1.785 1.553 1.289 2.158 2.084 1.381 1.406
8 2.268 1.793 1.282 2.395 1.749 1.464 1.281 1.456 1.293 1.795
9 2.015 1.663 1.872 1.911 1.670 1.496 1.820 1.783 1.656 1.346

10 1.681 1.798 1.781 1.411 1.798 1.236 1.024 1.520 1.823 1.531
11 2.282 1.714 2.368 1.128 1.693 1.433 1.229 1.561 1.536 1.907
12 1.369 1.721 1.888 1.763 1.567 1.607 1.528 1.745 1.087 1.575
13 1.862 1.817 1.694 1.829 1.467 1.595 1.853 1.682 1.856 2.090
14 2.116 1.839 1.494 1.816 1.722 1.641 1.014 2.139 1.524 1.376
15 1.077 1.340 2.342 2.033 2.068 1.590 1.725 2.192 1.503 1.942
16 1.937 1.385 1.667 1.384 1.542 1.354 1.383 1.531 1.519 2.140
17 1.486 1.908 1.302 2.099 1.305 1.496 1.543 1.625 1.523 1.729
18 1.323 1.978 1.713 2.060 2.304 1.396 1.980 1.791 1.262 1.465
19 2.007 2.147 1.649 1.678 2.241 1.846 1.924 2.490 1.619 2.343
20 1.328 1.445 2.330 1.450 1.698 1.323 2.096 1.598 1.458 2.561

subgroups are reported in Table 10. Assume that the process parameter α shifts to α1 = 5
after the first 20 in-control subgroups. Another 20 out-of-control subgroups of each 10 fiber
strengths are generated from the BTX distribution with α = 5 and λ = 1 and reported in
Table 11.

The MLE-b and MME-b charts are established based on the 20 in-control subgroups
of each 10 fiber strengths, reported in Table 10, with FAR = 0.0027 and B = 10, 000. The
control limits of the MLE-b chart are obtained as

UCLMLE−b = 1.667,

LCLMLE−b = 0.975,

and the CL of the MLE-b chart is CLSH = 1.279. The control limits of the MME-b chart
are obtained as

UCLMME−b = 1.731,

LCLMME−b = 0.841,

and the CL of the MME-b chart is CLSH = 1.271. Figures 1 and 2 show that the MLE-b and
MME-b charts provide asymmetric control limits from their respective CL. In the MLE-b
chart, the first out-of-control signal is observed at subgroup 30, there are five points below
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Table 11
Twenty out-of-control subgroups of strength of single fiber of 20 mm in gague length

generated from the BTX distribution with α1 = 5.0 and λ = 1

Subgroup
number Strength observations

21 1.502 1.417 0.821 1.363 1.165 1.047 1.493 1.571 2.121 1.543
22 1.862 0.898 1.051 1.968 1.662 1.903 1.335 1.502 1.665 1.344
23 2.114 1.156 1.520 1.436 1.294 1.370 2.411 1.694 1.758 1.549
24 1.431 1.932 1.365 2.001 1.992 1.144 1.185 1.359 1.390 1.151
25 1.831 2.047 1.336 1.179 1.245 1.586 1.518 1.618 0.844 1.428
26 1.839 1.488 1.250 2.246 1.721 1.634 1.500 0.945 1.837 1.196
27 1.405 1.260 1.065 1.345 1.124 1.697 1.599 1.101 1.757 1.553
28 1.133 1.924 1.028 1.873 1.543 1.570 0.887 1.395 1.326 1.625
29 2.300 1.396 1.689 1.724 0.989 0.854 1.783 1.907 1.760 2.124
30 1.372 1.475 1.045 1.266 1.357 1.681 1.295 0.671 2.161 1.528
31 1.104 2.073 1.840 1.614 0.988 1.353 1.344 1.418 1.545 2.604
32 1.604 1.680 1.125 1.717 1.796 1.603 1.318 1.278 1.106 1.788
33 1.579 1.230 1.343 1.301 2.259 1.086 2.136 1.069 1.614 1.545
34 1.433 3.066 1.351 1.836 1.068 1.310 1.250 1.246 1.495 1.652
35 1.290 0.774 1.635 1.107 1.138 1.257 1.379 0.902 1.321 1.497
36 2.166 1.268 2.003 0.980 0.755 1.550 1.645 1.174 2.395 1.986
37 1.653 1.889 1.536 2.186 2.129 1.418 0.935 1.602 1.998 1.929
38 1.651 1.627 1.242 1.772 1.555 1.038 2.185 0.972 0.756 1.280
39 1.199 1.327 1.322 1.430 1.436 1.054 1.149 1.261 2.833 0.905
40 1.325 0.994 1.006 2.260 1.306 1.786 1.612 1.396 1.855 1.625

the LCL, and no point above the UCL. In the MME-b chart, the first out-of-control signal
is observed at subgroup 34, there are two points below the LCL, and one case above the
CL. Therefore, it can be seen that the MLE-b chart seems to signal out-of-control earlier
than the MME-b chart when the process is out-of-control.

20 25 30 35 40

0.
0
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0

2.
0

subgroup

Figure 2. The MME-b chart for the strength data of single fiber with FAR = 0.0027.
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6. Conclusions

A Shewhart-type chart and two PBCs have been constructed for monitoring BTX per-
centiles. The Shewhart-type control chart is constructed based on the asymptotic normal
distribution of maximum likelihood estimator and delta method. Because the Shewhart-type
chart cannot provide adequate control limits, PBCs based on MLE and MME, respectively,
are proposed for monitoring BTX percentiles. Through an intensive Monte Carlo sim-
ulation, it has been found that when subgroup size is small (such as 3, 4, 5, or 6) the
MLE-b chart is much easier to be constructed than the MME-b chart because the MMEs
of BTX parameters are difficult to be obtained. When subgroup size grows to 10 or larger,
the proposed PBCs could be established accurately for monitoring BTX percentiles and
could signal out-of-control quickly when the process shifts to out-of-control. Generally, the
MLE-b chart is more efficient than the MME-b chart to alarm for process out-of-control.
Therefore, the MLE-b chart would be recommended for monitoring BTX percentiles
practically.

Extending the developed procedures of control charts in Section 3 for monitoring the
percentiles of other important life distributions is of great interest and will be investigated
in the future.
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