
Sourav S. Bhowmick, Nanyang Technological University, Singapore
Gillian Dobbie, University of Auckland, New Zealand
Vladimir Estivill-Castro, Griffith University, Australia

Christie Ezeife, University of Windsor, Canada
Alex A. Freitas, University of Kent, UK

Xiaohua Hu, Drexel University, USA
Stephan Kudyba, New Jersey Institute of Technology, USA

Clement H.C. Leung, Victoria University, Australia
Sanjay Kumar Madria, University of Missouri – Rolla Rolla, USA
Yannis Manolopoulos, Aristotle University, Thessaloniki, Greece

Torben Bach Pedersen, Aalborg University, Denmark
Jian Pei, Simon Fraser University, Canada

Gerd Stumme, University of Kassel, Germany
Chih Jeng Kenneth Tan, OptimaNumerics Ltd., UK
Yannis Theodoridis, University of Piraeus, Greece

Marek Wojciechowski, Poznan University of Technology, Poland
Yongqiao Xiao, Georgia College and State University, USA
Mohammed J. Zaki, Rensselaer Polytechnic Institute, USA

Shichao Zhang, University of Technology, Sydney, Australia
Zhi-Hua Zhou, Nanjing University, China

IGIP

Order online at www.igi-global.com or call 717-533-8845 x100
Mon-Fri 8:30 am - 5:00 pm (est) or fax 24 hours a day 717-533-8661

IGI Publishing
Hershey • New York

 Special Issue Proposal
IJDWM publishes special issues on the recent trends in Data Warehousing and Mining
and related issues. A short proposal containing the title of proposed special issue, tenta-
tive list of invited authors, suggested date of publication and a call-for-papers should be
sent to david.taniar@infotech.monash.edu.au for review.

International Editorial Review Board

IJDWM is listed in the following indexes: Burrelle’s Media Directory; Cabell’s Directory; CSA Illumina; DEST Register
of Refereed Journals; GetCited; The Index of Information Systems Journals; INSPEC; MediaFinder; Standard Periodical
Directory; Ulrich’s International Periodicals Directory

	 Survey Article

1	 A Survey on Temporal Data Warehousing
	 Matteo Golfarelli, DEIS - University of Bologna, Italy
	 Stefano Rizzi, DEIS - University of Bologna, Italy

	 Research Articles

18	 Lossless Reduction of Datacubes using Partitions
	 Alain Casali, Aix-Marseille Universités, France
	 Sébastien Nedjar, Aix-Marseille Universités, France
	 Rosine Cicchetti, Aix-Marseille Universités, France
	 Lotfi Lakhal, Aix-Marseille Universités, France
	 Noël Novelli, Aix-Marseille Universités, France

36	 A Parameterized Framework for Clustering Streams
	 Vasudha Bhatnagar, University of Delhi, India
	 Sharanjit Kaur, University of Delhi, India
	 Laurent Mignet, I.B.M., Indian Research Lab, India

57	 A Hybrid Method for High-Utility Itemsets Mining in Large High-Dimensional Data
	 Guangzhu Yu, Donghua University, China
	 Shihuang Shao, Donghua University, China
	 Bin Luo, Guangdong University of Technology, China
	 Xianhui Zeng, Donghua University, China

Table of Contents

International Journal of
Data Warehousing and Mining

January-March 2009, Vol. 5, No. 1

International Journal of
Data Warehousing and Mining

Guidelines for Manuscript Submissions

Mission: International Journal of Data Warehousing and Mining (IJDWM) aims to publish and disseminate knowl-
edge on an international basis in the areas of data warehousing and data mining. It is published multiple times a year, with
the purpose of providing a forum for state-of-the-art developments and research, as well as current innovative activities in
data warehousing and mining. In contrast to other journals, this journal focuses on the integration between the fields of data
warehousing and data mining, with emphasize on the applicability to real world problems. The journal is targeted at both
academic researchers and practicing IT professionals.

Coverage: The journal is devoted to the publications of high quality papers on theoretical developments and practical
applications in data warehousing and data mining. Original research papers, state-of-the-art reviews, and technical notes
are invited for publications. The journal accepts paper submission of any work relevant to data warehousing and data min-
ing. Special attention will be given to papers focusing on mining of data from data warehouses; integration of databases,
data warehousing, and data mining; and holistic approaches to mining and archiving data. A summary of the scope of data
warehousing and mining includes: data models; data structures; design data warehousing process; online analytical process;
tools and languages; data mart and practical issues; data mining methods. For a full listing of coverage topics, please visit
www.igi-global.com/ijdwm.

Originality: Prospective authors should note that only original and previously unpublished manuscripts will be considered.
Furthermore, simultaneous submissions are not acceptable. Submission of a manuscript is interpreted as a statement of
certification that no part of the manuscript is copyrighted by any other publication nor is under review by any other formal
publication. It is the primary responsibility of the author to obtain proper permission for the use of any copyrighted materi-
als in the manuscript, prior to the submission of the manuscript.

Style: Submitted manuscripts must be written in the APA (American Psychological Association) editorial style. Refer-
ences should relate only to material cited within the manuscript and be listed in alphabetical order, including the author’s
name, complete title of the cited work, title of the source, volume, issue, year of publication, and pages cited. Please do not
include any abbreviations. See the following examples:
Example 1: Single author periodical publication.
Smith, A. J. (2002). Information and organizations. Management Ideology Review, 16(2), 1-15.

Example 2: Multiple authors periodical publication.
Smith, A. J., & Brown, C. J. (1988). Organizations and information processing. Management Source, 10(4), 77-88.

Example 3: Books.
Smith, A. J. (2002). Information booklet. New York: J.J. Press.

State author’s name and year of publication where you use the source in the text. See the following:
Example 1:
In most organizations, information resources are considered a major resource (Brown, 1988; Smith, 2002).

Example 2:
Brown (2002) states that the value of information is recognized by most organizations.

Direct quotations of another author’s work should be followed by the author’s name, date of publication, and the page(s) on
which the quotation appears in the original text.
Example 1:
Brown (1989) states that “the value of information is realized by most organizations” (p. 45).

Example 2:
In most organizations, “information resources are considered to be a major organization asset” (Smith, 2002, pp. 35-36)
and must be carefully monitored by the senior management.

For more information please consult the APA manual.

Review Process: To ensure the high quality of published material, IJDWM utilizes a group of experts to review submitted
manuscripts. Upon receipt of the manuscript, two reviewers are selected from the Editorial Review Board of the journal.
The selection is based upon the particular area of expertise of the reviewers, matched to the subject matter of the submis-
sion. An additional ad-hoc reviewer is also selected to review the manuscript. Therefore, each submission is accordingly
blind reviewed by at least three reviewers. Revised manuscripts will be reviewed again by the original review panel with
the addition of one new reviewer. Return of a manuscript to the author(s) for revision does not guarantee acceptance of the
manuscript for publication. The final decision will be based upon the comments of the reviewers, upon their second review
of the revised manuscript.

Copyright: Authors are asked to sign a warranty and copyright agreement upon acceptance of their manuscript, before
the manuscript can be published. All copyrights, including translation of the published material into other languages are
reserved by the publisher, IGI Global. Upon transfer of the copyright to the publisher, no part of the manuscript may be
reproduced in any form without written permission of the publisher.

Submission: Authors are asked to submit their manuscripts for possible publication by e-mail as a file attachment in
Microsoft Word or RTF (Rich Text Format) to david.taniar@infotech.monash.edu.au. The main body of the e-mail mes-
sage should contain the title of the paper and the names and addresses of all authors. Manuscripts must be in English. The
author’s name should not be included anywhere in the manuscript, except on the cover page. Manuscripts must also be
accompanied by an abstract of 100-150 words, precisely summarizing the mission and object of the manuscript.

Length: The length of the submitted manuscript is not specifically limited, however, the length should be reasonable in
light of the chosen topic. Discussion and analysis should be complete but not unnecessarily long or repetitive.

Correspondence: The acknowledgment letter regarding the receipt of the manuscript will be promptly sent. The review
process will take approximately 8-16 weeks, and the author will be notified concerning the possibility of publication of the
manuscript as soon as the review process is completed. All correspondence will be directed to the first author of multi-au-
thored manuscripts. It is the responsibility of the first author to communicate with the other author(s). Authors of accepted
manuscript will be asked to provide a final copy of their manuscript in either Word or RTF text format stored on a 3 1/2"
disk, zip disk or CD-ROM, accompanied by a hardcopy of the manuscript and the original signed copy of the Warranty and
Copyright Agreement. The accepted manuscript will be edited by the Journal copyeditor for format and style.

Book Reviews: IJDWM invites prospective book reviewers to submit their review of either textbooks or professional
books for possible inclusion in the journal. Reviewers should focus on the following guidelines when developing the book
review:
•	 Book reviews must not exceed 1,500 words.
•	 Reviews should summarize the book and indicate the highlights, strengths, and weaknesses of the book.
•	 Reviews should evaluate the organizational and managerial applications of the material discussed in the book relevant

to information resources and technology management.
•	 Reviews should critique and constructively evaluate the author’s work and not merely list the chapters’ contents.
•	 The writing style, accuracy, relevance, and the need for such a work in the discipline should be analyzed.
•	 The review must include the title of the book, author, publishing company, publication date, number of pages, cost (if

listed), and ISBN number.
•	 Each submission must be accompanied by a short biography of the reviewer.

Case Studies: The IJDWM encourages submissions of case studies based on actual scenarios related to practice-based
issues and practical applications of data warehousing and mining. Case studies must not exceed 2000 words and must
provide adequate information regarding the educational environment upon which the study is based, presentation of the is-
sues involved, coverage of any experiments or techniques involved, and elaborations of the lessons learned or conclusions
drawn from the study.

All submissions and questions should be forwarded to:

David Taniar, Editor-in-Chief
School of Business Systems, Monash University

Clayton, Victoria, 3800, Australia
david.taniar@infotech.monash.edu.au

Prospective authors are invited to submit manuscripts for consideration for publication in the Interna-
tional Journal of Data Warehousing and Mining. IJDWM publishes original material concerned with
all aspects of data warehousing and mining. The journal invites both concep-
tual and empirical manuscripts of high quality not currently under review by
another publication.

MISSION:
The IJDWM aims to publish and disseminate knowledge on an international
basis in the areas of data warehousing and data mining. It is published multiple
times a year, with the purpose of providing a forum for state-of-the-art develop-
ments and research, as well as current innovative activities in data warehousing
and mining. In contrast to other journals, this journal focuses on the integration
between the fields of data warehousing and data mining, with emphasis on the
applicability to real world problems. The journal is targeted at both academic
researchers and practicing IT professionals.

COVERAGE/MAJOR TOPICS:
• data models
• data structures
• data mart
• mining databases
• and more! See www.igi-global.com/ijdwm

All submissions should be emailed to: david.taniar@infotech.monash.edu.au

An official publication of the Information Resources Management Association!

Now when your institution’s library subscribes to any IGIP journal, it receives the print version
as well as the electronic version for one inclusive price. For information contact a
customer service representative at cust@igi-global.com or 717/533-8845, ext. 100

International Journal of
Data Warehousing and Mining

Call for Articles

Full submission guidelines
available at:

http://www.igi-global.com

ISSN 1548-3924
eISSN 1548-3932

Published quarterly

Receive a FREE JOURNAL SUBSCRIPTION when you join the Information Resource
Management Association! Choose any of our journals to receive free with your paid membership
to IRMA and recieve additional discounts for further journal subscriptions. For more information
please visit www.irma-international.org.

All institutional subscriptions include free online access!

Please contact cust@igi-global.com for more information.

PLEASE RECOMMEND THIS JOURNAL TO YOUR LIBRARY!

IGI Publishing
701 E. Chocolate Ave., Suite 200
Hershey, PA 17033-1240, USA
Tel: 717/533-8845
Fax 717/533-8661

IGIP

New for 2009!

Order online at www.igi-global.com or call 717.533.8845 ext.100
Mon–Fri 8:30am–5:00pm (EST) or fax 24 hours a day 717.533.8661

IGI PUBLISHINGIGIP

I
G
I J
o
u
r
n
a
l
s

The goal of the International Journal of Agent Technologies and Systems is to increase aware-
ness and interest in agent research, encourage collaboration and give a representative overview
of the current state of research in this area. It aims at bringing together not only scientists from
different areas of computer science, but also researchers from different studying similar
concepts. The journal will serve as an inclusive forum for discussion on ongoing or completed
work in both theoretical and practical issues of intelligent agent technologies and multi-agent
systems.
The International Journal of Agent Technologies and Systems focuses on all aspects of agents
and multi-agent systems, with a particular emphasis on how to modify established learning
techniques and/or create new learning paradigms to address the many challenges presented by
complex real-world problems.

The objective of the International Journal of E-Services and Mobile Applications is to be
a truly interdisciplinary journal providing comprehensive coverage and understanding of all
aspects of e-services, self-services and mobile communication from different including
marketing, management, and MIS. The journal invites contributions that are both empirical
and conceptual, and is open to all types of research methodologies both from academia and
industry.

In an ambient intelligence world, devices work in concert to support people in carrying out everyday
life activities and tasks in a natural way using information and intelligence that is hidden in the net-
work connecting these devices. The International Journal of Ambient Computing and Intelligence
will speci cally focus on the convergence of several computing areas. The t is ubiquitous comput-
ing which focuses on self-testing and self repairing software, privacy ensuring technology and the
development of various ad hoc networking capabilities that exploit numerous low-cost computing
devices. The second key area is intelligent systems research, which provides learning algorithms and
pattern matchers, speech recognition and language translators, and gesture classi cation and situa-
tion assessment. Another area is context awareness which attempts to track and position objects of all
types and represent objects’ interactions with their environments. Finally, an appreciation of human-
centric computer interfaces, intelligent agents, multimodal interaction and the social interactions of
objects in environments is essential.

The International Journal of Sociotechnology and Knowledge Development wishes to publish
papers that offer a detailed analysis and discussion on sociotechnical philosophy and practices
which underpin successful organizational change thus building a more promising future for
today’s societies and organizations.
It will encourage interdisciplinary texts that discuss current practices as well as demonstrat-
ing how the advances of - and changes within - technology affect the growth of society (and
vice versa).
The aim of the journal is to bring together the expertise of people who have worked practically
in a changing society across the world for people in the of organizational development and
technology studies including information systems development and implementation.

International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Abstract

Data warehouses are information repositories specialized in supporting decision making. Since the de-
cisional process typically requires an analysis of historical trends, time and its management acquire a
huge importance. In this paper we consider the variety of issues, often grouped under term temporal data
warehousing, implied by the need for accurately describing how information changes over time in data
warehousing systems. We recognize that, with reference to a three-levels architecture, these issues can
be classified into some topics, namely: handling data/schema changes in the data warehouse, handling
data/schema changes in the data mart, querying temporal data, and designing temporal data warehouses.
After introducing the main concepts and terminology of temporal databases, we separately survey these
topics. Finally, we discuss the open research issues also in connection with their implementation on com-
mercial tools.

Keywords:	 business intelligence; data mart; data warehouse; multidimensional database design;
spatiotemporal database

Introduction

At the core of most business intelligence applica-
tions, data warehousing systems are specialized
in supporting decision making. They have been
rapidly spreading within the industrial world
over the last decade, due to their undeniable
contribution to increasing the effectiveness
and efficiency of the decisional processes
within business and scientific domains. This
wide diffusion was supported by remarkable
research results aimed at improving querying
performance, at refining the quality of data, and

at outlining the design process, as well as by the
quick advancement of commercial tools.

In the remainder of the paper, for the sake
of terminological consistency, we will refer
to a classic architecture for data warehousing
systems, illustrated in Figure 1, that relies on
three levels:

1.	 The data sources, that store the data used
for feeding the data warehousing systems.
They are mainly corporate operational
databases, hosted by either relational or
legacy platforms, but in some cases they

Survey Article

A Survey on Temporal Data
Warehousing

Matteo Golfarelli, DEIS - University of Bologna, Italy

Stefano Rizzi, DEIS - University of Bologna, Italy

� International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

may also include external web data, flat
files, spreadsheet files, etc.

2.	 The data warehouse (also called recon-
ciled data level, operational data store or
enterprise data warehouse), a normalized
operational database that stores detailed,
integrated, clean and consistent data ex-
tracted from data sources and properly
processed by means of ETL tools.

3.	 The data marts, where data taken from
the data warehouse are summarized into
relevant information for decision making,
in the form of multidimensional cubes, to
be typically queried by OLAP and reporting
front-ends.

Cubes are structured according to the mul-
tidimensional model, whose key concepts are
fact, measure and dimension. A fact is a focus
of interest for the decisional process; its occur-
rences correspond to events that dynamically
occur within the business world. Each event

is quantitatively described by a set of numeri-
cal measures. In the multidimensional model,
events are arranged within an n-dimensional
space whose axes, called dimensions of analysis,
define different perspectives for their identi-
fication. Dimensions commonly are discrete,
alphanumerical attributes that determine the
minimum granularity for analyzing facts. Each
dimension is the root of a (roll-up) hierarchy
that includes a set of levels, each providing a
way of selecting and aggregating events. Each
level can be described by a set of properties.

As a consequence of the fact that the de-
cisional process typically relies on computing
historical trends and on comparing snapshots of
the enterprise taken at different moments, one of
the main characterizations of data warehousing
systems is that of storing historical, non volatile
data. Thus, time and its management acquire a
huge importance. In this paper we discuss the
variety of issues, often grouped under term tem-
poral data warehousing, implied by the need for

Figure 1. Three-levels architecture for a data warehousing system

International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

accurately describing how information changes
over time. These issues, arising by the never
ending evolution of the application domains,
are even more pressing today, as several mature
implementations of data warehousing systems
are fully operational within medium to large
business contexts. Note that, in comparison
with operational databases, temporal issues are
more critical in data warehousing systems since
queries frequently span long periods of time;
thus, it is very common that they are required
to cross the boundaries of different versions of
data and/or schema. Besides, the criticality of
the problem is obviously higher for systems
that have been established for a long time, since
unhandled evolutions will determine a stronger
gap between the reality and its representation
within the database, which will soon become
obsolete and useless (Golfarelli et al, 2006).

So, not surprisingly, there has been a lot
of research so far regarding temporal issues
in data warehousing systems. Basically, the
approaches devised in the literature can be
accommodated in the following (sometimes
overlapping) categories:

•	 Handling changes in the data warehouse
(discussed in the third section). This
mainly has to do with maintaining the data
warehouse in sync with the data sources
when changes on either of these two levels
occur.

•	 Handling data changes in the data mart
(fourth section). Events are continuously
added to data marts; while recorded events
are typically not subject to further changes,
in some cases they can be modified to ac-
commodate errors or late notifications of
up-to-date values for measures. Besides,
the instances of dimensions and hierarchies
are not entirely static.

•	 Handling schema changes in the data mart
(fifth section). The data mart structure may
change in response to the evolving business
requirements. New levels and measures
may become necessary, while others may
become obsolete. Even the set of dimen-

sions characterizing a fact may be required
to change.

•	 Querying temporal data (sixth section).
Querying in presence of data and schema
changes require specific attention, espe-
cially if the user is interested in formulat-
ing queries whose temporal range covers
different versions of data and/or schema.

•	 Designing temporal data warehouses (sev-
enth section). The specific characteristics of
temporal data warehouses may require ad
hoc approaches for their design, especially
from the conceptual point of view.

The paper outline is completed by the sec-
ond section, that introduces the main concepts
and terminology of temporal databases, and by
the eighth section, that summarizes some open
issues and draws the conclusions.

TEMPORAL DATABASES

Databases where time is not represented are
often called transient databases. Within a tran-
sient database, only the current representation
of real-world objects is stored and no track of
changes is kept, so it is impossible to reconstruct
how the object was in the past. Conversely,
temporal databases focus on representing the
inherent temporal nature of objects through
the time-dependent recording of their structure
and state. Two different time dimensions are
normally considered in temporal databases,
namely valid time and transaction time (Jensen
et al., 1994). Valid time is the “real-world time”,
i.e., it expresses the time when a fact is true in
the business domain. Transaction time is the
“database system time”, i.e., it expresses the
time when facts are registered in the database.
Temporal database systems are called valid-
time databases, transaction-time databases
or bi-temporal databases depending on their
capacity to handle either or both of these two
time dimensions (Tansel et al., 1993). The
main benefit of using a bi-temporal database
is that not only the history of the changes an
object is subject to is recorded, but it is also

� International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

possible to obtain the same result from a query
independently of the time when it is formulated
(which might not happen if transaction time is
not properly represented).

In the real world, objects change in both
their state and their structure. This means that,
within a database, both the values of data and
their schema may change. Obviously, values
of data are constantly modified by databases
applications. On the other hand, modifying the
database schema is a less frequent, though still
common, occurrence in database administra-
tion. With reference to changes in the database
schema, the literature commonly distinguishes
three possibilities (Roddick, 1995):

•	 Schema modification is supported when
a database system allows changes to the
schema definition of a populated database,
which may lead to loss of data.

•	 Schema evolution is supported when a
database system enables the modification
of the database schema without loss of
existing data.

•	 Schema versioning is supported when a
database system allows the accessing of
all data, both retrospectively and pro-
spectively, through user-definable version
interfaces.

The significant difference between evolu-
tion and versioning is that the former does not
require the maintenance of a schema history,
while in the latter all past schema versions are
retained. Note that, in the context of schema
evolution and versioning, most authors agree
that there is no need to distinguish valid time
from transaction time (McKenzie & Snodgrass,
1990).

On the language side, TSQL2 (Snodgrass,
1995) is the most noticeable attempt to de-
vise a query language for relational temporal
databases. TSQL2 is a temporal extension to
the SQL-92 language standard, augmented to
enable users to specify valid-time and transac-
tion-time expressions for data retrieval. As to
querying in presence of schema versioning,
while TSQL2 only allows users to punctually

specify the schema version according to which
data are queried, other approaches also support
queries spanning multiple schema versions
(Grandi, 2002).

The concepts introduced in this section
were originally devised for operational data-
bases, and in particular for relational databases.
While in principle they can also be applied to
data warehousing systems, that in a ROLAP im-
plementations are based on relational databases,
the peculiarities of the multidimensional model
and the strong relevance of time in the OLAP
world call for more specific approaches.

HANDLING CHANGES IN the
DATA warehouse

When considering temporal data, it is first of all
necessary to understand how time is reflected
in the database, and how a new piece of infor-
mation affects existing data. From this point
of view, ������������������������������������� Devlin (1997) ����������������������� proposes the following
classification�:

•	 Transient data: alterations and deletions
of existing records physically destroy the
previous data content.

•	 Periodic data: once a record is added to
a database, it is never physically deleted,
nor is its content ever modified. Rather,
new records are added to reflect updates
or deletions. Periodic data thus represent
a complete record of the changes that have
occurred in the data.

•	 Semi-periodic data: in some situations, due
to performance and/or storage constraints,
only the more recent history of data changes
is kept.

•	 Snapshot data: a data snapshot is a stable
view of data as it exists at some point in
time, not containing any record of the
changes that determined it. A series of
snapshots can provide an overall view of
the history of an organization.

Data sources normally adopt either a tran-
sient or a (semi-)periodic approach, depending

International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

on whether the application domains requires
keeping history of past data or not. The histori-
cal depth of a data warehouse is typically not
less than the one of its data sources, thus data
warehouses more often contain periodic data.
Conversely, data marts normally conform to
the snapshot model.

In order to model historical data in the data
warehouse, Abello and ���������������������� Martín���������������� (2003) propose
a bi-temporal storage structure where each
attribute is associated to two couples of times-
tamps, so as to track the history of its values
according to both valid and transaction time.
Each attribute, or each set of attributes having
the same behaviour with reference to changes
(i.e., such that whenever an attribute in the set
changes its value, all the others change too),
is stored in a separate table so that a change
occurred to one concept does not affect the
other concepts. Obviously, such normalized
and time-oriented structure is not suited for
querying, that will take place on denormalized
data marts fed from the data warehouse.

Since the data warehouse can be thought of
as a set of derived, materialized views defined
over a set of source schemata, the problem of
evolving the content and the schema of derived
views in connection to the source changes is
highly relevant in the context of temporal data
warehouses. Bellahsene (2002) distinguishes
two subproblems: view maintenance and view
adaptation.

View maintenance consists in maintaining
a materialized view in response to data modi-
fications of the source relations. Considering
the width of the problem, we refer the reader
to Gupta & Mumick (1995) for a taxonomy of
view maintenance problems and a description of
the main techniques proposed in the literature.
A specific issue in view maintenance is how
to provide temporal views over the history of
source data, that may be non-temporal. We
mention two approaches in this direction. Yang
& Widom (1998) describe an architecture that
uses incremental techniques to automatically
maintain temporal views over non-temporal
source relations, allowing users to ask tempo-
ral queries on these views. De Amo & Halfeld

Ferrari Alves (2000) present a self-maintainable
temporal data warehouse that, besides a set
of temporal views, includes a set of auxiliary
relations containing only temporal information.
Such auxiliary relations are used to maintain the
data warehouse without consulting the source
databases and to avoid storing the entire history
of source databases in the warehouse.

View adaptation consists in recomputing a
materialized view in response to changes either
in the schema of the source relations or in the
definition of the view itself. Changes in the
source schemata may be due to an evolution
of the application domain they represent, or
to a new physical location for them. Changes
in the definition of the view (i.e., in the data
warehouse schema) may also be due to new
requirements of the business users who query
the data marts fed by the data warehouse. Among
the approaches in this direction we mention
the one by Bellahsene (1998), who proposes
an extended relational view model to support
view adaptation, aimed at maintaining data
coherence and preserving the validity of the
existing application programs. Performing a
schema change leads to creating a new view, by
means of an extended view definition language
that incorporates two clauses: hide, which speci-
fies a set of attributes to be hidden, and add,
that allows a view to own additional attributes
that do not belong to source relations. In the
EVE framework (���������������������������� Lee, Nica, & Rundensteiner,
2002), in order to automate the redefinition
of a view in response to schema changes in
the data sources, the �������������������������� database administrator is
allowed to embed her preferences about view
evolution into the view definition itself. The
preference-based view rewriting process, called
view synchronization, identifies and extracts
appropriate information from other data sources
as replacements of the affected components of
the original view definition, in order to produce
an alternative view that somehow preserves
the original one. Finally, the DyDa framework
(Chen, Zhang, & Rundensteiner, 2006) supports
compensating queries, that cope with erroneous
results in view maintenance due to concurrent

� International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

updates in data source, in presence of data and
schema changes.

The key idea of adaptation techniques is to
avoid recomputing the materialized view from
scratch by relying on the previous materializa-
tion and on the source relations. For instance,
Bellahsene (2002) focuses on the adaptation
of the data warehouse in response to schema
changes arising on source relations located on
multiple sites. To adapt the extent of the data
warehouse in response to these changes, she
adopts rewriting algorithms that make use of
containment checking, so that only the part of
the new view that is not contained in the old
view will be recomputed. In the same context,
a distinctive feature of the AutoMed system
(Fan & Poulovassilis, 2004) is the capability
of handling not only schema evolutions in
materialized data integration scenarios, but also
changes in the data model in which the schema
is expressed (e.g., XML vs. relational). This is
achieved by applying sequences of primitive
transformations to a low-level hypergraph-
based data model, in whose terms higher-level
modeling languages are defined.

With reference to the problem of keeping
the data warehouse in sync with the sources,
Wrembel and Bebel (2007) propose a metamod-
el for handling changes in the operational data
sources, which supports the automatic detec-
tion of structural and content changes in the
sources and their automatic propagation to the
data warehouse.

Finally, Combi & Oliboni (2007) focus on
the management of time-variant semi-structured
XML data within the data warehouse. In par-
ticular, they propose a representation based on
graphs whose nodes denote objects or values
and are labeled with their validity interval; the
constraints related to correct management of
time are then discussed.

Handling DATA Changes in
the Data Mart

Content changes result from user activities that
perform their day-to-day work on data sources

by means of different applications (Wrembel
& Bebel, 2007). These changes are reflected in
the data warehouse and then in the data marts
fed from it.

The multidimensional model provides
direct support for representing the sequence of
events that constitute the history of a fact: by
including a temporal dimension (say, with date
granularity) in the fact, each event is associ-
ated to its date. For instance, if we consider an
ORDER fact representing the quantities in the
lines of orders received by a company selling
PC consumables, the dimensions would prob-
ably be product, orderNumber, and orderDate.
Thus, each event (i.e., each line of order)
would be associated to the ordered product, to
the number of the order it belongs to, and to
the order date.

On the other hand, the multidimensional
model implicitly assumes that the dimensions
and the related levels are entirely static. This
assumption is clearly unrealistic in most cases;
for instance, considering again the order domain,
a company may add new categories of products
to its catalog while others can be dropped, or the
category of a product may change in response
to the marketing policy.

Another common assumption is that, once
an event has been registered in a data mart, it is
never modified so that the only possible writing
operation consists in appending new events as
they occur. While this is acceptable for a wide
variety of domains, some applications call for
a different behavior; for example the quantity
of a product ordered in a given day could be
wrongly registered or could be communicated
after the ETL process has run.

These few examples emphasize the need
for a correct handling of changes in the data
mart content. Differently from the problem of
handling schema changes, the issues related to
data changes have been widely addressed by
researchers and practitioners, even because in
several cases they can be directly managed in
commercial DBMSs. In the following subsec-
tions we separately discuss the issues related to
changes in dimensional data and factual data,
i.e., events��.

International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Changes in Dimensional Data

By this term we mean any content change that
may occur within an instance of a hierarchy,
involving either the dimension itself, or a level,
or a property. For instance, considering a product
hierarchy featuring levels type and category,
the name of a product may change, or a new
category may be introduced so that the existing
types have to be reassigned to categories.

The study of changes in dimensional data
has been pioneered by Kimball (1996), who
coined the term slowly-changing dimension to
point out that, differently from data in fact tables,
changes within the dimension tables occur less
frequently. He proposed three basic modeling
solutions for a ROLAP implementation of
the multidimensional model, each inducing a
different capability of tracking the history of
data. In the Type I solution he simply proposes
to overwrite old tuples in dimension tables
with new data: in this case, tracking history is
not possible but changes in the hierarchy data
keep the data mart up-to-date. Conversely, in
the Type II solution, each change produces a
new record in the dimension table: old events
stay related to the old versions of hierarchies,
while new events are related to the current
version. In order to allow two or more tuples
representing the same hierarchy instance to be
included in the dimension table, surrogate keys
must necessarily be adopted. Finally, the Type
III solution is based on augmenting the schema
of the dimension table by representing both the
current and the previous value for each level or
attribute subject to change.

Other solutions, based on these basic ones,
have been proposed over time. In particular, a
complete historicization of the dimension tables
determines higher expressivity. This can be ob-
tained for instance as an extension of Type II, by
adding to the dimension table schema a couple
of timestamps storing the validity interval for
each tuple, plus an attribute storing the surro-
gate key of the first version of the tuple. This
solution is sometimes called Type VI (I+II+III)
since it covers all the previous ones.

The solutions discussed so far have dif-
ferent querying capabilities; with reference
to the terminology proposed by SAP (2000),
three main querying scenarios can be distin-
guished:

•	 Today is yesterday: all events are related
to the current value of the hierarchy. This
scenario is supported by all the discussed
solutions.

•	 Today or Yesterday: each event is related
to the hierarchy value that was valid when
the event occurred. This scenario, that re-
constructs the historical truth, is supported
by Type II and VI solutions.

•	 Yesterday is Today: each event is related
to the hierarchy value that was valid at a
given time in the past. This scenario is
supported by Type VI solution only.

Other solutions for handling changes in
dimensional data have been devised thereafter.
Two relevant proposals, that study the problem
from a more conceptual point of view, are by
Bliujute et al. (1998) and Pedersen and Jensen
(1999). The first one proposes a temporal star
schema that, differently from the traditional one,
omits the time dimension table and timestamps
each row in every table instead, treating the fact
table and the dimension tables equally with
respect to time. Similarly, the second one pro-
poses to handle changes by adding timestamps
to all the components of a multidimensional
schema: the values of both dimensions and
facts, the inter-level partial order that shapes
hierarchy instances and the fact-dimension
relationships. Another model that supports
changes in data by timestamping dimensional
data is COMET (Eder, Koncilia, & Morzy,
2002), that also supports schema versioning
using a fully historicized meta-model. Finally,
Chamoni and Stock (1999) suggest to couple
the multidimensional cube with meta-cubes
that store dimension structures together with
their timestamps.

A model supporting data changes should
be coupled with meaningful operators to
carry them out. An interesting proposal in this

� International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

direction comes from Hurtado,������������ Mendelzon,
& Vaisman���������������������������������� ��������������������������������� (1999b), who introduces a set of
high-level operators based on sequences of
elemental operators (�������������������� Hurtado,������������ Mendelzon,
& Vaisman,��������������������������������� �������������������������������� 1999a) for both schema and data
changes. The operators for data changes are
reclassify, that changes the roll-up partial
order between levels, split, that reorganizes a
hierarchy after one instance has been replaced
by two or more ones, merge, that merges two
instances of a hierarchy into a single one, and
update, that simply changes the value of an
instance without affecting the roll-up partial
order. Since changes to hierarchy instances
could affect summarizability, the definition of
models and operators is usually coupled with
a set of constraints aimed at enforcing data
consistency (������������������������������� Hurtado,����������������������� Mendelzon, & Vaisman,
1999b; ������������������������������������� Eder, ������������������������������� Koncilia, & Morzy,������������� 2002; ������Letz,
Henn, & Vossen, 2002).

Changes in Factual Data

We start this section by preliminarily mention-
ing the two basic paradigms introduced by
Kimball (1996) for representing inventory-like
information in a data mart: the transactional
model, where each increase and decrease in the
inventory level is recorded as an event, and the
snapshot model, where the current inventory level
is periodically recorded. A similar characteriza-
tion is proposed by Bliujute et al. (1998), who
distinguish between event-oriented data, like
sales, inventory transfers, and financial transac-
tions, and state-oriented data, like unit prices,
account balances, and inventory levels. This has
been later generalized to define a classification
of facts based on the conceptual role given to
events (Golfarelli & Rizzi, 2007b):

•	 Flow facts (flow measures in Lenz &
Shoshani, 1997) record a single transaction
or summarize a set of transactions that oc-
cur during the same time interval; they are
monitored by collecting their occurrences
during a time interval and are cumulatively
measured at the end of that period. Examples
of flow facts are orders and enrollments.

•	 Stock facts (stock measures in Lenz &
Shoshani, 1997) refer to an instant in time
and are evaluated at that instant; they are
monitored by periodically sampling and
measuring their state. Examples are the
price of a share and the level of a river.

By the term changes in factual data we mean
any content change an event may be subject to,
involving either the values of its measures or the
dimensional elements it is connected to. Changes
in factual data are a relevant issue in all those
cases where the values measured for a given
event may change over a period of time, to be
consolidated only after the event has been for
the first time registered in the data mart. These
late measurements typically happens when the
early measurements made for events are subject
to errors (e.g., the amount of an order may be
corrected after the order has been registered) or
when events inherently evolve over time (e.g.,
notifications of university enrollments may be
received and registered several days after they
were issued). This problem becomes even more
evident as the timeliness requirement takes more
importance (Jarke, Jeusfeld, Quix, & Vassiliadis,
1999). This is the case for zero-latency data ware-
housing systems (Bruckner & Tjoa, 2002), whose
goal is to allow organizations to deliver relevant
information as fast as possible to knowledge
workers or decision systems that need to react
in near real-time to new information.

In these contexts, if the up-to-date state is to
be made timely visible to the decision makers,
past events must be continuously updated to
reflect the incoming late measurements. Unfor-
tunately, if updates are carried out by physically
overwriting past registrations of events, some
problems may arise. In fact, accountability and
traceability require the capability of preserving
the exact information the analyst based her de-
cision upon. If the old registration for an event
is replaced by its latest version, past decisions
can no longer be justified. Besides, in some ap-
plications, accessing only up-to-date versions
of information is not sufficient to ensure the
correctness of analysis. A typical case is that of
queries requiring to compare the progress of an

International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009 �

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

ongoing phenomenon with past occurrences of
the same phenomenon: since the data recorded
for the ongoing phenomenon are not consolidated
yet, comparing them with past consolidated data
may not be meaningful (Golfarelli & Rizzi,
2007b).

Supporting accountability and traceability
in presence of late measurements requires the
adoption of a bi-temporal solution where both
valid and transaction time are represented by
means of timestamps. Only few approaches in
the literature are specifically focused on studying
this specific topic. Kimball (2000) states that a
bi-temporal solution may be useful to cope with
late measurements. Bruckner & Tjoa (2002)
discuss the problem of temporal consistency in
consequence of delayed discovery of real-world
changes and propose a solution based on valid
time, revelation time and loading time. Loading
time is the point in time when a new piece of
information is loaded in the data mart, while
revelation time is the point in time when that
piece of information was realized by at least one
data source. Finally, Golfarelli & Rizzi (2007b)
propose to couple valid time and transaction
time and distinguish two different solutions for
managing late measurements: delta solution,
where each new measurement for an event is
represented as a delta with respect to the previous
measurement, and transaction time is modeled by
adding to the schema a new temporal dimension
to represent when each registration was made in
the data mart; and consolidated solution, where
late measurements are represented by recording
the consolidated value for the event, and transac-
tion time is modeled by two temporal dimensions
that delimit the time interval during which each
registration is current.

Handling SCHEMA
Changes in the Data Mart

According to (Wrembel & Bebel, 2007), schema
changes in the data mart may be caused by
different factors:

•	 Subsequent design iterations in the context
of an incremental approach to data mart
design.

•	 Changes in the user requirements, triggered
for instance by the need for producing more
sophisticated reports, or by new categories
of users that subscribe to the data mart.

•	 Changes in the application domain, i.e.,
arising from modifications in the busi-
ness world, such as a change in the way
a business is done, or a changing in the
organizational structure of the company.

•	 New versions of software components
being installed.

•	 System tuning activities.

For instance, it may be necessary to add a
subcategory level to the product hierarchy to
allow more detailed analysis, or to add a mea-
sure revenueInEuro due to the introduction of
a new currency.

As stated in the second section, depending
on how previous schema versions are man-
aged, two main classes of approaches may be
distinguished: schema evolution, that allows
modifications of the schema without loss of data
but does not maintain the schema history, and
schema versioning, where past schema defini-
tions are retained so that all data may be accessed
through a version specified by the user. In the
two following subsection these two classes of
approaches will be separately surveyed.

Evolution

The main problem here is to support a set of
operators for changing the data mart schema,
while enabling lossless migration of existing
data from the past schema version to the new
one.

In this context, FIESTA is a methodology
where the evolution of multidimensional sche-
mata is supported on a conceptual level, thus
for both ROLAP and MOLAP implementations
(Blaschka, Sapia, & Höfling, 1999; Blaschka,
2000). Core of the approach is a schema evolu-
tion algebra which includes a formal multidi-
mensional data model together with a wide set

10 International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

of schema evolution operations, whose effects
on both schema and instances are described.
Essentially, the operations allow dimensions,
hierarchy levels, properties and measures to
be added and deleted from the multidimen-
sional schema. Since OLAP systems are often
implemented on top of relational DBMSs, the
approach also shows how a multidimensional
schema can be mapped to a relational schema by
means of a meta-schema that extends the cata-
logue of the underlying DBMS. Each sequence
of evolution operations is then transformed into a
sequence of relational evolution commands that
adapt the relational database schema together
with its instances, and update the contents of
the meta-schema accordingly.

Conversely, in (Kaas, Pedersen, & Rasmus-
sen, 2004) the evolution problem is investigated
with particular reference to its impact on the
logical level for ROLAP implementations,
namely, on star and snowflake schemata. Eight
basic evolution operators are defined (insert/de-
lete dimension, level, property, and measure).
For each of them, the changes implied on star
and snowflake schemata are described and their
impact on existing SQL queries in reporting
tools is discussed. Remarkably, an in-depth
comparison reveals that the star schema is gen-
erally more robust than the snowflake schema
against schema changes.

A comprehensive approach to evolution
is the one jointly devised at the Universities of
Toronto and Buenos Aires. The fundamentals
are laid by Hurtado, Mendelzon, & Vaisman
(1999a), who propose a formal model for updat-
ing dimensions at both the schema and instance
level, based on a set of modification operators
(generalize, specialize, relate/unrelated/delete
level are those defined at the schema level). An
incremental algorithm for efficiently maintain-
ing a set of materialized views in the presence
of dimension updates is also presented. This
work is then extended by Vaisman, Mendelzon,
Ruaro, & Cymerman (2004) by introducing
TSOLAP, an OLAP server supporting dimension
updates and view maintenance, built following
the OLE DB for OLAP proposal. The approach
is completed by MDDLX, an extension of MDX

(Microsoft’s language for OLAP) with a set of
statements supporting dimension update opera-
tors at both schema and instance levels.

A relevant aspect related to evolution is
how changes in schema affect the data mart
quality, which is discussed in (Quix, 1999). A
set of schema evolution operators is adapted
from those for object-oriented databases; for
each operator, its impact on the quality fac-
tors (such as completeness, correctness, and
consistency between the conceptual and logi-
cal schema) as emerged in the context of the
DWQ Project - Foundations of Data Warehouse
Quality (Jarke, Jeusfeld, Quix, & Vassiliadis,
1999) is discussed. The tracking of the history
of changes and the consistency rules to enforce
when a quality factor has to be re-evaluated
due to evolution is supported by an ad hoc
meta-model.

Versioning

According to the frequently cited definition
by Inmon (1996), one of the characteristic
features of a data warehouse is its non-volatil-
ity, which means that data is integrated into
the data warehousing system once and remains
unchanged afterwards. Importantly, this feature
implies that the re-execution of a single query
will always produce the same result. In other
words, past analysis results can be verified
and then inspected by means of more detailed
OLAP sessions at any point in time. While
non-volatility in the presence of changes at
the data level can be achieved by adopting one
of the solutions discussed in the third section,
non-volatility in the presence of changes at the
schema level requires some versioning approach
to be undertaken. In fact, it is easy to see that
the ability to re-execute previous queries in the
presence of schema changes requires access to
past schema versions, which cannot be achieved
with an evolution approach.

The first work in this direction is COMET
(Eder, Koncilia, & Morzy, 2002), a metamodel
that supports schema and instance versioning.
All classes in the metamodel are timestamped
with a validity interval, so multiple, subsequent

International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009 11

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

versions of cubes can be stored and queried.
Transformation of data from one version into
the (immediate) succeeding or preceding one
is supported; though the paper reports no
details on how a new version can be obtained
from the previous one, a comprehensive set of
constraints that the versions have to fulfill in
order to ensure the integrity of the temporal
model is proposed.

The peculiarity of the timestamp-based
versioning model proposed by Body, Miquel,
Bédard, and Tchounikine (2003) is that hi-
erarchies are deduced from the dimensions
instances, so that explicitly defining the mul-
tidimensional schema is not necessary. In this
way, schema changes are implicitly managed
as a result of handling changes in instances.
On the other hand, the versioning approach
proposed by Ravat, Teste, & Zurfluh (2006)
uses a constellation of star schemata to model
different versions of the same fact, and populates
versions by means of mapping functions.

A comprehensive approach to versioning
is presented by Wrembel and Bebel (2007).
Essentially, they propose two metamodels: one
for managing a multi-version data mart and one
for detecting changes in the operational sources.
A multi-version data mart is a sequence of
versions, each composed of a schema version
and an instance version. Remarkably, besides
“real” versions determined by changes in the
application domain or in users’ requirements,
also “alternative” versions are introduced, to be
used for simulating and managing hypotheti-
cal business scenarios within what-if analysis
settings.

Another approach to versioning specifically
oriented to supporting cross-version queries is
the one by Golfarelli, Lechtenbörger, Rizzi and
Vossen (2006). Here, multidimensional sche-
mata are represented as graphs of simple func-
tional dependencies, and an algebra of graph
operations to define new versions is defined.
Data migration from the old to the new version
is semi-automated, i.e., based on the differences
between the two versions the system suggests
a set of migration actions and gives support for
their execution. The key idea of this approach

is to support flexible cross-version querying by
allowing the designer to enrich previous ver-
sions using the knowledge of current schema
modifications. For this purpose, when creating a
new schema version the designer may choose to
create augmented schemata that extend previous
schema versions to reflect the current schema
extension, both at the schema and the instance
level. In a nutshell, the augmented schema
associated with a version is the most general
schema describing the data that are actually
recorded for that version and thus are available
for querying purposes. Like for migration, a set
of possible augmentation actions is proposed
to the designer (e.g., the designer may choose
to manually insert values of a newly added at-
tribute for hierarchy instances whose validity
was limited to previous versions).

To the best of our knowledge, only two
approaches use both valid and transaction time
in the context of versioning. Koncilia (2003)
presents a bi-temporal extension of the COMET
metamodel, aimed at representing not only the
valid time of schema modifications, but also the
transaction time. Rechy-Ramírez and Benítez-
Guerrero (2006) introduce a conceptual model
for bi-temporal versioning of multidimensional
schemata, aimed at enabling modifications in the
data mart schema without affecting the exist-
ing applications. Each version has a temporal
pertinence composed by a valid time and a
transaction time, thus enabling the existence of
two or more versions with the same valid time,
but different transaction times. Associated to
this model, there are 16 operators for schema
changing and a SQL-like language to create
and modify versions.

querying temporal data

The development of a model for temporal data
warehousing is of little use without an appro-
priate query language capable of effectively
handling time. In principle, a temporal query
could be directly formulated on a relational
schema using standard SQL, but this would

12 International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

be exceedingly long and complex even for a
skilled user.

In this direction, Bliujute, Saltenis, Slivin-
skas, & Jensen�������������������������������� (1998) discuss the performance
of their temporal star schema considering five
types of temporal queries. Golfarelli & Rizzi
(2007b) distinguish three querying scenarios
in presence of late measurements:

•	 Up-to-date queries, that require the most
recent measurement for each event;

•	 Rollback queries, that require a past version
measurement for each event;

•	 Historical queries, that require multiple
measurements for events, i.e., are aimed
at reconstructing the history of event
changes.

To cope with schema changes, Mendelzon
and Vaisman (2000) proposed the Temporal
OLAP (TOLAP) query language. TOLAP, based
on the temporal multidimensional model pro-
posed by Hurtado et al. (1999b), fully ���������supports
schema evolution and versioning, differently
from best-known temporal query languages
such as TSQL2 (Snodgrass, 1995), that sup-
ports versioning in a limited way only. TOLAP
combines the temporal features of TSQL2 with
some high-order features of SchemaLog in order
to support querying multidimensional data with
reference to different instants in time in a concise
and elegant way. All three querying scenarios
(today is yesterday, yesterday is today, and today
or yesterday) are supported. Also meta-queries,
e.g. concerning the instant changes to data took
place, can be expressed.

Several approaches face the problem of
formulating cross-version querying, i.e., for-
mulating queries that span different schema
versions. For instance, Morzy and Wrembel
(2004) propose a SQL extension aimed at
expressing queries on multiple (either real or
alternative) schema versions. Each query is
decomposed into a set of partial queries, one
for each schema version involved. The results
of partial queries are separately presented, an-
notated with version and metadata information;
in some cases, partial queries results can be

merged into a common set of data. In (Wrembel
& Bebel, 2007), the problem of cross-version
queries is addressed by allowing users to specify
either implicitly (by specifying a time interval
for the query) or explicitly (by specifying a
set of version identifiers) the set of versions
for querying. Similarly, in (Golfarelli & Rizzi,
2007a) the relevant versions for answering a
query are either chosen explicitly by the user
or implicitly by the system based on the time
interval spanned by the query, as shown in the
prototype implementation X-Time.

In the context of querying, a number of
works are related to the so-called temporal ag-
gregation problem, that was studied mainly in
the context of MOLAP systems and consists in
efficiently computing and maintaining temporal
aggregates. In fact, time dimensions typically
lead to a high degree of sparseness in traditional
array-based MOLAP cubes because of their
large cardinality, and to significant overhead to
answer time-parameterized range queries. For
instance, the work by Tao, Papadias, & Falout-
sos (2004) focuses on approximate temporal
aggregate processing. Specifically, for count
queries, its goal is to provide answers guaranteed
to deviate from the exact ones within a given
threshold. Riedewald, Agrawal, & El Abbadi
(2002) proposed efficient range aggregation
in temporal data warehouses by exploiting the
append-only property of the time-related dimen-
sion. Their framework allows large amounts of
new data to be integrated into the warehouse and
historical summaries to be efficiently generated,
independently of the extent of the data set in
the time dimension. Feng, Li, Agrawal, & El
Abbadi (2005) proposed a general approach
to improve the efficiency of range aggregate
queries on MOLAP data cubes in a temporal
data warehouse by separately handling time-
related dimensions to take advantage of their
monotonic trend over time. Finally, Yang &
Widom (2001) introduce a new index structure
called the SB-tree, which supports fast lookup
of aggregate results based on time, and can be
maintained efficiently when the data changes
along the time line.

International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009 13

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Designing Temporal Data
Warehouses

It is widely recognized that designing a data
warehousing system requires techniques that
are radically different from those normally
adopted for designing operational databases
(Golfarelli & Rizzi, 1999). On the other hand,
though the literature reports several attempts
to devise design methodologies for data ware-
houses, very few attention has been posed on
the specific design issues related to time. Indeed,
as stated by Rizzi et al. (2006), devising design
techniques capable of taking time and changes
into account is one of the open issues in data
warehouse research.

Pedersen and Jensen (1999) recognize
that properly handling time and changes is a
must-have for multidimensional models. Sarda
(1999) summarizes the distinguishing charac-
teristics of time dimensions: they are continu-
ously valued and constantly increasing, they
can be associated with multiple user-defined
calendars, they express the validity of both
facts and other dimensions (either in the form
of time instants or validity intervals). Sarda also
proposes a design methodology for temporal
data warehouses featuring two phases: logical
design, that produces relations characterized by
a temporal validity, and physical design, that
addresses efficient storage and access.

Considering the leading role played by
temporal hierarchies within data marts and
OLAP queries, it is worth adopting ad hoc
approaches for their modeling not only from
the logical, but also from the conceptual point
of view. While all conceptual models for data
marts allow for temporal hierarchies to be
represented like any other hierarchies, to the
best of our knowledge the only approach that
provides ad hoc concepts for modeling time
is the one by Malinowski & Zimányi (2008),
based on a temporal extension of the MultiDim
conceptual model. Different temporality types
are allowed (namely, valid time, transaction
time, lifespan, and loading time), and temporal
support for levels, properties, hierarchies, and
measures is granted.

Finally, Golfarelli & Rizzi (2007b) discuss
the different design solutions that can be adopted
in presence of late measurements, depending
on the flow or stock nature of the events and on
the types of queries to be executed.

OPEN ISSUES AND
CONCLUSIONS

In this survey we classified and discussed the
issues related to temporal data warehousing. An
in-depth analysis of the literature revealed that
the research community not always devoted a
comprehensive attention to all these aspects.
As a matter of fact, a wide agreement on the
possible design solutions has been reached only
with reference to changes in dimensional data.
As to changes in factual data and changes in
schema, though some interesting solutions have
been proposed, no broad and shared framework
has been devised yet.

Similarly, on the commercial side, changes
in data have been supported since almost a de-
cade ago. Already in year 2000, systems such
as Business Warehouse by SAP (2000) were
allowing to track changes in data and to effec-
tively query cubes based on different temporal
scenarios by letting users choose which version
of the hierarchies to adopt for querying. On the
other hand, today there still is very marginal
support to changes in schema by commercial
tools. For instance, SQL Compare compares and
synchronizes SQL Server database schemata,
and can be used when changes made to the
schema of a local database need to be pushed to
a central database on a remote server. Also, the
Oracle Change Management Pack is aimed to
report and track the evolving state of meta-data,
thus allowing to compare database schemata,
and to generate and execute scripts to carry
out the changes. In both cases, formulating a
single query spanning multiple databases with
different schemata is not possible.

We believe that, considering the maturity
of the field and the wide diffusion of data ware-
housing systems, in the near future decision
makers will be more and more demanding for

14 International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

advanced temporal support. Thus, it is essential
that both vendors and researchers be ready to
deliver effective solutions. In this direction we
envision two main open issues. On the one hand,
some research aspects indeed require further
investigation. For instance, support for cross-
version queries is not satisfactory yet, and its
impact on performance has not been completely
investigated; similarly, the effectiveness of view
adaptation approaches is still limited. On the
other hand, in order to encourage vendors to add
full temporal support to commercial platforms,
the solutions proposed in the literature should be
better harmonized to converge into a complete,
flexible approach that could be effortlessly ac-
cepted by the market.

REFERENCES
Abelló, A., & Martín, C. (2003). A Bi-temporal
Storage Structure for a Corporate Data Warehouse.
Proceedings International Conference on Enterprise
Information Systems, Angers, France, 177-183.

Bellahsene, Z. (1998). View Adaptation in Data
Warehousing Systems. Proceedings International
Conference on Database and Expert Systems Ap-
plications, Vienna, Austria, 300-309.

Bellahsene, Z. (2002). Schema Evolution in Data
Warehouses. Knowledge and Information Systems,
4(3), 283-304.

Blaschka, M. (2000). FIESTA - A Framework for
Schema Evolution in Multidimensional Databases.
PhD Thesis, Technische Universitat Munchen,
Germany.

Blaschka, M., Sapia, C., & Höfling, G. (1999). On
Schema Evolution in Multidimensional Databases.
Proceedings International Conference on Data
Warehousing and Knowledge Discovery, Florence,
Italy, 153-164.

Bliujute, R., Saltenis, S., Slivinskas, G., & Jensen,
C. S. (1998). ����������������������������� Systematic Change Management
in Dimensional Data Warehousing. Proceedings
International Baltic Workshop on Databases and
Information Systems, Riga, Latvia, 27–41.

Body, M., Miquel, M., Bédard, Y., & Tchounikine,
A. (2003). Handling Evolutions in Multidimensional

Structures. Proceedings International Conference on
Data Engineering, Bangalore, India, 581-591.

Bruckner, R., & Tjoa, A. (2002). Capturing Delays
and Valid Times in Data Warehouses - Towards
Timely Consistent Analyses. Journal of Intelligent
Information Systems, 19(2), 169-190.

Chamoni, P. & Stock, S. (1999). Temporal Structures
in Data Warehousing. Proceedings International
Conference on Data Warehousing and Knowledge
Discovery, Florence, Italy, 353-358.

Chen, S., Zhang, X., & Rundensteiner, E. (2006). ��A
Compensation-Based Approach for View Mainte-
nance in Distributed Environments. IEEE Transac-
tions of Knowledge and Data Engineering, 18(8),
1068-1081.

Combi, C. & Oliboni, B. (2007). Temporal semis-
tructured data models and data warehouses. In Data
Warehouses and OLAP: Concepts, Architectures
and Solutions, Wrembel & Koncilia (Eds.), IRM
Press, 277-297.

De Amo, S., & Halfeld Ferrari Alves, M. (2000). ���Ef-
ficient Maintenance of Temporal Data Warehouses.
Proceedings International Database Engineering
and Applications Symposium, Yokohoma, Japan
188-196.

Devlin, B. (1997). Managing Time In The Data
Warehouse. InfoDB, 11(1), 7-12.

Eder, J., & Koncilia C. (2001). Changes of Dimension
Data in Temporal Data Warehouses. Proceedings
International Conference on Data Warehousing
and Knowledge Discovery, Munich, Germany,
284-293.

Eder, J., Koncilia, C., & Morzy, T. (2002). ����The
COMET Metamodel For Temporal Data Warehouses.
Proceedings International Conference on Advanced
Information Systems Engineering, Toronto, Canada,
83-99.

Fan, H., & Poulovassilis, A. (2004). Schema Evolu-
tion in Data Warehousing Environments - A Schema
Transformation-Based Approach. Proceedings
International Conference on Conceptual Modeling,
Shanghai, China, 639-653.

Feng, Y., Li, H.-G., Agrawal, D., & El Abbadi, A.
(2005). Exploiting Temporal Correlation in Tem-
poral Data Warehouses. Proceedings International
Conference on Database Systems for Advanced
Applications, Beijing, China, 662-674.

International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009 15

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Golfarelli, M. & Rizzi, S. (1999). Designing the data
warehouse: key steps and crucial issues. Journal of
Computer Science and Information Management,
2(1), 1-14.

Golfarelli, M., Lechtenbörger, J. Rizzi, S., & Vossen,
G. (2006). Schema Versioning in Data Warehouses:
Enabling Cross-Version Querying via Schema
Augmentation. Data and Knowledge Engineering,
59(2), 435-459.

Golfarelli, M. & Rizzi, S. (2007a). X-Time: Schema
Versioning and Cross-Version Querying in Data
Warehouses. Proceedings International Conference
on Data Engineering, Istanbul, Turkey, 1471-147.

Golfarelli, M. & Rizzi, S. (2007b). Managing late
measurements in data warehouses. International
Journal of Data Warehousing and Mining, 3(4),
51-67.

Grandi, F. (2002). A Relational Multi-Schema Data
Model and Query Language for full Support of
Schema Versioning. Proceedings SEBD, Portofer-
raio, Italy, 323-336.

Gupta, A., & Mumick, I. S. (1995). Maintenance of
materialized views: problems, techniques, and ap-
plications. Data Engineering Bulletin, 18(2), 3-18.

Hurtado, C., Mendelzon, A., & Vaisman, A. (1999a).
Maintaining Data Cubes under Dimension Updates.
Proceedings International Conference on Data En-
gineering, Sydney, Austrialia, 346-355.

Hurtado, C., Mendelzon A., & Vaisman A. (1999b).
Updating OLAP Dimensions. Proceedings Interna-
tional Workshop on Data Warehousing and OLAP,
Kansas City, USA, 60-66.

Inmon, W. (1996). Building the data warehouse.
John Wiley & Sons.

Jarke, M., Jeusfeld, M., Quix, C., & Vassiliadis, P.
(1999). Architecture and Quality in Data Warehouses:
An Extended Repository Approach. Information
Systems, 24(3), 229–253.

Jensen, C., Clifford, J., Elmasri, R., Gadia, S. K.,
Hayes, P. J., & Jajodia, S. (1994). A Consensus
Glossary of Temporal Database Concepts. ACM
SIGMOD Record, 23(1), 52-64.

Kaas, C., Pedersen, T. B., & Rasmussen, B. (2004).
Schema Evolution for Stars and Snowflakes. Pro-
ceedings International Conference on Enterprise
Information Systems, Porto, Portugal, 425-433.

Kimball, R. (1996). The Data Warehouse Toolkit.
Wiley Computer Publishing.

Kimball, R. (2000). Backward in Time. Intelligent
Enterprise Magazine, 3(15).

Koncilia, C. (2003). ����������������������������� A Bi-Temporal Data Warehouse
Model. Short Paper Proceedings Conference on
Advanced Information Systems Engineering, Kla-
genfurt/Velden, Austria.

Lee, A., Nica, A., & Rundensteiner, E. (2002). ����The
EVE Approach: View Synchronization in Dynamic
Distributed Environments. IEEE Transactions on
Knowledge and Data Engineering, 14(5), 931-
954.

Lenz, H. J. & Shoshani, A. (1997). Summarizability
in OLAP and Statistical Databases. Proceedings
Statistical and Scientific Database Management
Conference, Olympia, US, 132-143.

Letz, C., Henn, E., & Vossen, G. (2002). �������Consis-
tency in Data Warehouse Dimensions. Proceedings
International Database Engineering and Application
Symposium, Edmonton, Canada, 224-232.

Malinowski, E. & Zimányi, E. (2008). A conceptual
model for temporal data warehouses and its transfor-
mation to the ER and the object-relational models.
Data & Knowledge Engineering, 64, 101-133.

McKenzie, E., & Snodgrass, R. (1990). Schema
Evolution and the Relational Algebra. Information
Systems, 15(2), 207-232.

Mendelzon, A., & Vaisman, A. (2000). Temporal
queries in OLAP. Proceedings Conference on Very
Large Data Bases, Cairo, Egypt, 242-253.

Morzy, T. & Wrembel, R. (2004). On querying ver-
sions of multiversion data warehouse. Proceedings
International Workshop on Data Warehousing and
OLAP, Washington, DC, 92-101.

Pedersen, T. B., & Jensen, C. (1998). ���������������� Research Issues
in Clinical Data Warehousing. Proceedings Statistical
and Scientific Database Management Conference,
Capri, Italy, 43-52.

Pedersen, T. B. & Jensen, C. (1999). Multidimen-
sional Data Modeling for Complex Data. Proceed-
ings International Conference on Data Engineering,
Sydney, Austrialia, 336-345.

Quix, C. (1999). Repository Support for Data
Warehouse Evolution. Proceedings International

16 International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Workshop on Design and Management of Data
Warehouses, Heidelberg, Germany.

Ravat, F., Teste, O., & Zurfluh, G. (2006). �����������A Multiver-
sion-Based Multidimensional Model. Proceedings
International Conference on Data Warehousing and
Knowledge Discovery, 65-74.

Rechy-Ramírez, E.-J. & Benítez-Guerrero, E.
(2006). ������������������������������������� A Model and Language for Bi-temporal
Schema Versioning in DataWarehouses. Proceedings
International Conference on Computing, Mexico
City, Mexico.

Riedewald, M., Agrawal, D. & El Abbadi, A. (2002).
Efficient integration and aggregation of historical
information. Proceedings SIGMOD Conference,
Madison, Wisconsin, 13-24.

Rizzi, S., Abelló, A., Lechtenbörger, J., & Trujillo,
J. (2006). Research in Data Warehouse Modeling
and Design: Dead or Alive? Proceedings Interna-
tional Workshop on Data Warehousing and OLAP,
Arlington, USA, 3-10.

Roddick, J. (1995). A Survey of Schema Version-
ing Issues for Database Systems. Information and
Software Technology, 37(7), 383-393.

SAP Institute (2000). Multi-dimensional Modeling
with SAP BW. SAP America Inc. and SAP AG.

Sarda, N. L. (1999). Temporal Issues in Data Ware-
house Systems. Proceedings International Sympo-
sium on Database Applications in Non-Traditional
Environments, Kyoto, Japan, 27-34.

Tansel, A. U., Clifford, J., Gadia, S. K., Jajodia, S.,
Segev, A., & Snodgrass, R. T. (1993). Temporal
databases: theory, design and implementation.
Benjamin Cummings.

Snodgrass, R. T. (1995). The TSQL2 Temporal Query
Language. Kluwer Academic Publishers.

Tao, Y., Papadias, D., & Faloutsos, C. (2004). Ap-
proximate Temporal Aggregation. Proceedings
International Conference on Data Engineering,
Boston, Massachusetts, 190-201.

Vaisman, A., Mendelzon, A., Ruaro, W., & Cymer-
man, S. (2004). Supporting Dimension Updates in an
OLAP Server. Information Systems, 29, 165-185.

Vaisman, A., & Mendelzon, A. (2001). A Temporal
Query Language for OLAP: Implementation and a
Case Study. Proceedings DBPL.

Wrembel, R. & Bebel, B. (2007). Metadata Manage-
ment in a Multiversion Data Warehouse. Journal of
Data Semantics, 8, 118-157.

Yang, J. & Widom, J. (1998). Maintaining Temporal
Views over Non-Temporal Information Sources
for Data Warehousing. Proceedings International
Conference on Extending Database Technology,
Valencia, Spain, 389-403.

Yang, J. & Widom, J. (2001). Incremental Compu-
tation and Maintenance of Temporal Aggregates.
Proceedings International Conference on Data
Engineering, Heidelberg, Germany, 51-60.

Matteo Golfarelli received his PhD for his work on autonomous agents in 1998. In 2000 he joined the
University of Bologna as a researcher. Since 2005 he is associate professor, teaching information systems
and database systems. He has published over 60 papers in refereed journals and international conferences
in the fields of data warehousing, pattern recognition, mobile robotics, multi-agent systems. He served in
the PC of several international conferences and as a reviewer in journals. His current research interests
include all the aspects related to business intelligence and data warehousing, in particular multidimensional
modeling, what-if analysis and BPM.

Stefano Rizzi received his PhD in 1996 from the University of Bologna, Italy. Since 2005 he is full pro-
fessor at the University of Bologna, where he is the head of the Data Warehousing Laboratory. He has
published about 100 papers in refereed journals and international conferences mainly in the fields of data
warehousing, pattern recognition, and mobile robotics. He joined several research projects on the above
areas and has been involved in the PANDA thematic network of the European Union concerning pattern-

International Journal of Data Warehousing & Mining, 5(1), 1-17, January-March 2009 17

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

base management systems. His current research interests include data warehouse design and business
intelligence, in particular multidimensional modeling, data warehouse evolution, OLAP preferences and
what-if analysis.

18 International Journal of Data Warehousing & Mining, 5(1), 18-35, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Abstract

Datacubes are especially useful for answering efficiently queries on data warehouses. Nevertheless the
amount of generated aggregated data is huge with respect to the initial data which is itself very large. Recent
research has addressed the issue of a summary of Datacubes in order to reduce their size. The approach
presented in this paper fits in a similar trend. We propose a concise representation, called Partition Cube,
based on the concept of partition and we give a new algorithm to compute it. We propose a Relational
Partition Cube, a novel ROLAP cubing solution for managing Partition Cubes using the relational technol-
ogy. Analytical evaluations show that the storage space of Partition Cubes is smaller than Datacubes. In
order to confirm analytical comparison, experiments are performed in order to compare our approach with
Datacubes and with two of the best reduction methods, the Quotient Cube and the Closed Cube.

Keywords:	 concept lattices; datacubes; ���������������� OLAP; ����������partitions

Introduction

In order to efficiency answer OLAP queries
(Chaudhuri & Dayal, 1997), a widely adopted
solution is to compute and materialize Data-
cubes (Gray et al., 1997). For example, given a
relation r over the schema R, a set of dimensions
Dim = {C1,C2,C3}, Dim ⊆ R, a measure M ∊ R,
an aggregate function f, the cube operator (Gray
et al., 1997) is expressed as follows:

SELECT C1, C2, C3, f (M)
FROM r
CUBE BY (C1, C2, C3)

Dimensions are also called categorical
attributes and r a categorical database rela-
tion. The given query achieves all the possible
group-by according to any attribute combination
belonging to the power set of Dim. It results in
what is called a Datacube, and each sub-query

Lossless Reduction of
Datacubes using Partitions

Alain Casali, Aix-Marseille Universités, France

Sébastien Nedjar, Aix-Marseille Universités, France

Rosine Cicchetti, Aix-Marseille Universités, France

Lotfi Lakhal, Aix-Marseille Universités, France

Noël Novelli, Aix-Marseille Universités, France

International Journal of Data Warehousing & Mining, 5(1), 18-35, January-March 2009 19

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

performing a single group-by yields a cuboid.
Computing Datacubes is exponential in the
number of dimensions (the lattice of the dimen-
sion set must be explored), and the problem
worsens when very large data sets are to be
aggregated. Datacubes are considerably larger
than the input relation. (Ross & Srivastava,
1997) exemplifies the problem by achieving
a full Datacube encompassing more than 210
millions of tuples from an input relation having
1 million of tuples. The problem is originated by
a twofold reason: on one hand the exponential
number of dimensional combinations to be
dealt, and on the other hand the cardinality of
dimensions. The larger dimension domains are,
the more aggregated results there are (according
to each real value combination). Unfortunately,
it is widely recognized that in OLAP databases,
data can be very sparse (Ross & Srivastava,
1997; Beyer & Ramakrishnan, 1999) thus scarce
value combinations are likely to be numerous
and, when computing entirely the Datacubes
(full Datacubes), each exception must be
preserved. In such a context, (1) approaches
favour the efficency of OLAP queries to the
detriment of storage space or (2) they favour
an optimal representation of cubes but OLAP
query performances are likely to be debased
(Kotidis & Roussopoulos, 1998).

Related work

The approaches addressing the issue of Data-
cube computation and storage attempt to
reduce at least one of the quoted drawbacks.
The algorithms Buc (Beyer & Ramakrishnan,
1999) and Hcubing (Han, Pei, Dong, & Wang,
2001) enforce antimonotone constraints and
partially compute Datacubes (iceberg cubes)
to reduce both execution time and disk storage
requirements. The underlying argument is that
OLAP users are only interested in general trends
(and not in atypical behaviors). With a similar
argumentation, other methods use the statistic
structure of data to compute density distributions

and give approximate answers to OLAP queries
(Pedersen, Jensen, & Dyreson, 1999; Vitter &
Wang, 1999; Shanmugasundaram, Fayyad, &
Bradley, 1999; Gilbert, Kotidis, Muthukrishnan,
& Strauss, 2001).

The above mentioned approaches are effi-
cient and meet their twofold objective (reduction
of execution time and space storage). However,
they are not able to answer whatever query (al-
though OLAP queries are, by their very nature,
ad hoc queries (Han & Kamber, 2001)).

Another category of approaches is the
so-called “information lossless”. They aim
to find the best compromise between OLAP
query efficiency and storage requirements
without discarding any possible query (even
unfrequent). Their main idea (see for details
(Harinarayan, Rajaraman, & Ullman, 1996;
Kotidis & Roussopoulos, 1999; Sellis, 2004;
Theodoratos & Xu, 2004; Gupta & Mumick,
2005)) is to pre-compute and store frequently
used aggregates while preserving all the data
(possibly at various aggregation levels) needed
to compute on line the result of a not foreseen
query. They are mostly found in view materi-
alization research.

The following five methods1 also fit in the
information lossless trend: the Dwarf Cube
(Sismanis, Deligiannakis, Roussopoulos, &
Kotidis, 2002), the Condensed Cube (Wang,
Lu, Feng,&Yu, 2002), the CURE for Cubes
(Morfonios & Ioannidis, 2006), the Quotient
Cube (L. Lakshmanan, Pei, & Han, 2002; L.
V. S. Lakshmanan, Pei, & Zhao, 2003) and
the Closed Cube (Casali, Cicchetti, & Lakhal,
2003b; Li & Wang, 2005; Xin, Shao, Han, &
Liu, 2006). They favor the optimization of
storage space while preserving the capability to
answer what ever query. The two latter compute
the two smallest representations of a Datacube
and thus are the most efficient for both saving
storage space and answering queries like “Is
this behavior frequent or not?”. From these
two representations, the exact data of a whole
Datacube can be retrieved by performing a
computation on line, because results of queries
are not precomputed and preserved.

20 International Journal of Data Warehousing & Mining, 5(1), 18-35, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Contribution

In this paper we pursue a new research path while
remaining in the trend of information lossless
approaches. We propose a new representation
which fully and exactly captures all the informa-
tion enclosed in a Datacube. Unlike the other
information lossless methods, our approach can
answer any query without additional execution
time. Moreover, our representation provides a
simple mechanism reducing significantly the
size of aggregates to be stored. More precisely,
the contributions described in this paper are
the following:

•	 we investigate the construction of Quotient
Cube and Closed Cube. The choice of
these two structures is motivated by their
small size (Xin et al., 2006) and theoretical
foundation: lattices and closure systems
(Ganter & Wille, 1999). We show that it is
possible to use existing efficient algorithms
originally intended for extracting frequent
patterns, in order to compute the quoted
cube representations;

•	 we propose a new concise representation
of Datacubes: the Partition Cube, based on
simple concepts which extend the ones of
the partitional model (Laurent & Spyratos,
1988). The concept of concise representa-
tion has been firstly introduced in (Mannila
& Toivonen, 1996) for frequent itemsets
and it is used in this paper as a reduced
representation of Datacubes;

•	 we introduce a depth-first search algo-
rithm called Pcube in order to build up
the Partition Cube. Pcube enumerates the
aggregates to be computed according to
the lectic order (Ganter & Wille, 1999). We
show that Pcube minimizes main memory
requirements (and avoids swaps);

•	 by considering the most used environ-
ment when managing data warehouses
(ROLAP), we propose a relational imple-
mentation of our solution (which can be
easily achieved).

•	 finally, a detailed analytical and experi-
mental comparison is made between our

representation and the Datacube, the
Quotient Cube and the Closed Cube. We
show that our representation provides an
important reduction of storage space when
compared to the Datacube. Meanwhile,
as expected the Quotient Cube and the
Closed Cube are smaller than the Partition
Cube (even if, in theory and for extreme
cases, the two former can be equal to the
size Partition Cube when |Dim| > 2). As
an additional benefit of our method, once
the Relational Partition Cube is stored,
any query can be answered on line with
no additional computation time.

The remainder of this article is organized
as follows. The following Section focuses on
the two approaches chosen as references. Our
proposal is detailed in Section Partition Cubes.
We define the concepts of our representation,
the algorithm Pcube along with a relational
implementation of our representation. We
relate analytical and experimental evaluations
in the last Sections. In conclusion, we resume
the strengths of our contribution. This article
consolidates and extends research presented
in the international conference paper (Casali,
Cicchetti, Lakhal, & Novelli, 2006).

Lossless Reduction of Datacubes
using Lattices

We focus, in this section, on the two most con-
cise representations of the Datacubes which are
information lossless and based on lattices: the
Quotient Cube and the Closed Cube. They fit
in the cube lattice framework of a categorical
database relation r: CL(r) (Casali, Cicchetti, &
Lakhal, 2003a). This framework is summarized
in appendix and an outline is also presented
in (Kudryavcev, 2006). The cube lattice is a
search space (denoted by space(r)) organizing
the tuples, possible solutions of the problem,
according to a generalization / specialization
order, denoted by ≼, capturing a similar se-
mantics than Roll-Up/Drill-Down (Gray et al.,
1997). These tuples share the same structure
than the tuples of r but attributes dimensions

International Journal of Data Warehousing & Mining, 5(1), 18-35, January-March 2009 21

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

can be provided with the value ALL (Gray et
al., 1997). Moreover, we append to these tuples
a virtual tuple which only encompasses empty
values in order to close the structure. Any tuple
of the cube lattice generalizes the tuple of empty
values. For handling the tuples of CL(r), the
operators Sum (+) and Product (•) are defined.
Provided with a couple of tuples, the sum yields
the most specific tuple which generalizes the
two operands. The Product yields the most gen-
eral tuple which specializes the two operands.
After the description of the Quotient Cube and
Closed Cube we show how to compute them
using existing closed set algorithms.

Quotient Cubes

A Quotient Cube is a summary of Datacube
for aggregate functions like Count, Min, Max,
Avg and Top-k (L. Lakshmanan et al., 2002).
Moreover, the Quotient Cube preserves the
semantics of the cube operators Rollup and Drill-
down. When introducing the Quotient Cube,
the authors use the concept of convex classes
(i.e. sets of tuples). A class C is convex if and
only if ∀c, c’ ∊ C, if it exists c’’ such that c ≼ c’’
≼ c’ thus c’’ ∊ C. Classes are built as follows.
Given an aggregate function f, the equivalence
relation ≡f is defined as a transitive and reflexive
closure of the following relation R: let t, t’ be
two tuples, tRt’ holds if and only if (i) f (t) = f
(t’) and (ii) t is either a parent or a child of t’.
Let us note by [t]≡f the equivalence class of t
([t]≡f = { t’ ∈ CL(r) such that tRt’}). Moreover,
the equivalence relation ≡f must satisfy the weak
congruence property which can be expressed
as follows: ∀c, c’, d, d’ ∈ CL(r), if c ≡f c’, d
≡f d’, c ≼ d and d’ ≼ c’, thus c ≡f d also holds.
Weak congruence property implies the convex
property for each equivalence class.

Definition 1. (Quotient Cube Lattice) - Let
CL(r) be the cube lattice of the relation r and _f
an equivalence relation on Space(r) satisfying
the weak congruence property. The Quotient
Cube Lattice QCL(r, f) = 〈{([t] ≡f, f(t)) such that t
∈ CL(r)}, Q〉 encompasses equivalence classes

induced by ≡f . For two equivalence classes A
and B ∈ QCL(r, f), we have A Q B if ∃a ∈ A
and ∃b ∈ B such that a  b.
Example 1. Let us consider the Sale relation r
(cf. table 1) which contains the attributes City
(C), Day (D), Product (P) and Quantity (Q)
yielding the quantity of products sold at a city
for a given day. The Quotient Cube lattice of
the relation in table 1 for the aggregate function
Sum is illustrated in figure 1. Classes are pro-
vided with their maximal tuple, minimal tuples
(w.r.t. ) and the value (in bold) of the measure
(original or aggregated using the function Sum).
If the maximal and minimal tuples are equal,
the class is reduced to this single tuple.

Closed Cubes

In formal concept analysis (Ganter & Wille,
1999), the closure operator (the intersection)
groups together all the binary patterns sharing
a similar support (Pasquier, Bastide, Taouil, &
Lakhal, 1999). By adopting this principle, we
define a closure operator on the cube lattice.
This operator is denoted by . For any tuple
t belonging to the search space,  (t) yields
the Sum of the tuples of the relation which
are more specific than t (i:e: (t) = +t’ : t’ ∈
r and t  t’). If for a tuple t, we have  (t) =
t, then we that say the tuple t is a closed tuple.
We group the set of closed tuples in the cube
closure system, denoted by  (r) ( (r) = { (t):
t ∈ CL(r)}). Finally, we use Birkhoff theorem
(Ganter & Wille, 1999) to construct the Closed
Cube (Casali et al., 2003b).

Theorem 1. (Casali et al., 2003b). The poset
CCL(r) = 〈{(t, f (t)) such that t ∈ (r)}, 〉 is
a complete and coatomistic lattice called the
Closed Cube. Moreover, we have:

∀t ⊆ CCL(r), ∧ T = +t ∈ Tt,

∀t ⊆ CCL(r), ∨ T = C(•t ∈ Tt)

Where ∧ stands for the meet operator and ∨ for
the join operator (Ganter & Wille, 1999).

22 International Journal of Data Warehousing & Mining, 5(1), 18-35, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Example 2. Figure 2 illustrates the Closed
Cube of the relation r which is isomorphic to
the Quotient Cube (cf. figure 1).

How to Compute Closed and
Quotient Cubes

The Closed Cube is isomorphic to the Quotient
Cube for the aggregate functions Count and Sum
(if all the values of the attribute measure are
strictly positive or negative). We can construct
a binary relation associated to the database rela-
tion r by applying an embedded order (Casali et
al., 2003a) over each tuple of r. This embedded

order associates to any value of any attribute
a single item in the associated binary relation.
There is a lattice isomorphism between the
Closed Cube and the Galois lattice (concept
lattice) computed from the underlying binary
relation. We show below how provided with
such an isomorphism it is possible to compute
Closed Cubes by reusing existing algorithms.

Theorem 2. (Casali et al., 2003b). Let r be a
categorical database relation. Then the Closed
Cube is a concise representation of a Data-
cube of r for the aggregate functions Count,
Sum,Min,Max, Avg and Top-k. Moreover:

RowID City Product Day Quantity

1 Marseilles Flower d1 2

2 Paris Sweet d2 5

3 Marseilles Sweet d1 8

4 Marseilles Sweet d2 12

Table 1. Sale Relation

Figure 1. Quotient Cube lattice for the aggregate function Sum (* ⇔ ALL)

(M, f, d1) 2

(*,f,*)

(M, s, d1) 8

(*,s,d1)

(M, s, d2) 12

(M,*,d2)

(P, s, d2) 5

(P,*,*)

(M, *, d1) 10

(*,*,d1)

(M, s, *) 20

(M,s,*)

(*, s, d2) 17

(*,*,d2)

(M, *, *) 22 (*, s, *) 25

(*, *, *) 27

(∅, ∅, ∅)

International Journal of Data Warehousing & Mining, 5(1), 18-35, January-March 2009 23

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

•	 the Closed Cube is isomorphic to the
Quotient Cube for the aggregate functions
Count and Sum (under the mentioned
conditions on the measure values);

•	 the Closed Cube is isomorphic to the Galois
lattice computed on the binary relation
resulting by the application of the embed-
ded order over each tuple of the database
relation.

The consequences of theorem 2 are espe-
cially attractive since they make it possible the
use of algorithms, proved to be very efficient
in a binary context, in order to construct the
Quotient Cube (e:g: Close (Pasquier et al., 1999)
and Titanic (Stumme,Taouil, Bastide, Pasquier,
& Lakhal, 2002)) or for computing the Closed
Cube (Close (Pasquier et al., 1999), Titanic
(Stumme et al., 2002), Charm (Zaki & Hsio,
2002), Closet (Pei, Han, & Mao, 2000)).

We use the algorithm Close (because it can
compute both the Quotient Cube and the Closed
Cube) to make experimental comparisons of our
new proposal with the two approaches described
in this section.

Partition Cubes

The approach introduced in this paper proposes
a concise representation of Datacubes: the Parti-
tion Cube. We start this section by presenting
the concepts of our approach. Then we present
an algorithm for computing such a representa-
tion. Finally, by considering the most used
environment when managing data warehouses,
we propose a relational implementation of our
solution (which can be easily achieved).

Basic Concepts

In this section, we introduce a new character-
ization of Datacube based on simple concepts
using partitions. The following definition uses
the concept of aggree sets (Mannila & Toivonen,
1996; Lopes, Petit, & Lakhal, 2002).

Definition 2 (DM-Class). Let r be a categorical
database relation and X a set of dimension attri-
butes. A dimension-measure class (DM-Class),
of a tuple t according to X, [t]X, is defined by
the set of couples (identifier(u), measure(u)) of
all the tuples u which agree with t according
to a set of attributes X (i:e: the set of tuples u

Figure 2. Hasse diagram of the Closed Cube of r

(M, f, d1) 2 (M, s, d1) 8 (M, s, d2) 12 (P, s, d2) 5

(M, *, d1) 10 (M, s, *) 20 (*, s, d2) 17

(M, *, *) 22 (*, s, *) 25

(*, *, *) 27

(∅, ∅, ∅)

24 International Journal of Data Warehousing & Mining, 5(1), 18-35, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

having the same values as t for X). Thus, we
have: [t]X = {(u[RowId], u[M]) such that u[X]
= t[X], ∀u ∈ r}.
Each DM-Class is represented by a couple of
numbers: the former is one of the identifiers
of the original tuples gathered within the con-
sidered class, and the latter is the computed
measure for the class.
Example 3. With our relation example, the
DM-Class associated to the first tuple according
to the dimension attribute City groups all the
couples (identifier, measure) for tuples satisfy-
ing, like t1, the constraint (City=‘Marseilles’):
[t1]City = {(1; 2); (3; 8); (4; 12)}.

All the DM-Classes for a dimension at-
tribute set X are gathered within a single set:
the Dimension-Measure Partition (DM-Parti-
tion).

Definition 3 (DM-Partition). Let r be a categor-
ical database relation and X a set of dimension
attributes, the DM-Partition of r according to
X, is defined as ∏X(r) = {[t]X, ∀ t ∈ r}.
Example 4. In our examples, for a better read-
ability, the DM-Classes are delimited by the
symbols ‘<’ and ‘>’ when writing the DM-Parti-
tions. Thus, in our example, the DM-Partition
associated to the attribute City is: ∏City(r) =
{< (1,2), (3,8), (4,12)>, <(2,5)> }. The one
associated to the attribute Product is: ∏Product(r)
= {< (1,2)>, <(2,5), (3,8), (4,12)>}.

Let us consider two DM-Partitions com-
puted according to the attribute sets X and Y.
Their product yields the DM-Partition accord-
ing to X ⋃ Y. Such a product is performed by
intersecting DM-classes of the two DM-Parti-
tions and preserving only not empty classes
(cardinality greater than or equal to 1).

Lemma 1. (Product of DM-Partitions). Let r
be a categorical database relation, X and Y two
sets of dimension attributes, ∏X(r) and ∏Y (r)
their DM-Partitions respectively. The product
of the DM-Partitions ∏X(r) and∏Y (r), noted
by ∏X(r) •p ∏Y (r), returns the DM-Partition
over XY and is obtained as follows: ∏X(r) •p

∏Y (r) = ∏XY(r) = {[t]Z = [t]X[t]Y : [t]Z ≠ Ø,
[t]X ∈ ∏X(r) and [t]Y ∈ ∏Y(r)}.
Example 5. Given our relation, the DM-Parti-
tions related to the attributes City and Product
are the following: ∏City(r) = {< (1, 2), (3, 8), (4,
12) >, < (2, 5) >} and ∏Product(r) = {< (1, 2) >,
< (2, 5), (3, 8), (4, 12) >}. Thus ∏City, Product(r)
= ∏City(r) •p ∏Product(r) = {< (1, 2)>, < (2, 5)>,
< (3, 8), (4, 12) >}.

Once the DM-Partitions are computed, the
cuboids of the Datacube can be easily obtained.
Any DM-Class originates a tuple of a cuboid
and the measure value is achieved by applying
the aggregate function on the set of measure
values of the DM-Class.

E x a m p l e 6 . S i n c e w e h a v e
∏City, Product(r) = {< (1, 2)>, < (2, 5)>,
< (3, 8), (4, 12) >}, thus the cuboid according
to City, Product is composed of three tuples:

(M; F; ALL; 2), (T; S; ALL; 5) and (M; S;
ALL; 20).

All the couples standing for the DM-
Classes are grouped within a set: the Partition
Cuboid.

Definition 4 (Partition Cuboid). Let ∏X(r) be
a DM-Partition of r and f an aggregate func-
tion. For each DM-Class, [t]X⋅M is the value
of the measure attribute. The Partition Cuboid
according to the attribute set X, denoted by
CuboidX(r), is defined as follows: CuboidX(r)
= {(t[RowId], f([t]X⋅M)), ∀ [t]X ∈ ∏X(r)}.
Example 7. The Parition Cuboid according to
City; Product is the following:

CuboidCity(r) = {(1; 2); (2; 5); (3; 20)}.

Our representation of the Datacube can be
defined as the whole set of Partition Cuboids
according to any dimension combination.

Definition 5 (Partition Cube). Let r be a cat-
egorical database relation. The Partition Cube
associated to r is defined as: Partition_Cube(r)

International Journal of Data Warehousing & Mining, 5(1), 18-35, January-March 2009 25

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

= {CuboidX(r), ∀ X ∈ ℘(D)}, where ℘ stands
for the powerset lattice.
Example 8. The Partition Cube for the ag-
gregate function Sum is given in table 2. It
contains 23 = 8 cuboids (because there are 3
dimensions), each of which corresponding to
a dimension combination (used as an index to
identify cuboids).

The Pcube Algorithm

In this section, we describe the principles of our
algorithmic solution. First, we give a simple
definition of the lectic order (co-lexicographi-
cal order) (Ganter & Wille, 1999). Then, we
propose a new recursive algorithm for enumer-
ating, according to the lectic order, the subsets
of ℘(D).

Definition 6 (Lectic Order). Let (D, <D) be a
finite set totally ordered. We assume, by sim-
plicity, that D can be defined as follows: D =
{A1, A2 … An}. D is provided with the following
operator:

Max : ℘(D) → D

X  the last element of X according to <D.
The lectic order, denoted by <l, is defined as fol-
lows: ∀ X, Y ∈ ℘(D), X <l Y , Max(X\ Y) <
Max(Y\ X). This order is a strict linear order
over the set of all subsets of a set.

Example 9. Let us consider the following to-
tally order set D = {A, B, C, D}. Enumerating
the combinations of ℘(D), with respect to the
lectic order, provides the following results: Ø
<l A <l B <l AB <l C <l AC <l BC <l ABC <l D
<l AD <l BD <l ABD <l CD <l ACD <l BCD
<l ABCD.
Proposition 1. (Ganter & Wille, 1999). ∀ X,
Y ∈ ℘(D), X ⊂ Y ⇔ X <l Y.
We firstly present the new algorithm Ls (Lectic
Subsets) which gives the general algorithmic
schema used by Pcube (the algorithm building
the Partition Cube).

Recursive Algorithmic Schema for
Enumerating the Subsets in Lectic
Order

The new algorithm LS has as parameters two
dimensional attribute subsets X and Y. The
algorithm is based on a twofold recursion.
The recursive calls form a binary balanced
tree in which each execution branch returns a
dimensional subset. The general strategy for
enumerating dimensional attribute combina-
tions consists in considering firstly all the subsets
not encompassing a dimensional attribute, and
then all the subsets which encompass it. More
precisely, the maximal attribute, according to the
lectic order, is discarded from Y and added to X
in the variable Z. The algorithm is recursively
applied with (i) X and a new subset Y (from
which the maximal attribute is pruned), then

CuboidØ= {(1, 27)}

CuboidC= {(1, 22), (2, 5)}

CuboidD= {(1, 10), (2, 17)}

CuboidP= {(1, 2), (2, 25)}

CuboidCD= {(1, 10), (2, 5), (4, 12)}

CuboidCP= {(1, 2), (2, 5), (3, 20)}

CuboidDP= {(1, 2), (2, 17), (3, 8)}

CuboidCDP= {(1, 2), (2, 5), (3, 8), (4, 12)}

Table 2. Partition Cube for the aggregate
function Sum

Input : X and Y two sets of dimensions
Output : ℘(D)

1.	 if Y = Ø then
2.	 Return X
3.	 Else
4.	 A := max (Y)
5.	 Y := Y \ {A}
6.	 LS(X,Y)
7.	 Z := X ⋃ {A}
8.	 LS(Z,Y)
9.	 End if

Algorithm 1. Algorithm LS

26 International Journal of Data Warehousing & Mining, 5(1), 18-35, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

(ii) Z and Y. The first call of Ls is provided with
two parameters X = Ø and Y = D.

Lemma 2. The correctness of the algorithm LS
is based on proposition 1 and the distributive
property of the dimension attribute lattice. We
have: ∀ A ∈ D, ∀ X ⊆ ℘(D), P(X  A) ℘(D
\ (X  A)) = Ø. Thus, each subset of dimension
attributes is enumerated exactly once.
Example 10. Let us consider our relation r. In
this context, the binary tree of recursive calls
when running our algorithm is depicted in
figure 3. The leaves in the tree correspond to
outputs which are, from left to right, ordered in
a lectic way. In any left subtree, all subsets not
encompassing the maximal attribute (accord-
ing to the lectic order) of the subtree root are
considered while in right subtrees, the maximal
attribute is preserved.

Now, we can introduce our algorithm,
called Pcube, for computing Partition Data-
cubes. As mentioned, Pcube fits in the theo-
retical framework previously presented. A
pre-processing step is required in order to
build DM-Partitions according to each single
attribute from the input relation. Performing this

initial step also computes the empty set based
cuboid (CuboidØ) and its result is yielded. If
the original partitions (⋃A∈D ∏A(r)) cannot fit in
main memory, then the fragmentation strategy
proposed in (Ross & Srivastava, 1997) and used
in (Beyer & Ramakrishnan, 1999) is applied.
Its main idea is to divide the input relation in
fragments according to an attribute until the
original associated DM-Partitions can be loaded.
Pcube adopts the general algorithm schema
of Ls but it is intended to compute all desired
aggregates and thus it yields the condensed
representation of all possible cuboids. Pcube
deals with DM-partitions and enforces product
of DM-partitions. Like Ls, its input parameters
are the subsets od dimensions X and Y. The
DM-Partition associated to Z is computed by
applying the product over the two partitions in
memory: ∏X(r) and ∏A(r). The second recur-
sive call is performed. The pseudo-code of the
algorithm Pcube is given below.

Relational Partition Cubes

When the OLAP application is managed by a
relational system, the Partition Cube can be
stored tuple describes a DM-Class of a cuboid

(∅,CdP)

(∅,C)

(∅,Cd)

(∅,∅) (C, ∅) (d, ∅) (Cd, ∅) (P, ∅) (CP, ∅) (dP, ∅) (CdP, ∅)

(P, Cd)

(P, Cd) (dP, C)(d, C)

∅ C d Cd P CP dP CdP

Figure 3. Execution tree of Ls.

International Journal of Data Warehousing & Mining, 5(1), 18-35, January-March 2009 27

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

according to X. More precisely, for each DM-
Class, are known the identifier of its representing
element, the measure value and the dimen-
sion combinaison (DimId). Like in the other
approaches computing cubes, real values of
dimensions are encoded with integers (Ross &
Srivastava, 1997; Beyer & Ramakrishnan, 1999;
Han et al., 2001). We propose the following
schema called relational Partition Cubes.

r(RowId, D, M)
Dimension(DimId, D)
Cube(RowId, DimId, f (M))

To compute Relational Partition Cubes from
Datacubes using the algorithm LS, PL/SQL pro-
cedures can be downloaded at http://infodoc.
iut.univ-aix.fr/~casali/PL-RPC.zip. The
relation Dimension is intended for storing all the

dimension combinations. Its values are binary
and for any attribute A, A has the value 0 if it
does not belong to the considered combination,
else its value is 1. Finally the original relation
makes it possible to retrieve the real values of
dimensions for various representing elements
of the DM-Classes.

Example 11. For our example, the two lat-
ter relations of the schema implementing our
concise representation are given in table 3 and
4 respectively.

Analytical Evaluation

When computing Datacubes, 2|Dim| dimensional
combinations have to be examined, each of
which originates a cuboid. For each cuboid,
the number of output tuples depends on the do-
main cardinality of the considered combination
(Shoshani, 1997), which is denoted by |X|.

As previously mentioned, all approaches
do not deal with original data but instead with
coded data (for obvious optimization reasons).
Actually each value of a dimensional attribute
Ai is replaced by an integer in the range [0…
|Ai-1|] during a preprocessing step (Shoshani,
1997; Beyer & Ramakrishnan, 1999). Under
this assumption, the storage space required for
preserving a cuboid according to X is: 4(|Dim|
+ 1) |X|. The overall space for storing a full
Datacube is bounded by: 2|Dim| 4 (|Dim| + 1)
Max(|X|), ∀X ∈ ℘(Dim).

In contrast, PCube generates concise
representations of Datacubes. For each cuboid

Input : Set of DM-Partition {∏A, A ∈D},
X and Y two sets of dimensions attributes
Output : Partition Cube

1.	 if Y = Ø then
2.	 Write_Cuboid(X)
3.	 Else
4.	 A := max (Y)
5.	 Y := Y \ {A}
6.	 PCUBE(r, X, Y)
7.	 ∏Z := ∏X •p ∏A
8.	 PCUBE(r, Z, Y)
9.	 End if

Algorithm 2. Algorithm Pcube

RowId DimId Sum(Quantity)

1 1 27

1 2 22

2 2 5

1 3 2

2 3 25

…

DimId City Product Day

1 0 0 0

2 1 0 0

3 0 1 0

4 0 0 1

5 1 1 0

…

Table 3. Relation Cube		 Table 4. Relation Dimension

28 International Journal of Data Warehousing & Mining, 5(1), 18-35, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

according to a dimensional combination X, |X|
tuples are to be computed but each one only
requires to store three values (an identifier,
the associated aggregated value and the corre-
sponding dimensional combination), each one
needing 4 bytes. Thus the storage requirement
for a cuboid is: 12|X|.

When compared to the classical represen-
tation (used by BUC for example), the latter
result is really significant because as soon as
the number of dimensions is higher than 2, our
concise representation is more compact. Of
course this advantage is increased as the set of
dimensions is enlarged because Pcube storage
requirement, for any cuboid, is independent of
the number of dimensions. The latter remark
explains results reported in table 5. They give,
according to the number of considered dimen-
sions, the percentage of space occupied by our
concise representation when compared to a
classical Datacube storage. When the number
of dimensions is equal to 10, our condensed
representation requires 27.2% of the space
needed by classical representation (BUC for
example) to store a full Datacube, and only
14.2%, for 20 dimensions.

In order to confirm this analytical com-
parison, it remains to provide experimental
results.

Experimental Evaluations

We choose to compare our approach with the two
most concise lossless representations. Through
these experiments, our aim is to compare the
underlying main memory requirements and the
size of the Datacube to be stored. In order to
compute the Quotient Cube and Closed Cube,
we use the algorithm Close (Pasquier et al.,
1999), proved to be very efficient for mining
frequent closed patterns, because we have its
sources. The computer has a Pentium 4 to 3 GHz
with 1 Gb of RAM and runs under Windows
XP. Implementations are performed in C++ and
compiled with c++ (GCC) 3.3.3 (cygwin).

Table 6 gives the datasets used for experi-
ments. The columns #Attributes and #Tuples
stand for the number of attributes and tuples
respectively. In the last column, the size in bytes
of the dataset is reported (each dimension or
attribute is encoded as an integer requiring 4
bytes for any value).

|Dim| 1 2 3 4 5 6

% of space condensed vs.
classical storages 150 % 100% 75% 60% 50% 42.8%

|Dim| 7 9 10 12 20 25

% of space condensed vs.
classical storages 37.5% 33.3% 27.2% 23% 14.2% 11.5%

Table 5. %age of storage space for Pcube vs. classical representation

Tables # Attributes # Tuples of the
initial relation

Tuples of
the aggregate

relation

Size
(KB)

Mushroom 23 8 124 8 124 747.4

Death 5 24 576 389 7.8

TombNecropolis 7 108 665 1 846 51.7

TombObjects 12 78 539 8 278 397.3

Joint_Objects_Tombs 17 95 194 7 643 519.7

Table 6. Datasets

International Journal of Data Warehousing & Mining, 5(1), 18-35, January-March 2009 29

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Mushroom and Death are datasets widely
known in frequent pattern mining (Bayardo,
Goethals, & Zaki, 2003). Mushroom provides
various characteristics of mushrooms. Death is
a dataset gathering information about patient
decease with the date and cause. TombNecropo-
lis and TombObjects are issued from archaeo-
logical excavation. They encompass a list of
necropolises, their tombs and other properties
like: the country, the funeral rite, the objects
discovered in the tombs and their description.
Finally, Joint_Objects_Tombs results from
the natural join between TombObjects and
TombNecropolis according to the identifiers of
necropolises and tombs. These private datasets
are provided by an archaeological laboratory
of Aix-Marseilles University.

Remark: The two datasets Mushroom and
Joint_Objects_Tombs require too much main
memory (> 4Go) when computing the Quotient
Cube and the Closed Cube with a minimum
threshold equal to 1 (all the possible patterns),
thus we have to state a minimum threshold
equal to 5% and 1%.

Tables 7 and 8 present the results obtained
for the algorithms Close and Pcube for the vari-
ous datasets. The column Max Memory shows
in MB the maximal used memory.

Pcube memory requirements are incompa-
rably lower than the ones of Close. Concerning
the size of Datacube representations, the best
results are obtained for the Closed Cube and then
the Quotient Cube. Although more voluminous,

the Partition Cube reduces significantly the size
of the Datacube. For instance, the Partition
Cube computed for the dataset Mushroom only
needs 12% of the space necessary to store the
Datacube. In the worst case (few attributes) the
gain is about 50%.

The counterpart of storage saving for the
Quotient and Closed Cubes is an efficiency
deterioration when evaluating OLAP queries.
Actually, with these two representations, only
a cover of a Datacube is preserved and ad-
ditional computations are necessary to answer
OLAP queries:

•	 Pcube computes a concise representation of

the Datacube which is based on its charac-
terization (DM-Classes, DM-Partitions and
their product). In such a representation, a
row of the cube (as exemplified in table 3)
contains three elements: RowId, DimId and
f (M). Moreover, DimId can be encoded as
a bit field to avoid the join operation with
the relation Dimension (cf. table 4) when
evaluating OLAP queries. In a similar way,
the link with the original relation (through
RowId) does not require a join operation
but a direct index. When the number of
dimensions is less than 32, each attribute
value needs 4 bytes and thus each row
12 bytes. The representation includes the
original relation. Thus its size is equal to:
NbRows * 12 + RelationSize.

•	 For the Quotient Cubes and Closed Cubes,

Table 7. Use of memory of Close

Tables Max Memory (MB)

Mushroom 5% 354.1

Death 8.1

TombNecropolis 12.8

TombObjects 721.0

Joint_Objects_Tombs 1% 36.3

Tables Max Memory (MB)

Mushroom 4.8

Mushroom 5% 4.7

Death 2.5

TombNecropolis 2.6

TombObjects 3.7

Joint_Objects_Tombs 4.1

Joint_Objects_Tombs 1% 4.0

Table 8. Use of memory of Pcube

30 International Journal of Data Warehousing & Mining, 5(1), 18-35, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the size of any row is obtained by the prod-
uct of the number of dimensions and the
measure in the original relation by 4 bytes
(dimensions are encoded as integers). The
obtained size is: NbRows’ * 4(|Dim|+1),
where NbRows’ is the number of tuples
required for the Quotient Cube or Closed
Cube. Let us underline that NbRows’ ≤
NbRows.

Table 9 illustrates the size of the three
studied representations for the various datasets.
These results are resumed in figure 4.

Conclusion

Addressing the issue of Datacube computa-
tion and storage is challenging because such a
computation needs costly execution time and
large main memory space. Datacubes yields
huge volume of results, and its storage requires
enormous space on disk. In this paper, we focus
on the lossless information approaches emp-
hazing the two ones which propose the most
concise representations, namely the Quotient
Cube and Closed Cube. We propose an alterna-
tive method also providing a storage reduction
for the Datacube. Even if the cube reduction is
less important than the two previous ones, all
the data is stored. Thus, OLAP queries can be
answered very efficiently (simple selections in a
table) while other approaches require additional

Size of the Datacube (MB)

“Classical” Partition Closed Quotient

TombNecropolis 3.6 1. 4 0.1 0.5

TombObjects 903.6 208.9 8 25.8

Joint_Objects_Tombs (1%) 58.8 10.3 4.5 9.7

Death 220 152 117 856 24 984 73 656

Mushroom (5%) 436.8 55.3 1.2 3.3

Table 9. Size of the Datacubes

Figure 4. Size of the Datacubes generated

International Journal of Data Warehousing & Mining, 5(1), 18-35, January-March 2009 31

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

computations for yielding results. In the worse
scenario, when data is very sparse, the size of
the Closed and the Quotient Cubes can be as
voluminous as the Datacube. On the contrary,
when there are more than 2 dimensions, the
Partition Cube is always smaller than the data
cube. So our approach is a compromise between
Datacube storage reduction and efficient execu-
tion of OLAP queries. Research perspectives
of the presented work are to investigate new
issues:

(1)	 Taking into account the dimension hier-
archies (Hurtado & Mendelzon, 2002)
in the very same spirit as Cure for Cubes
(Morfonios & Ioannidis, 2006).

(2)	 The reduction of the Convex Cubes (Casali,
Nejar, Cicchetti, & Lakhal, 2007) and the
Emerging Cube (Nedjar, Casali, Cicchetti,
& Lakhal, 2007) using partitions.

References
Bayardo, R., Goethals, B., & Zaki, M. J. (2003).
Workshop on Frequent Itemset Mining Implemen-
tations. Bayardo, Roberto; Goethals, Bart; Zaki,
Mohammed J.

Beyer, K. S., & Ramakrishnan, R. (1999). Bottom-
Up Computation of Sparse and Iceberg CUBEs.
Proceedings of the 1999 ACM SIGMOD International
Conference on Management of Data (SIGMOD’99),
(pp. 359-370). Dallas, USA.

Casali, A., Cicchetti, R., & Lakhal, L. (2003a). Cube
Lattices: A Framework for Multidimensional Data
Mining. Proceedings of the Third SIAM Interna-
tional Conference on Data Mining (SDM’03). San
Francisco, USA.

Casali, A., Cicchetti, R., & Lakhal, L. (2003b).
Extracting semantics from data cubes using cube
transversals and closures. Proceedings of the Ninth
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD’03), (pp.
69-78). Washington, USA.

Casali, A., Cicchetti, R., Lakhal, L., & Novelli, N.
(2006). Lossless reduction of datacubes. Proceedings
of the 17th international conference on database

and expert systems applications (DEXA’06), (pp.
409-419). Kraków, Poland.

Casali, A., Nedjar, S., Cicchetti, R., & Lakhal, L.
(2007). Convex cube: Towards a unified structure
for multidimensional databases. Proceedings of the
18th international conference on database and expert
systems applications (DEXA’07), (pp. 572-581).
Regensburg, Germany.

Chaudhuri, S., & Dayal, U. (1997). An Overview of
Data Warehousing and OLAP Technology. Sigmod
record , 26 (1), 65-74.

Ganter, B., & Wille, R. (1999). Formal Concept
Analysis: Mathematical Foundations. Springer.

Gilbert, A., Kotidis, Y., Muthukrishnan, S., & Strauss,
M. (2001). Surfing Wavelets on Streams : One-Pass
Summaries for Approximate Queries. Proceedings of
27th International Conference on Very Large Data
Bases (VLDB’01), (pp. 79-88). Roma, Italy.

Gray, J., Chaudhuri, S., Bosworth, A., Layman, A.,
Reichart, D., Venkatrao, M., et al. (1997). Data Cube:
A Relational Aggregation Operator Generalizing
Group-by, Cross-Tab, and Sub Totals. Data Mining
and Knowledge Discovery , 1 (1), 29-53.

Gupta, H., & Mumick, I. (2005). Selection of Views
to Materialize in a Data Warehouse. IEEE Transac-
tions on Knowledge and Data Engineering (TKDE)
, 17 (1), 24-43.

Han, J., & Kamber, M. (2000). Data Mining: Con-
cepts and Techniques. Morgan Kaufmann.

Han, J., Pei, J., Dong, G., & Wang, K. (2001). Ef-
ficient Computation of Iceberg Cubes with Complex
Measures. Proceedings of the 2001 ACM SIGMOD
International Conference on Management of Data
(SIGMOD’01), (pp. 441-448). Santa Barbara,
USA.

Harinarayan, V., Rajaraman, A., & Ullman, J. (1996).
Implementing data cubes efficiently. Proceedings of
the 1996 ACM SIGMOD International Conference on
Management of Data (SIGMOD’96), (pp. 205-216).
Montreal, Canada.

Hurtado, C. A., & Mendelzon, A. O. (2002). OLAP
dimension constraints. Proceedings of the Twenty-
first ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS’02), (pp.
169-179). Madison, USA.

32 International Journal of Data Warehousing & Mining, 5(1), 18-35, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Kotidis, Y., & Roussopoulos, N. (1998). An alter-
native storage organization for rOLAP aggregate
views based on cubetrees. Proceedings of the 1998
ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD’98), (pp. 249-258).
Seattle , USA.

Kotidis, Y., & Roussopoulos, N. (1999). DynaMat:
A Dynamic View Management System for Data
Warehouses. Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data
(SIGMOD’99), (pp. 371-382). Philadelphia, USA.

Kudryavcev, Y. (2006). Efficient algorithms for
mOLAP data storage and query processing. In Spring
colloquium for young researchers in databases and
information systems, syrcodis.

Lakshmanan, L., Pei, J., & Han, J. (2002). Quotient
cube: How to summarize the semantics of a data cube.
Proceedings of 28th International Conference on
Very Large Data Bases (VLDB’02), (pp. 778-789).
Hong Kong, China.

Lakshmanan, L., Pei, J., & Zhao, Y. (2003). QC-Trees:
An Efficient Summary Structure for Semantic OLAP.
Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data (SIGMOD’03),
(pp. 64-75). San Diego, USA.

Laurent, D., & Spyratos, N. (1988). Partition se-
mantics for incomplete information in relational
databases. Proceedings of the 1988 ACM SIGMOD
International Conference on Management of Data
(SIGMOD’88), (pp. 66-73). Chicago, USA.

Li, S.-E., & Wang, S. (2005). Semi-closed cube: An
effective approach to trading off data cube size and
query response time. Journal of Computer Science
and Technology , 20 (3), 367-372.

Lopes, S., Petit, J. M., & Lakhal, L. (2002). Function-
aland Approximate Dependency Mining: Databases
and FCA points of View. Journal of Experimental
and Theoretical Artificial Intelligence (JETAI) , 14
(2-3), 93-114.

Mannila, H., & Toivonen, H. (1996). Multiple Uses
of Frequent Sets and Condensed Representations:
Extended Abstract. Proceedings of the Second
International Conference on Knowledge Discovery
and Data Mining (KDD’96), (pp. 189-194). Port-
land, USA.

Mitchell, T. M. (1996). Machine learning. MacGraw-
Hill Series in Computer Science.

Morfonios, K., & Ioannidis, Y. E. (2006). Cure for
cubes: Cubing using a rOLAP engine. Proceedings
of the 32nd International Conference on Very Large
Data Bases, (pp. 379-390). Seoul, Korea.

Nedjar, S., Casali, A., Cicchetti, R., & Lakhal, L.
(2007). Emerging cubes for trends analysis in OLAP
databases. Data Warehousing and Knowledge Dis-
covery, 9th International Conference (DaWaK’07),
(pp. 135-144). Regensburg, Germany.

Pasquier, N., Bastide, Y., Taouil, R., & Lakhal, L.
(1999). Discovering Frequent Closed Itemsets for
Association Rules. Proceedings of the 7th Interna-
tional Conference on Database Theory (ICDT ‘99),
(pp. 398-416). Jerusalem, Israel.

Pedersen, T., Jensen, C., & Dyreson, C. (1999).
Supporting Imprecision in Multidimensional Data-
bases Using Granularities. Proceedings of the 11th
International Conference on Scientific and Statistical
Database Management (SSDBM’99), (pp. 90-101).
Cleveland, USA.

Pei, J., Han, J., & Mao, R. (2000). CLOSET: An
Efficient Algorithm for Mining Frequent Closed
Itemsets. Proceedings of the 5th ACM SIGMOD
Workshop on Research Issues in Data Mining and
Knowledge Discovery (DMKD’00), (pp. 21-30).
Dallas, Texas.

Ross, K. S. (1997). Fast Computation of Sparse
Datacubes. Proceedings of 23rd International Con-
ference on Very Large Data Bases (VLDB’97), (pp.
116-125). Athens, Greece.

Shanmugasundaram, J., Fayyad, U., & Bradley, P.
(1999). Compressed Data Cubes for OLAP Aggregate
Query Approximation on Continuous Dimensions .
Proceedings of the 5th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing (KDD’99), (pp. 223-232).

Shoshani, A. (1997). OLAP and statistical databases:
Similarities and differences. Proceedings of the 16th
ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems (PODS’99), (pp.
185-196). Tucson, USA.

Sismanis, Y., Deligiannakis, A., Roussopoulos, N.,
& Kotidis, Y. (2002). Dwarf: shrinking the petacube.
Proceedings of the 2002 ACM SIGMOD International
Conference on Management of Data SIGMOD’02),
(pp. 464-475). Madison, USA.

International Journal of Data Warehousing & Mining, 5(1), 18-35, January-March 2009 33

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Stumme, G., Taouil, R., Bastide, Y., Pasquier, N., &
Lakhal, L. (2002). Computing Iceberg Concept Lat-
tices with Titanic. Data and Knowledge Engineering
(DKE) , 42 (2), 189-222.

Theodoratos, D., & Sellis, T. K. (1999). Designing
data warehouses. Data and Knowledge Engineering
, 31 (3), 279-301.

Theodoratos, D., & Xu, W. (2004). Constructing
search spaces for materialized view selection . ACM
7th International Workshop on Data Warehousing
and OLAP (DOLAP’04), (pp. 112-121). Washington,
D.C., USA.

Vitter, J., & Wang, M. (1999). Approximate Com-
putation of Multidimensional Aggregates of Sparse
Data Using Wavelets. Proceedings of the 1999 ACM
SIGMOD International Conference on Management
of Data (SIGMOD’99), (pp. 193- 204). Philadelphia,
USA.

Wang, W., Lu, H., Feng, J., & Yu, J. (2002). Con-
densed Cube: An Effective Approach to Reducing
Data Cube Size. Proceedings of the 18th International
Conference on Data Engineering (ICDE’02), (pp.
213-222). San Jose, USA.

Xin, D., Shao, Z., Han, J., & Liu, H. (2006). C-
cubing: Efficient computation of closed cubes by
aggregation based checking. Proceedings of the
22nd International Conference on Data Engineering
(ICDE’06), (p. 4). Atlanta, USA.

Zaki, M. J., & Hsio, C. (2002). CHARM: An Efficient
Algorithm for Closed Itemset Mining. Proceedings
of the Second SIAM International Conference on
Data Mining (SDM’02). Arlington, USA.

Endnote
1	 Apart from approaches based on physical

techniques.

Appendix: Cube lattice framework

Let r be a relation over the schema R. Attributes of R are divided in two sets (i) D the set of
dimensions, also called categorical or nominal attributes, which correspond to analysis criteria
for OLAP, classification or concept learning (Mitchell, 1997) and (ii) M the set of measures (for
OLAP) or class attributes. Moreover, attributes of D are totally ordered (the underlying order is
denoted by <D) and ∀A ∈ D, Dim(A) stands for the projection of r over A.

The multidimensional space of the categorical database relation r groups all the valid com-
binations built up by considering the value sets of attributes in D, which are enriched with the
symbolic value ALL. The latter, introduced in (Gray et al., 1997) when defining the operator
Cube-By, is a generalization of all the possible values for any dimension.

The multidimensional space of r is noted and defined as follows:

Space(r) = {ⅹA ∈ D(Dim(A) ⋃ ALL)}⋃ {(Ø…Ø)}

where ⅹ symbolizes the Cartesian product, and (Ø…Ø) stands for the combination of empty
values. Any combination belonging to the multidimensional space is a tuple and represents a
multidimensional pattern.

The multidimensional space of r is structured by the generalization/specialization order
between tuples, denoted by ≼. This order was originally introduced by T. Mitchell (Mitchell,
1997) in the context of machine learning. In a datawarehouse context, this order has the same

34 International Journal of Data Warehousing & Mining, 5(1), 18-35, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

semantic as the operator Rollup/Drilldown (L. Lakshmanan et al., 2002). Let u, v be two tuples
of the multidimensional space of r:

u  v
 such that [] , [] []

or (...)
A D u A ALL u A v A

v
∀ ∈ ≠ =

⇔  = ∅ ∅

If u  v, we say that u is more general than v in Space(r). In other words, u captures a similar
information to v but at a rougher granularity level.
Example 12. In the multidimensional space of our relation example and by replacing any value
by its initial, we have: (M, ALL, ALL)  (M, S, d1), i:e. the tuple (M, ALL, ALL) is more general
than (M, S, d1) and (M, S, d1) is more specific than (M, ALL, ALL). Moreover any tuple general-
izes the tuple (Ø…Ø) and specializes the tuple (ALL, ALL, ALL).

The two basic operators provided for tuple construction are: Sum (denoted by +) and Product
(noted •). The Sum of two tuples yields the most specific tuple which generalizes the two oper-
ands. Let u and v be two tuples in S pace(r),

[] if [] []
, []

 otherwise.
u A u A v A

t u v A D t A
ALL

=
= + ⇔ ∀ ∈ = 



Example 13. In our example, we have (M, S, d1) + (M, S, d2) = (M, S, ALL). This means that the
tuple (M, S, ALL) is built up from the tuples (M, S, d1) and (M, S, d2).

The Product of two tuples yields the most general tuple which specializes the two operands.
Provided that, for these two tuples, there exists a dimension A having distinct and real world
values (i.e. existing in the original relation), then the only tuple specializing them is the tuple
(Ø…Ø). Apart from it, the tuple sets which can be used to retrieve them are disjoined. Let u and
v be two tuples in S pace(r), then:

(...) if such that [] [] ,
[] if [] ,

otherwise , []
[] if [] .

t A D u A v A ALL
t u v u A v A ALL

A D t A
v A u a ALL

= ∅ ∅ ∃ ∈ ≠ ≠
= • ⇔ = ∀ ∈ =  =

Example 14. In our example, we have (M, ALL, ALL) • (ALL, S, d2) = (M, S, d2). This means that
(M, ALL, ALL) and (ALL, S, d2) generalize (M, S, d2) and this latter pattern participates to the
construction of (M, ALL, ALL) and (ALL, S, d2) (directly or not). The tuples (M, ALL, ALL) and
(T, ALL, ALL) have as unique common point the tuple of empty values (i.e. the tuple (Ø…Ø)).

We define an algebraic structure called cube lattice by endowing the multidimensional space
of r with the generalization order between tuples and using the above-defined operators Sum and
Product. Such a structure is a sound start up foundation for solving several multidimensional
data mining issues.

International Journal of Data Warehousing & Mining, 5(1), 18-35, January-March 2009 35

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Alain Casali obtained the PhD in computer science from the Aix-Marseille Universités (France) in 2005.
He is an assistant professor at the University of Aix-Marseille II - IUT of Aix en Provence and is a member
of the LIF laboratory. He studies the lattice algorithmic and the multidimensional data mining.

Sébastien Nedjar is a PhD student at the LIF laboratory of Marseilles (France). His research work concerns
OLAP mining and data warehousing.

Rosine Cicchetti is a full professor at the Aix-Marseille Universités (France) and responsible of the database
and machine learning research team at the Laboratory of Fundamental Computer Science (LIF) of Mar-
seilles. She obtained the PhD in 1990 (University of Nice-Sophia-Antipolis, France) and the Habilitation
for Research Direction in 1996 (University of Aix-Marseilles). Her research topics encompass databases,
data mining, data warehousing and statistical databases.

Lotfi Lakhal received the PhD in computer science and the Habilitation for Research Direction from the
University of Nice-Sophia-Antipolis (France), respectively, in 1986 and in 1991.He is a full professor at the
Aix-Marseille Universités- IUT of Aix en Provence and member of the laboratory LIF. His research interest
includes databases, formal concept analysis, data mining, data warehousing and data streaming.

Noël Novelli received the PhD in computer sciences from the University of Aix-Marseille II (France) in
2000. He was an assistant professor (2001-2004) at the University of Bordeaux (France), and from 2004
he is an assistant professor at the University of Aix-Marseille II – Sciences Faculty – Computer Sciences
Department, at the fundamental computer sciences lab of Marseille. His research interest includes data-
bases, data mining, data warehousing and data visualization.

Theorem 3. Let r be a categorical database relation over D  M. The ordered set CL(r) =
〈Space(r), 〉 is a complete, graded, atomistic and coatomistic lattice, called cube lattice in
which Meet (∧) and Join (∨) elements are given by:

∀t ⊆ CCL(r), ∧ T = +t ∈ Tt,

∀t ⊆ CCL(r), ∨ T = C(•t ∈ Tt)

36 International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Abstract

Clustering of data streams finds important applications in tracking evolution of various phenomena in
medical, meteorological, astrophysical, seismic studies. Algorithms designed for this purpose are capable
of adapting the discovered clustering model to the changes in data characteristics but are not capable of
adapting to the user’s requirements themselves. Based on the previous observation, we perform a compara-
tive study of different approaches for existing stream clustering algorithms and present a parameterized
architectural framework that exploits nuances of the algorithms. This framework permits the end user to
tailor a method to suit his specific application needs. We give a parameterized framework that empowers the
end-users of KDD technology to build a clustering model. The framework delivers results as per the user’s
application requirements. We also present two assembled algorithms G-kMeans and G-dbscan to instantiate
the proposed framework and compare the performance with the existing stream clustering algorithms.

Keywords:	 architecture; clustering; data stream; grid; micro-cluster

Introduction

Data streams pose special challenges to mining
algorithms, not only because of the huge volume
of on-line data streams and its computation
(Henzinger, Raghavan & Rajagopalan, 1998;
Babcock, Babu, Datar, Motwani & Widom,
2002; Carney, Cetintemel, Cherniack, Con-
vey, Lee, Seidman et al., 2002; Domingos and
Hulten, 2000), but also because of the fact that
data in streams may show temporal correlations.
Such temporal correlations help in disclosing

important data trends in XML document cluster-
ing (Rusu, Rahayu & Taniar, 2008), multimedia
communication and programming support for
ubiquitous distributed computing environment
(Aggarwal, 2007).

Clustering is considered as one of the most
popular and effective techniques for discovering
similarity trends in data streams. Compactness
of representation, fast incremental processing
of new data points, insensitivity to order of
input records have been identified as basic
requirements in stream clustering algorithms

A Parameterized Framework for
Clustering Streams

Vasudha Bhatnagar, �������������������������� University of Delhi, India

Sharanjit Kaur, University of Delhi, India

Laurent Mignet, I.B.M., Indian Research Lab, India

International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009 37

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

(Henzinger, Raghavan & Rajagopalan, 1998;
Barb´ara, 2002; Orlowska, Sun & Li, 2006).

 The problem of incremental clustering is
addressed in Zhang, Ramakrishnan & Livny
(1996) and inspired clustering of data streams.
The importance of the problem is evident from
the large body of work (Aggarwal, Han, Wang
& Yu, 2003; Motoyoshi, Miura & Shioya,
2004; Park & Lee, 2004) that has evolved
over a relatively short period of time since
the earliest attempt to address the problem of
stream clustering (Guha, Mishra, Motwani &
O’Callaghan, 2000).

The algorithms that have been developed
for stream clustering have either an on-line or
a batch component for processing incoming
data, to maintain synopsis. A mechanism is
used to highlight the evolving nature of data
in stream. Clustering is done using varied
approaches based on distance (k-means or k-
median), density estimation, statistical methods
(e.g. co-variance, skewness etc.) and connected
component analysis.

Motivation

One of the reasons for the fallen-short-of-an-
ticipated growth curve of KDD technology is
that the end-user is forced to use the mining
algorithms provided by the data mining pack-
ages and has no say in designing the algorithm.
The current KDD technology is limited by the
adhoc approach for solving individual problems
(Yang & Wu, 2006). The need for a unified
framework for integrating different data min-
ing tasks has been recognized recently (Yang
& Wu, 2006).

Motivated by the above observation, we
propose a parameterized framework for stream
clustering. The framework empowers the end-
user to choose the features of the algorithm to suit
their business requirements in terms of nature
of inputs, outputs, availability of resources etc..
The proposed component-based architecture of
stream clustering algorithms advocates develop-
ment of a data-mining environment where the
user can match the application needs with the
features of the components and assemble the

algorithm. The approach overcomes the rigidity
prevalent in the use of data mining environ-
ments, where the match between the available
algorithmic features and desired functionality
is sometime less than satisfactory. This work
lays the theoretical foundation for the unified
framework by parameterizing an algorithm
based on application requirements.

Outline of the Paper

The paper is divided into five sections. Section
“Comparison of Stream Clustering Algorithms”
studies different approaches used in stream clus-
tering algorithms, and a systematic comparison
vis-à-vis the nature of input, output, processing
and functionality is presented. The study leads
to a component based architectural framework
underlying all stream clustering algorithms,
which is discussed in Section “Generic Architec-
ture for Stream Clustering Algorithms”. Based
on this framework, subsection “Architectural
Framework” proposes a scheme to assemble
designer algorithms by selecting appropriate
components to suit the user’s specific needs.
Section “Realization of the Framework” instan-
tiates the proposed framework by laying down
hypothetical user requirements and assembling
two algorithms G-kMeans and G-dbscan. Ex-
perimental evaluation of the two algorithms is
also presented in the same section.

Comparison of Stream
Clustering Algorithms

In this section, we describe some of the recent
stream clustering algorithms and categorize
them based on the underlying approach for
clustering (Figure 1).

A closer look reveals that some algorithms
qualify for more than one category (e.g. Den-
Stream), but for the sake of clarity, each algo-
rithm has been placed in the most appropriate
category. The salient features of some represen-
tative stream clustering algorithms from each
category are described in the following section

38 International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

and a comparison of these features are given at
the end of the section. Algorithms for handling
noisy and high dimensional data streams have
been consciously omitted, since such features
are add-ons to the basic problem of clustering
data streams.

Distance-Based Algorithms

In this approach, initially a set of points is
selected to represent the center of clusters.
Subsequently a distance metric is used to place
points in appropriate clusters. Some well-known
stream clustering algorithms that use this ap-
proach are described below.

a.	 STREAM algorithm (Guha, Mishra,
Motwani & O’Callaghan, 2002), uses the
landmark window model that processes
stream in batches and generates k optimal
clusters using an approximation approach.
Stream is treated as a sequence of chunks
(batches), and for each chunk frequency
of each distinct point is computed leading
to weighted chunks. An approximation
algorithm (LOCALSEARCH), which is a
Lagrangian relaxation of k-Median prob-
lem is applied on each weighted chunk
to retain k weighted cluster centers. The
weight of each cluster center is the sum of
the weights of the members in the cluster.
Subsequently the same algorithm is ap-
plied on retained weighted cluster centers

to get optimal number of clusters for the
entire stream. The algorithm is memory
efficient and has O(nm + nklogk) running
time where n is data size, m is the number
of centers used in computation in a batch,
and k is number of centers retained in each
chunk.

b.	 CluStream (Aggarwal, Han, Wang & Yu,
2003) handles evolving stream using an
on-line and an off-line component. The
algorithm generates clusters over different
portions of stream using pyramidal time
frame.
		
It summarizes information about incoming

points in micro-clusters (µCs), which maintain
summary information similar to cluster fea-
ture vector of Zhang, Ramakrishnan & Livny
(1996), except for the additional information
about time stamp.

k-Means algorithm is applied to a set of
first few points in the stream to generate k
micro-clusters (µCs), which form the synopsis.
Subsequently, the on-line component absorbs
incoming data points into micro-clusters based
on distance. If the new incoming point cannot
be absorbed in one of the existing µCs, then a
new µC is created. It is imperative to ensure
that the size of the synopsis remains constant.
Thus, either a cluster with few points or least
relevance time stamp is deleted, or two clus-
ters with which that are close to each other are
merged. The deleted µC is treated as an outlier
from the current point of view. Pyramidal time

Clustering Algorithms for Streams

Distance-based Grid-based Statistical techniques-based Density-estimation based

STREAM

CluStream

DenStream

Stats-Grid

DUCstream

EXCC

Cell-Tree

ICFR

GMM

LCSS

WStream

M-Kernel

KDES

Figure 1. Categorization of stream clustering algorithms

International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009 39

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

frame is used to store snapshots of the synopsis
at different time instances so that clusters can
be discovered in user specified time horizon h
with desired granularity.

The off-line component of the algorithm
discovers convex clusters by applying k-Means
algorithm on all µCs generated in time horizon
h. Subtractive properties of µCs are exploited
to generate higher-level clusters from the stored
synopsis at different time horizons.

c. DenStream handles the dynamic nature
of evolving data streams using a damped
window model (Cao, Ester, Qian & Zhou,
2006). This algorithm also has an on-line
and an off-line component. The on-line
component is used for micro-cluster main-
tenance and off-line component generates
clusters on demand. Potential-microclus-
ters (P-µCs) and Outlier-microclusters (O-
µCs) are used for incremental computation
by the on-line component for handling
dynamics of an evolving data stream. The
definitions of P-µC and O-µC are extended
definitions of µC used in Aggarwal, Han,
Wang & Yu (2003) wherein, summarized
information is also weighted with respect
to time.

During initialization phase, dbscan algo-

rithm (Ester, Kriegel, Sander & Xu, 1996) is
applied to initial n points to generate potential-
microclusters (P-µCs). New data points arriv-
ing in stream are added to the nearest P-µC,
provided, addition does not cause increase in
the radius of the P-µC beyond a pre-defined
threshold. Otherwise, either a new outlier-mi-
crocluster (O-µC) is created or the incoming
point is merged into its nearest existing outlier
microcluster (O-µC). In the latter case, the
weight of each O-µC is computed. If the weight
is greater than some threshold θ, then O-µC is
converted into P-µC. Similarly, the weight of
each P-µC is checked periodically to ensure
that it is still a valid potential microcluster,
else it is deleted. The algorithm uses a fading
mechanism to reduce impact of older data on
current trends.

As the number of O-µCs may continuously
increase with time, pruning strategy is used
to delete real outliers after reporting them to
the user. When clustering is demanded , the
offline component applies a variant of dbscan
algorithm on the set of P-µCs. Use of density-
based approach for clustering discovers arbi-
trary shape clusters and makes the algorithm
robust.

The major drawback of distance-based
approach is that the number of clusters to be
generated needs to be defined in advance.
Further, clustering results also depend on
data ordering. Distance-based algorithms like
CluStream, DenStream do not generate exclu-
sive clusters. Thus, a point that is originally
placed in one cluster as per its features may be
merged with another cluster due to memory
constraint later.

Grid-Based Algorithms

Grid-based algorithms for stream divide multi-
dimensional data space into a set of mutually
exclusive equal-size cells to maintain detailed
data distribution. While distance-based meth-
ods work with numerical attributes, grid-based
methods work with attributes of mixed types
(Berkhin, 2003). Some of the recent algorithms
using this approach are described below:

a.	 Stats-Grid algorithm (Park & Lee, 2004)
generates arbitrary-shape clusters with high
processing speed. Incoming data points in
stream are inserted in the cells of grid on the
basis of distribution statistics. The number
of data points in a cell constitutes its sup-
port. When the support of a cell becomes
greater than a pre-defined threshold, it is
partitioned into two cells on the selected
dimension. Cell partitioning is done on a
dimension having maximum mean or stan-
dard deviation, depending on distribution
statistics. Cell partitioning helps maintain
information about current trends at ap-
propriate granularity levels. To reduce the
impact of historical data on current trend,
cells are pruned based on support of the

40 International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

cell and its statistics are added back to its
parent cell. Clustering is done on demand
using connected component analysis.

b.	 DUCStream is a grid-based algorithm that
treats the stream as a sequence of chunks
of the same size and uses connected com-
ponent analysis for clustering (Gao, Li,
Zhang & Tan, 2005). Distribution statistics
of incoming data points are maintained in
the grid and initial clusters are created using
dense cells of the first chunk. At any time,
relative density of a cell (rdc) is computed
as Nc/(m * t), where Nc is number of points
in the cell c, m is size of chunk and t is the
number of chunks accessed so far. A cell is
dense if rdc > d where d is a user-defined
threshold. Connected component analysis
is used to create initial clusters using dense
cells.

	 For subsequent chunks, newly formed cell
are merged with one of the existing cluster
if possible. Else a new cluster is generated.
Clusters are updated by removing or merg-
ing existing clusters to incorporate new
cells after each chunk. The clustering result
is set of all clusters found in t chunks of data
seen so far. The algorithm misses emerging
clusters because it does not consider recent
non-dense cells for clustering.

c.	 ExCC algorithm (Bhatnagar & Kaur, 2007)
addresses two important features of clus
tering viz. exclusiveness and completeness.
The on-line component of the algorithm
summarizes the incoming data stream in a
grid. Each cell in the grid stores the number
of points and the average inter-arrival time
of data points in the cell. This information
is used during grid pruning which needs
to be performed either when clustering is
demanded or when the grid outgrows the
memory.

	 The second component performs on-de-
mand clustering using connected compo-
nent analysis and may be run either on-line
or off-line, depending on the requirement
of the application/user. Prior to clustering,
outdated cells are pruned in order to get a
current clustering model. This is accom-

plished while ensuring that even a small
cluster that showed up in the stream after
last clustering, is detected. This feature
ensures complete clustering. Exclusive
clustering means that at any time, a point
belongs to a unique cluster to which it
genuinely belongs (Orlowska, Sun & Li,
2006). This algorithm delivers a precise
description of the discovered clusters in
terms of their boundaries, signatures of
seeds etc.

d.	 Cell-Tree algorithm (Park & Lee, 2007) is
an extension of Stats-Grid algorithm and
aims to overcome the limitation of the
latter’s scalability. This is achieved by
employing two data structures: sibling-list
and cell-tree. Initially the multi-dimen-
sional data space is partitioned into fixed
number of mutually exclusive equi-sized
cells termed as grid cells. The distribu-
tion statistics maintained in each cell is
diminished by a pre-defined decay rate
as time elapses, to reduce the impact of
old information on the current clustering
scheme.

A sibling-list is used to manage the set of

all grid cells in a one dimensional data space.
It acts as an index for locating a specific grid
cell. After a dense unit cell on one dimensional
data space is created, a new sibling list for
another dimension is created as a child of the
grid cell. This process is recursively repeated
for each dimension and it leads to a cell-tree
with maximum depth of d. A unique path in
the cell-tree identifies each dense unit grid
cell. While clustering, connected component
analysis is applied on d-dimensional dense unit
grid cell whose current support is greater than a
pre-defined threshold. Although the algorithm is
computationally more expensive, it generates
arbitrary-shaped clusters with current trends.

Accumulation of data in a grid structure
makes grid-based clustering techniques in-
dependent of data ordering (Berkhin, 2003).
Hence, the clusters generated are not effected
by the input order of incoming data points. The
main drawback of grid-based clustering tech-

International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009 41

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

niques is their degraded performance for high
dimensional data. In such situations, the number
of cells becomes very large and the grid may
not fit in the memory. The pruning strategies
are used to accommodate the grid in memory.
However, frequent and aggressive pruning of
grid may result into the loss of patterns.

Statistical Methods Based
Algorithms

Clustering methods based on statistical tech-
niques rely on initial samples to estimate the
unknown probabilities and probability densities.
These resulting estimates are then used as an
approximation of true values for future com-
putations (Duda, Hart & Stork, 2000).

a.	 ICFR (Incremental Clustering using F-
value by Regression Analysis) proposed
in Motoyoshi, Miura & Shioya (2004),
claims to give a more accurate clustering for
stream, with constraint of treating stream
as a sequence of chunks. Each chunk has
a constant size (t2 − t1) over time axis. In
the initialization phase, clusters are gener-
ated using similarity function applied on
initial (h − 1) chunks. For each cluster,
the center of gravity, variance, regression-
coefficient and F-value is maintained. To
reduce the number of clusters, close clus-
ters are combined iteratively if F-value of
newly merged cluster is bigger than the
F-value of each of the candidate cluster.
This procedure is repeated till no more
clusters can be combined. New incoming
points are collected in a chunk referred to
as recent chunk. Initial clusters in recent
chunk are discovered and combined with
existing clusters. Else clustering is done
from scratch using all clusters formed so
far using new F-value. While clustering,
only last (h − 1) chunks are used to get
recent and current clusters.

b.	 The algorithm proposed in Song & Wang
(2004), detects clusters using Gaussian
Mixture Model (GMM). This algorithm in-
crementally updates the density estimates,

taking into account only the newly arrived
data and previously estimated density.
This algorithm is based on Expectation
Maximization technique and uses a cluster
merging strategy based on multivariate
statistical tests for equality of covariance
and mean. Covariance and mean are used
as representations for clusters. The benefit
of using a covariance matrix is that it is
translation invariant and is used for deter-
mining the orientation of a cluster.

c.	 Algorithm for detecting low complexity
clusters by skewness and kurtosis was pro-
posed by Song & Wang (2006). Skewness
and kurtosis are employed in addition to
mean and covariance, to capture underly-
ing distribution. Multivariate skewness
is a single non-negative number, which
characterizes the asymmetry of a probabil-
ity distribution (PD) and hence represents
asymmetry of clusters. Multivariate kurto-
sis is also a single non-negative number,
which is used to measure the peakedness
of a PD and indicates the concentration
of a cluster. Clusters are generated using
Expectation Maximization (EM) algorithm
and for each cluster, all required statistics
are computed. The algorithm generates low
complexity clusters and provides an accu-
rate description of the shape of a cluster.

In order to reduce the number of clusters,
merging is done in two phases. In the first
phase, two clusters with comparable mean and
covariance are merged. Otherwise, skewness
and kurtosis of the entire data in both clusters
are tested against multivariate normality. If the
normality is acceptable, then these two clusters
are merged despite inequalities in their mean and
covariance. This merging process is repeated
till no more clusters can be merged.

Statistical approaches for clustering are
efficient if data dimensionality is low and data
belongs to single distribution. A major limita-
tion of these approaches is that stream is always
processed in batches. Thus net clustering results
is influenced by the initial model generated using
the initial sample. Since real life applications,

42 International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

data may belong to different distributions or
may evolve with time, these approaches have
limited utility.

Density Estimation Based
Algorithms

Given a sequence of independent random
variables, identically drawn from a specific
distribution, the general Density Estimation
(DE) problem is to reveal a density function
of underlying distribution. This probability
distribution is then used to identify dense and
sparse regions in data set with local maxima
of the probability distribution function taken
as cluster centers (Sain, 1994). Kernel-Density
Estimation (KDE) is a widely studied nonpara-
metric DE method and is suited to data mining
applications because it does not make any
assumption about the underlying distribution.
Most of the algorithms in this category use
window-based model.

a.	 Zhou, Cai, Wei & Qian (2003) propose
M-Kernel algorithm for estimating prob-
ability density function on line with limited
memory and in linear time. The basic idea
is to group similar data points and estimate
the kernel function for the group. This
strategy is instrumental in keeping the
memory requirement in control because
if N data points have arrived in the stream
so far, then number of kernels, m is very
less i.e. m << N. Each M-Kernel has three
parameters weight, mean and bandwidth.
The algorithm works for both landmark
and window models, although in the latter
case, only an approximation is delivered.
The computed kernels are then ranked to
identify clusters. The algorithm has been
tested for one dimensional data using
Gaussian Kernel. The major limitation
of this approach is that it processes one
dimensional data streams and the memory
used is very sensitive to the distribution of
the data set.

b.	 Heinz &Seeger (2006) extend the idea of
merging kernels and propose a resource
aware algorithm for KDE over streaming
data. This algorithm uses Epanechnikow
Kernel, which has a simple form and
bounded support, thereby reducing the
computational cost (Gray & Moore, 2003).
Bandwidth is dynamically computed based
on standard deviation in amortized constant
time. For each kernel, a counter (for the
incorporated points) and min-max value
of all points is maintained. Whenever the
number of kernels maintained exceeds a
threshold, a merging technique, similar
to merging technique given in Zhou, Cai,
Wei & Qian (2003), is used.

c.	 WStream algorithm (Tasoulis, Adams &
Hand, 2006) extends conventional KDE
clustering to spatio-temporal data in stream
environment, using Epanechnikow Kernel.
This algorithm maintains a list of windows,
each capturing a cluster. The windows are
moved, expanded and contracted incre-
mentally depending on the values of the
data points that join the clusters. These
operations inherently take into account
the fading of older data by periodically
computing the weight of windows and
using it in kernel function. In case a new
data point arrives, which does not belong
to any of the existing windows (clusters),
a new window is created with suitably
initialized kernel parameters. Two windows
that overlap considerably, are merged. A
major drawback of this approach is that
with increase in points more windows
need to be maintained where each cluster is
represented by at least one window. Hence,
with increase in the number of clusters
more memory is required.

The major drawback of Kernel Density
Estimation based approach is that it is compu-
tationally very expensive.

International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009 43

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Comparison of Algorithms

In this section we consolidate the strengths and
weaknesses of the algorithms mentioned ear-
lier. Table 1 shows a feature wise comparative
analysis of algorithms described in previous
subsections.

CluStream and DenStream process incom-
ing data in an on-line manner and are capable
of handling evolving data whereas STREAM
processes incoming data in batches. STREAM
works on the approximation of entire data stream
from the beginning to the end without distin-
guishing between old and new data. CluStream
discards outdated data by using relevance time
stamp, whereas DenStream fades away synopsis
on the basis of the arrival rate of data points
in it. Convex-shaped clusters are generated by
STREAM and CluStream whereas arbitrary-
shaped clusters are generated by DenStream.

Stats-Grid, DUCstream and ExCC use
grid structure for summarizing incoming points
and require less processing time per point as
compared with distance-based algorithms.
They use connected component analysis for
connecting adjacent cells in grid and hence
generate arbitrary shaped clusters. Stats-Grid
and DUCstream do not handle evolving stream
because they prune cells on the basis of density,
whereas ExCC prunes cells on the basis of ar-
rival rate of points in each cell. Hence ExCC
is capable of generating clusters that depict
current trends.

Statistical and Density Estimation based
approaches are computationally more expensive
than the previous two approaches and cannot
handle high speed stream. Statistical approaches
are suitable for data belonging to single distribu-
tion, while Density Estimation based approaches
are more flexible. Density Estimation based
approaches are capable of handling evolving

Fe
at

ur
es

ST
R

EA
M

C
lu

St
re

am

St
at

-G
rid

IC
FR

D
U

C
-

St
re

am

D
en

-
St

re
am

Ex
C

C

Year 2002 2003 2004 2004 2005 2006 2007

Nature of Processing Batch Online Online Batch Batch Online Online

Pre-defined Number
of Clusters No Yes No No No No No

Initial Phase Yes Yes No Yes No Yes No

Support for On-de-
mand Clustering No Yes Yes No No Yes Yes

Evolution Mecha-
nism No Yes No Yes No Yes Yes

Clustering Tech-
nique DS* DS* CCA* RA* CCA* DN* CCA*

Shape of Cluster C* C* A* E* A* A* A*

Outlier Detection No No No No No Yes Yes

Exclusive Clustering Yes No Yes Yes Yes No Yes

Table 1. Comparison of Features of some Clustering Algorithms for Streams, DS* : Distance
based, CCA*: Connected Component Analysis, RA*: Regression Analysis, DN*: Density based,
C* : Convex, A*: Arbitrary, E*: Elliptical

44 International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

stream. However, both approaches give efficient
results for low dimensional data only and the
final clustering result is influenced by the initial
model generated.

Generic Architecture
for Stream Clustering
Algorithms

This section presents the parameterized frame-
work for stream clustering. Section “Architec-
tural Framework” presents a generic architec-
ture in which the user specifies the requirements
of the application, and the framework selects
the appropriate components to assemble the
algorithm. The later sub-sections describe the
tasks in detail and the issues involved in the
selection of the components.

Architectural Framework

Figure 2 shows the architectural framework
for assembling a stream clustering algorithm.
The framework exploits the task-based generic
architecture of stream clustering algorithms that
emerges from the comparative study presented
in Section “Comparison of Stream Clustering
Algorithms”. In the proposed framework, the

end user specifies parameters at two levels. The
first set of parameters (user parameters) reflects
the specific user needs and is used for assembling
the algorithm. This provides flexibility to the
user to set goals for each of the tasks. The second
set of parameters (algorithmic parameters) is
specific to the tailored algorithm.

The component selector selects the com-
ponents for accomplishing tasks involved in
stream clustering. The selection is based on the
user parameters. The output of the component
selector is a tailored algorithm that accomplishes
tasks summarized in Figure 3. Each of the tasks
is accomplished using a strategy from some
existing algorithm, to meet the user’s require-
ments in totality.

The user parameters include output needs
like shape of the clusters, on-demand/periodic
clustering requirement, outlier handling; re-
sources availability in terms of memory and
computational power; the nature of the stream
in terms of speed, smoothness etc. The ’Feature’
column of Table 1 is a sample of user require
ments that are interpreted as user parameters
for component selection. These are the inputs
for the selector mechanism to select suitable
components from the library. The selected
components are subsequently bound to create
a tailored stream clustering algorithm.

User Parameters

Components Library

Clusters
Synopsis

Updated

Algorthmic
Parameters

Stream
Tailored
Algorithm

Component
Selector

Component
for Task 1

Component
for Task 2

Component
for Task 3

Component
for Task 4

Figure 2. Architectural framework for assembling stream clustering algorithms

International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009 45

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Table 2 gives the possible alternatives for
picking up the candidates (parents) for assem-
bling, depending on user level parameters. Once
the algorithm has been assembled, the user gives
relevant algorithmic parameters, for instance
density threshold, number of clusters, intervals,
in order to get the desired results.

A wide variety of programming technolo-
gies are available for the rapid development of
an environment for assembling algorithms in
order to implement the framework. Major effort
is required in defining the compatible interfaces
of the components for seamless integration,
leading to a complete algorithm.

Tasks Involved in Stream
Clustering

Figure 3 shows the sequence of the tasks that
need to be performed for clustering of data
stream. The formulation is based on the com-
parative study of available stream clustering
algorithms. The figure illustrates a generic
stream clustering algorithm consisting of four
components, each performing one of the tasks
mentioned below.

a.	 Selecting the synopsis structure and initial-
izing it (if required)

b.	 Processing the incoming data and updating
the synopsis

c.	 Capturing evolution of stream (i.e. detec-
tion of evolving and fading clusters)

d.	 Clustering on the synopsis

Initialization of the synopsis structure
(task 1) is optional and depends on the clus
tering algorithm used in task 4. The second
component updates synopsis (task 2) while
processing incoming points in the stream. To
capture changes in data trends, a fading or
pruning mechanism is applied on synopsis
highlighting the evolution of the new clusters
and disappearance of older ones. For some
algorithms, the on-line component integrates
both these tasks (as indicated by the dotted box).
The final component accomplishes the last task
using the up-to-date synopsis and delivers the
clustering scheme.

We now discuss the issues involved in each
of these tasks and their handling in different
algorithms. The discussion helps in understand-
ing the issues that arise while interfacing of the
components during the assembly.

Synopsis Structure and its
Updation

Since the stream is unbounded and the data is
available only for a short duration, it is necessary
to maintain a synopsis of the data as it comes.
Depending on the clustering algorithm used, the
information is summarized in a specific format
and is stored as synopsis for future reference.
The structure of the synopsis and the clustering
algorithm intended to be used, are closely inter-
related. In some situations, the synopsis needs
to be initialized.

The incoming data points of the stream can
be incorporated into the synopsis structure either

Figure 3. Tasks in a Stream Clustering Algorithm (* required in some synopsis structures)

Data Stream
Demand for
Clustering

Initialization
of Synopsis

Synopsis
Maitenance

Evolution Capturing
Mechanism Clustering

Clusters

*
Initial

sample

Task 1 Task 2 Task 3 Task 4

46 International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

in batch mode or in an on-line fashion. The on-
line approach requires constant time complex-
ity so that there is no data loss, whereas batch
processing does not face this constraint. Batch
processing uses the landmark window model
to compute clusters over the complete stream
received so far. The usage of the landmark win-
dow model in clustering makes batch processing
unsuitable for capturing evolutionary trends
(Aggarwal, Han, Wang & Yu, 2003).

Two commonly used synopsis structures
in stream clustering algorithms are i) Set of
micro-clusters and ii) Grid.

The algorithms using the set of micro-
clusters as synopses or those using Kernel
density estimation (Heinz & Seeger, 2006)

need an initialization phase for determining
the initial set of clusters. In case of both, the
micro-clusters (µCs) and fading micro-clusters
(P-µCs and O-µCs) (Table 3), new incoming
points are absorbed within the closest micro-
cluster either in batch or on-line mode. This
results into updated synopsis. Time required for
maintaining synopsis depends on its size and
is an important consideration in the design of
the on-line component.

Grid-based synopsis structure maintains
detailed data distribution in the data space.
The structure does not need initialization and
takes constant time for insertion of a new data
point (Park & Lee, 2004). This characteristic
makes it attractive for handling high speed data

Requirement Type Candidate Algorithms

Initialization
No STREAM, Stat-Grid, ICFR, ExCC

Yes CluStream, DenStream, DUCStream

Data processing
Batch STREAM, DUCStream, ICFR

Online CluStream, DenStream, Stat-Grid, ExCC

Speed of Stream
Low STREAM, ICFR

High CluStream,DenStream, Stat-Grid, DUCStream, ExCC

Dimensions of
data

Low/Moderate STREAM, CluStream, DenStream, ICFR

High Stat-Grid, DUCStream, ExCC

Number of
clusters

Known CluStream

Unknown STREAM, DenStream, Stat-Grid, ICFR, DUCStream,
ExCC

Shape of
Clusters

Convex STREAM, CluStream

Arbitrary DenStream, Stat-Grid, DUCStream,
ExCC

Elliptical ICFR

Type of
clusters

Exclusive STREAM, Stat-Grid, ICFR, DUCStream, ExCC

Non-exclusive CluStream, DenStream

Evolution
handling

No STREAM, Stat-Grid, DUCStream

Yes CluStream, DenStream, ICFR, ExCC

Computational
requirements

Low CluStream, DenStream, DUCStream,
ExCC

High High & STREAM, Stat-Grid, ICFR

Table 2. Sample set of user parameters

International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009 47

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

stream. The incoming points are absorbed in the
synopsis based on data values along different
dimensions. Grid-based synopsis handles high
dimensional sparse data more efficiently com-
pared to distance function (Agrawal, Gehrke,
Dimitrious & Raghavan, 1998).

Mechanism to Capture Evolving
Data

In order to capture data evolution over time,
algorithms employ a recency criterion to high-
light current patterns in the stream, and fade
out or reduce the impact of older data. Pruning
(Aggarwal, Han, Wang & Yu, 2003; Bhatnagar
& Kaur, 2007; Park and Lee, 2004) and fading
(Cao, Ester, Qian & Zhou, 2006; Motoyoshi,
Miura & Shioya, 2004) are two commonly used
mechanisms for determining recency.

Pruning can be performed either using time-
stamp or data volume, or both. In time-based
pruning, the unit of information (e.g. micro-
cluster, cell) that has not been updated for a
specified period of time is permanently deleted
from synopsis structure. The period may either

be explicitly defined as in the sliding window
model or may be some pre-defined function
of time (Aggarwal, Han, Wang & Yu, 2003).
Pruning done on the basis of data volume may
miss detection of a slight change in current trend
or data distribution (Gao, Li, Zhang & Tan,
2005; Park & Lee, 2004). Data volume-based
pruning is thus desirable in applications where
only significant distribution changes need to be
captured. Some algorithms also use the time of
creation of the unit of information in addition
to data volume for pruning information, which
is not updated for a specified period of time
(Bhatnagar & Kaur, 2007).

Fading mechanism dynamically computes
the weight of the information in synopsis,
based on arrival of conforming data points, as
in damped-window model (Cao, Ester, Qian &
Zhou, 2006). The importance of historical data
is gradually reduced by using a fading function

that is typically of the form 2-λ t (Cao, Ester, Qian
& Zhou, 2006). This mechanism is preferred
when even a slight change in distribution needs
to be captured.

Features CluStream Stats-Grid ICFR ExCC DenStream

Name of
Synopsis

Set of Micro-
clusters (µC)

Statistical
Grid

Set of Initial
Clusters Grid Set of P-µCs and

O-µCs

Structure of
Synopsis

2 , 1 ,
2 , 1 ,

x x

t t

CF CF
CF CF n

(RSi, Ci, mi, σi)
(m, σ, fval, RC,
DM) n, ts, aat

(2 , 1 ,)

(2 , 1 , ,)

x x

x x

CF CF wt

CF CF wt ts

Storage
Complexity O(2d + 3)*N Ω(Kd) O(N2) Ω(Kd) O(2d + 1)*N

Time
Complexity O(Nd) Ω(d) O(N2) O(d) O(Nd)

Remarks

N: no. of
Microclusters,
n: no. of points in
each Microcluster
x: data value
t: time stamp

RSi :range
Ci: count
mi: mean
si: Std. dev.
For each dim i

DM: distance
matrix
RC: Regression
Coefficient

ts: time
stamp
K: no. of
intervals
aat: average
arrival time

N: no. of P-µCs
and O-µCs
ts: time stamp of
O-µCs
tw: weight

Table 3. Synopsis data structures of some stream clustering algorithms

48 International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Clustering Technique

Clustering the synopsis is the final task that
needs to be performed. Importance of the
choice of a clustering technique cannot be
undermined since it has a direct impact on the
nature of the output (e.g. shape of the cluster),
resource requirement (size and structure of
the synopsis) and the efficiency of the overall
algorithm (design of the on-line/batch com-
ponent). There is a wide variety of clustering
techniques available in literature (Hartigan,
1975; Jain, Murty & Flynn, 1999). Many of
these techniques have been suitably modified
for clustering data streams.

k-Median, k-Means and neighborhood
density search are commonly used approaches
for clustering streams. The k-Median based
LOCASEARCH algorithm is used in STREAM
(Guha, Mishra, Motwani & O’Callaghan, 2002)
at two stages. It initially maintains weighted
cluster centers for each chunk and subsequently
generates optimal number of clusters from these
weighted centers.

CluStream uses weighted k-Means algo-
rithm for discovering (macro-)clusters when
demanded by the user. DenStream applies a
variant of dbscan (Ester, Kriegel, Sander & Xu,
1996) on the synopsis to get arbitrary shaped
clusters. Unlike CluStream, it does not require
pre-defined number of clusters to be generated

and reports all density-connected and density-
reachable core-µCs as clusters.

In the grid based approach for clustering,
connected component analysis is performed
on selected cells to deliver arbitrary shaped
clusters. Cells to be clustered are selected based
on pruning/fading criteria, as applicable. Stats-
Grid algorithm selects cells based on points
whereas ExCC algorithm uses points as well as
time for selection. DUCStream does clustering
on dense cells formed in the first chunk. This
algorithm uses an incremental approach and
keeps on updating existing clusters by merging
all new dense cells formed in subsequent chunks.
A new cluster is formed only when a cell cannot
be merged within existing clusters.

Statistical approaches use various statis-
tical measures like mean, median, variance,
co-variance, regression co-efficient etc. to
generate a mathematical model for cluster-
ing. This mathematical model is subsequently
updated to incorporate new trends. Because of
extensive computation, this approach always
clusters offline and gives efficient results for a
low dimensional data set. ICFR uses regression
analysis for capturing clusters with local trends.
It delivers non-convex shaped and exclusive
clusters.

 Table 4 summarizes the clustering tech-
niques used in the chosen set of algorithms,
along with their respective time complexities.

Algorithm STREAM CluStream DenStream Stat-Grid &
ExCC ICFR

Technique
Used k-Median k-Means dbscan CCA RA

Complexity O(NM+Nklogk) O(Nkt) O(N2) O(N!) O(N2)

Remarks
N: Data size
M: No. of Outliers
k: No. of Centers

N: No. of
µCs
t: No. of
iterations
k: No. of
centers

N: No. of
core-µCs N: No. of cells

N: No.
of initial
clusters

Table 4. Comparison of clustering components of selected algorithms

International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009 49

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Realization of the
Framework

To demonstrate the application of the frame-
work, we assemble two stream clustering
algorithms as per two different sets of user
requirements. The rationale for selecting the
components is outlined and experimental
evaluation is reported. Experiments reveal that
both the assembled algorithms perform compa
rably with the parent algorithms, from which
components have been drawn.

G-kMeans Algorithm: Example 1

Table 5 lists the requirements of a user. Table 2
helps in determining that CluStream satisfies
requirements (1), (2), (5), (6) and (9) while
ExCC satisfies requirements (2), (3), (4), (7),
(8) and (9).

Since CluStream is a distance based algo-
rithm with on-line component of complexity
O(Nd) (Table 3), it may not be able to handle high
speed, high dimensional data stream. Further,
CluStream also does not lead to exclusive and
complete clustering. Both these requirements
are met by ExCC algorithm, which also deliv-
ers arbitrary shaped large number of clusters.
To overcome this situation, we assemble an
algorithm G-kMeans that uses grid structure

for synopsis and k-means algorithm for cluster-
ing. The choice is made due to the following
reasons :

a.	 Per point processing time in grid is lesser
than that in micro-cluster approach.

b.	 A complete and desired number of exclu-
sive clusters need to be generated.

When user demands clustering in G-
kMeans, the grid is pruned to remove the effect
of old data on current trends. Each cell in grid is
then used by the clustering component, which
uses k-Means as in CluStream.

G-dbscan Algorithm: Example 2

Considering the user requirements given in
Table 6 with reference to Table 2, it was found
that DenStream satisfies all requirements except
(3), (4) and (7).

DenStream is also a distance based algo-
rithm with the on-line component of complexity
O(Nd) (Table 3) and may not be able to handle
high speed, high dimensional data stream.
DenStream generates non-exclusive clusters
on demand because potential micro-clusters
are merged to compute real clusters.

 As discussed in previous section, these
requirements are met by ExCC. We assemble

1. Initialization Yes

2. Clustering Requirements On Demand

3. Speed of Stream High

4. Dimensionality of Data High

5. Number of Clusters Known

6. Shape of Clusters Convex

7. Type of Clusters Exclusive

8. Type of Clustering Complete

9. Evolution Handling Yes

Table 5. First set of user’ requirement for clus-
tering streams 1. Initialization Yes

2. Clustering Requirements On Demand

3. Speed of Stream High

4. Dimensionality of Data High

5. Number of Clusters Unknown

6. Shape of Clusters Arbitrary

7. Type of Clusters Exclusive

8. Evolution Handling Yes

9. Type of Clustering Complete

10. Reporting Outliers Yes

Table 6. Second set of user’ requirement for
clustering streams

50 International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

an algorithm G-dbscan that uses grid structure
as synopsis and dbscan algorithm for clustering
as used in DenStream.

G-dbscan uses grid for storing summarized
information about incoming data points. The
grid is pruned just before clustering as done in
ExCC. Each cell in the grid is used as a pseudo
point, represented by its signature, while clus-
tering using dbscan.

Experimental Analysis of
G-kMeans and G-dbscan

In this section, we describe the experiments to
demonstrate two important features of the as-
sembled algorithms. We show that the quality
delivered by the assembled algorithm and time
taken are comparable to those of the clustering
schemes delivered by the parent algorithms. If
both scalability and quality requirements are
comparable, meeting the requirements of the
user by the assembled algorithm, is certainly
an added advantage. The results give us the
confidence that the components used for as-
sembling the algorithm do not lead to any
deterioration.

All experiments are performed on the
Intel Centrino processor with 256 MB RAM,
running stand-alone Linux (kernel 2.4.22-1).
The algorithm is implemented in ANSI C with
no optimizations, and compiled using a g++
compiler (3.3.2-2). In the experiments with
streaming data, the results are averaged over
multiple runs with total number of data points
remaining the same. The following data sets
are used:

a.	 Network Intrusion Detection Data used in
kdd cup, 1999, is available at UCI KDD ar-
chive. The data consists of 494,021 records,
each having 42 attributes (34 continuous
and 8 categorical). Each record corresponds
to either normal class or an attack class.
The experiments were performed with 23
classes using 34 continuous attributes.

b.	 Forest Cover type Data, acquired from
UCI KDD archive, has been widely used
in clustering experiments. This data has

581,012 observations, each with 54 attri-
butes. There are seven classes in this data
set and all ten quantitative attributes are
used in the reported experiments.

c.	 Synthetic Data generated by Enclus data
generator (Cheng, Fu & Zhang, 1999)
has been used in some experiments. The
generated data sets are denoted as ENdDc-
CrR indicating that there are d dimensions
(D), c clusters (C) and r * 1000 records (R)
and are used for verification of proposed
assembly approach.

Evaluation of Cluster Quality of
G-kMeans

Two measures viz. cluster purity and squared
sum of distance (SSQ), were used to evaluate the
quality of clusters delivered by G-kMeans. The
results were compared with those of CluStream
and ExCC. Synthetic data (EN8D10C100R)
generated by Enclus and Network intrusion
data was used for these experiments.

 All the three algorithms gave cluster purity
above 99.8% on synthetic data establishing the
feasibility and comparable quality of stream
clustering algorithm tailored using the proposed
framework. Average cluster purity of G-kMeans
with CluStream and ExCC was compared by
recreating the experiment reported in Aggarwal,
Han, Wang & Yu (2004), and using the results
reported therein. Figure 4 shows that cluster
purity of G-kMeans is better than CluStream
but lower than ExCC. Marginal lowering of
cluster purity of G-kMeans can be attributed
to the use of distance function for clustering,
which is generally not recommended for high-
dimensional data set.

The cluster quality of k-Means and G-
kMeans was compared with respect to SSQ, as
shown in Figure 5. All records were used in the
experiment without treating them as stream in
this experiment. The high quality of G-kMeans
is attributed to the detailed data distribution in
formation summarized in grid. Table 7 shows the
comparison of SSQ of the clustering schemes
delivered by G-kMeans and CluStream, using
the results reported in Aggarwal, Han, Wang

International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009 51

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

& Yu (2003). We get mixed results, though
we appreciate better compactness achieved by
CluStream because of the micro-cluster based
approach.

Testing Scalability of G-kMeans

The scalability of a stream clustering algorithm
needs to be examined with respect to both time
and memory requirement. Time complexity is
crucial for the on-line component to avoid loss
of data in a high speed stream. High scalability
is desirable for the offline component so that
clustering results are delivered in reasonable
time, when demanded by the user. Scalability
of the on-line component of G-kMeans is not
an issue since incoming points are processed
in constant time. Therefore, the scalability of
the offline component is tested for different
granularity levels (Interval) of the grid.

Time required by the component is influ-
enced by the number of cells in the grid, which
are used as data points in G-kMeans. Figures 6,
8, 10 show the increasing number of grid cells
with data points, while Figures 7, 9, 11 show
the corresponding clustering times. Though
the theoretical time complexity of k-Means is
O(nkt), the actual times are influenced by the
data distribution. As seen in Figure 7, the time
taken by the G-kMeans at finer granularity (In-

terval=14) decreases at 200,000 data points. This
dip is explained by change in data distribution
leading to pruning of large number of cells and
consequent reduction in the iterations required
by k-Means to generate cluster.

In case of Forest Cover data, though the
number of cells in the grid show a constant
increase for different grid granularities (Figure
8), the clustering timings do not show a regular
pattern (Figure 9). This can be explained by
changing data distribution leading to unpre-
dictable pruning and consequent reduction
in clustering time. Figures 10, 11 show the
observation on Network intrusion data.

 Scalability of clustering component of
G-kMeans algorithm was tested by varying
number of input clusters in synthetic data. Figure
12 shows that the clustering time is linear with
respect to increase in the number of clusters.

Evaluation of Cluster Quality in
G-dbscan

Cluster purity was used as the measure to
evaluate the quality of clusters generated by
G-dbscan. Synthetic data was used to compare
G-dbscan with dbscan. Both algorithms gave
approximately 99.8% purity on this data.

The experiment reported in Cao, Ester,
Qian & Zhou (2006) was recreated to compare

Figure 4. Cluster purity comparison (Network
Intrusion Data)

Figure 5. Comparison of cluster quality (SSQ)
of EN8D10C100R, Interval = 14

 70

 75

 �0

 �5

 90

 95

 100

211 255 ��� 1�57

C
lu

st
er

 P
ur

ity
 (%

)

Stream (in time units)

Clustream
G-kMeans

ExCC

 0

 500000

 1e+0�

 1.5e+0�

 2e+0�

 2.5e+0�

 �e+0�

25 50 75 100

S
S

Q

Window size (in multiple of thousand)

k-Means
G-kMeans

52 International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Points (in thousands) CluStream G-kMeans

 150
250
350
450

1E+13
1E+5
1E+12
1E+8

1E+12
1E+8
1E+9
1E+8

Table 7. Comparison of cluster quality (SSQ) of network intrusion data

Figure 6. Increase in grid cells with number of
points (EN5D10C200R)

Figure 7. Clustering time (EN5D10C200R)

Figure 8. Increase in grid cells with number of
points (forest cover data)

Figure 9. Variation in clustering time (forest
cover data)

 0

 1

 2

 �

 �

 5

 �

 7

 �

 9

 0 50 100 150 200 250

N
o.

 o
f c

el
ls

 in
 th

ou
sa

nd

No. of points processed in thousand

Interval=�
Interval=10
Interval=12
Interval=1�

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200 250

C
lu

st
er

in
g

Ti
m

e
(s

ec
s)

No. of points processed in thousand

Interval=�
Interval=10
Interval=12
Interval=1�

 0

 20

 �0

 �0

 �0

 100

 0 50 100 150 200 250 �00

N
o.

 o
f c

el
ls

 in
 th

ou
sa

nd

No. of points processed in thousand

Interval=�
Interval=�

Interval=10

 0

 50

 100

 150

 200

 0 50 100 150 200 250 �00

C
lu

st
er

in
g

Ti
m

e
(s

ec
s)

No. of points processed in thousand

Interval=�
Interval=�

Interval=10

International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009 53

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

cluster quality of DenStream and G-dbscan on
Network Intrusion data. Figure 13 shows that
G-dbscan outperforms DenStream at every
time unit.

Testing Scalability of G-dbscan

The results of the experiment on Network Intru-
sion data for comparing the scalability of CluS-
tream, DenStream and G-dbscan are shown in
Figure 14. The execution times of CluStream and
DenStream grow linearly as stream proceeds,
whereas G-dbscan executes stream in constant
time because of grid structure.

Conclusion

This paper presents a parameterized framework
for assembling a stream clustering algorithm.
The framework is based on the generic archi-
tecture underlying the existing algorithms and
is motivated by the need to overcome the adhoc
approach for designing algorithms to solve
individual problems. The proposed framework
enhances the user involvement in the use of
the KDD technology, by accepting the busi-
ness requirements as high level parameters,
and tailoring the algorithm best suited for the
application needs.

The two algorithms G-kMeans and G-
dbscan are presented to instantiate the pro-
posed framework based on two different user
requirements sets. Experimental evaluation of
the two algorithms with respect to the quality
of clustering and scalability indicate viability
of the proposal.

REFERENCES
Aggarwal, C.C. (2007). ‘Data Streams: Models and
Algorithms’, Springer Science+Business Media,
New York.

Aggarwal, C. C., Han, J., Wang, J., & Yu, P. S.
(2003). ‘A Framework for Clustering Evolving

Figure 10. Increase in grid cells with number
of points (network intrusion data)

Figure 11. Variation in clustering time (network
intrusion data)

Figure 12. Scalability of cluster component
using synthetic data (Interval = 8)

 0

 2

 �

 �

 �

 10

 0 50 100 150 200 250 �00

N
o.

 o
f C

el
ls

 in
 th

ou
sa

nd

No. of points processed in thousand

Interval=�
Interval=10

 0

 50

 100

 150

 200

 0 50 100 150 200 250 �00

C
lu

st
er

in
g

Ti
m

e
(s

ec
s)

No. of points processed in thousand

Interval=�
Interval=10

 0

 50

 100

 150

 200

 250

 �00

 �50

 0 5 10 15 20

C
lu

st
er

in
g

Ti
m

e
(s

ec
s)

No. of Clusters

EN10D100R
EN10D200R

54 International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Data Streams’, In Proceedings of the 29th VLDB
conference, pp.81–92.

Aggarwal, C. C., Han, J., & Yu, P. S. (2004). ‘A
Framework for Projected Clustering of High Dimen-
sional Data Streams’, In Proceedings of International
Conference on Very Large Data Bases, Toronto,
Canada, pp.852–863.

Agrawal, R., Gehrke, J., Dimitrious, G., & Raghavan,
P. (1998). ‘Automatic Subspace Clustering of High
Dimensional data for Data Mining application’, ACM
SIGMOD Record, pp.94–105.

Babcock, B., Babu, S., Datar, M., Motwani, R., &
Widom, J. (2002). ‘Models and Issues in Data Stream
Systems’, In Proceedings of the ACM Symposium on
Principles of Database Systems (PODS), pp.1–16.

Barb´ara, D. (2002). ‘Requirements of Clustering
Data Streams’, ACM SIGKDD Explorations News-
letter, Vol. 3, pp.23–27.

Berkhin, P. (2003). ‘Survey of Clustering Data Min-
ing Techniques’, Accure Software Inc.

Bhatnagar, V., & Kaur, S. (2007). ‘Exclusive and
Complete Clustering of Streams’, In Proceedings of
the International Conference on Database and Expert
Systems Applications, Germany, pp.629–638.

Cao, F., Ester, M., Qian, W., & Zhou, A. (2006)
‘Density-Based Clustering over an Evolving Data
Stream with Noise’, In Proceedings of the SIAM
Conference on Data Mining, pp.326–337.

Carney, D., Cetintemel, U., Cherniack, M., Convey,
C., Lee, S., Seidman, G. et al. (2002). ‘Monitoring
Streams: A New Class of Data Management Ap-
plications’, In Proceedings of the 28th International
Conference on Very Large Data Bases, Hong Kong,
China, pp.215–226.

Cheng, C. H., Fu, A. W., & Zhang, Y. (1999). ‘Entropy
Based Subspace Clustering for Mining Numerical
Data’, In Proceedings of 5th ACM SIGKDD Inter-
national Conference on Knowledge Discovery and
Data Mining, pp.84–93.

Domingos, P., & Hulten, G. (2000). ‘Mining High-
Speed Data Streams’, In Proceedings of 6th Inter-
national Conference on Knowledge Discovery and
Data Mining, pp.71–80.

Duda, R. O., Hart, P. E., & Stork, D. G. (2000). ‘Pat-
tern Classification’, John Wiley and Sons.

Ester, M., Kriegel, H. P., Sander, J., & Xu, X. (1996).
‘A Density-based Algorithm for Discovering Clusters
in Large Spatial DBs with Noise’, In Proceedings
of 2nd International Conference on Knowledge
Discovery and Data Mining.

Gao, J., Li, J., Zhang, Z., & Tan, P. (2005). ����‘An
Incremental Data Stream Clustering Algorithm Based
on Dense Units Detection’, In Proceedings of the 9th
Pacific-Asia Conference on Knowledge Discovery
and Data Mining, Hanoi, pp.420–425.

Gray, A., & Moore, A. W. (2003). ‘Nonparametric
Density Estimation : Towards Computational Trac-

Figure 13. Cluster purity comparison Figure 14. Execution time vs. stream length (net-
work intrusion detection data, interval =12)

 70

 75

 �0

 �5

 90

 95

 100

�� 51 �� �70 �10 �50

C
lu

st
er

 P
ur

ity
 (%

)

Stream (in time units)

DenStream
G-dbscan

 0

 1

 2

 �

 �

 5

 �

 7

 �

 50 100 150 200 250

E
xe

cu
tio

n
Ti

m
e

(s
ec

s)

No. of points processed in thousand

CluStream
DenStream

G-dbscan

International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009 55

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

tability’, In Proceedings of SIAM International
Conference on Data Mining.

Guha, S., Mishra, N., Motwani, R., & O’Callaghan,
L. (2000). ����������������������������������� ‘Clustering Data Streams’, In IEEE
Symposium on Foundations of Computer Science,
pp.259–366.

Guha, S., Mishra, N., Motwani, R., & O’Callaghan, L.
(2002). ��� ‘Streaming-Data Algorithms for High-Qual-
ity Clustering’, In Proceedings of IEEE International
Conference on Data Engineering.

Hartigan, J. A. (1975). ‘Clustering Algorithms’, John
Wiley & Sons Inc.

Heinz, C., & Seeger, B. (2006). ’Towards Kernel Den-
sity Estimation Over Streaming Data’, In Proceedings
of 13th International Conference on Management of
Data(COMAD), Delhi, India.

Henzinger, M. R., Raghavan, P., & Rajagopalan, S.
(1998). ‘Computing on Data Streams’, Technical
Note 1998-011, Digital Systems Research Center,
Palo Alto, California.

Jain, A. K., Murty, M. N., & Flynn, P. L. (1999).
‘Data Clustering : A Review’, ACM Computing
Survey, pp.264–323.

Motoyoshi, M., Miura, T., & Shioya, I. (2004).
‘Clustering Stream Data by Regression Analysis’,
In Proceedings of the 2nd workshop on Australasian
Information security, Data Mining and Web Intel-
ligence, and Software Internationalization, Dunedin,
New Zealand, pp.115–120.

Orlowska, M. E., Sun, X., & Li, X. (2006). �������� ‘Can Ex-
clusive Clustering on Streaming Data be Achieved’,
ACM SIGKDD Explorations Newsletter, Vol 8,
pp.102–108.

Park, N. H., & Lee, W. S. (2004). ‘Statistical Grid-
based Clustering over Data streams’, ACM SIGMOD
Record, Volume 33, pp.32–37.

Park, N. H., & Lee, W. S. (2007). ‘Cell trees: An
Adaptive Synopsis Structure for Clustering Multi-
dimensional On-line Data Streams’, Data and Knowl-
edge Engineering, Vol 63, pp.528–549.

Rusu, L. I., Rahayu, W., & Taniar, D. (2008). �������‘Intel-
ligent Dynamic XML Documents Clustering’, In
Proceedings of the 22nd International Conference on
Advanced Information Networking and Applications,
Japan, pp 449-456.

Sain, S. R. (1994). ‘Adaptive Kernel Density Estima-
tion’, PhD Thesis, Rice University.

Song, M., & Wang, H. (2004). ‘Incremental Estima-
tion of Gaussian Mixture Models for Online Data
Stream Clustering’, In International Conference on
Bioinformatics and its Applications, Hong Kong.

Song, M., & Wang, H. (2006). ‘Detecting Low Com-
plexity Clusters by Skewness and Kurtosis in Data
Stream Clustering’, In 9th International Symposium
on AI and Maths, Florida.

Tasoulis, D. K., Adams, N. M., & Hand, D. J. (2006).
‘Unsupervised Clustering in Streaming Data’, In
Proceedings of 6th IEEE International Conference
on Data Mining -Workshops, pp.638–642.

UCI KDD Archive, http://kdd.ics.uci.edu.

Yang, Q., & Wu, X. (2006). ‘10 Challenging
Problems in Data Mining Research’, International
Journal of Information Technology & Decision, Vol
5, pp.597–604.

Zhang, T., Ramakrishnan, R., & Livny, M. (1996).
‘BIRCH: An Efficient Data Clustering Method for
Very Large Databases’, In Proceedings of the ACM
SIGMOD International Conference on Management
of Data, Quebec, Canada, pp.103–114.

Zhou, A., Cai, Z., Wei, L., & Qian, W. (2003). ‘M-
Kernel Merging : Towards Density Estimation Over
Data Streams’, In Proceedings of 8th International
Conference on Database Systems for Advanced
Applications (DASFAA), pp.285–292.

56 International Journal of Data Warehousing & Mining, 5(1), 36-56, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Vasudha Bhatnagar did her master’s in computer applications from University of Delhi, Delhi, India in
1985. She completed her doctoral studies from Jamia Millia Islamia, New Delhi, India in 2001. She worked
in C-Dot from 1985 - 1989 as a software engineer. Thereafter she taught in Moti Lal Nehru College, Uni-
versity of Delhi (1989 - 2002). She is currently a reader in Department of Computer Science, University
of Delhi, Delhi, India. Her broad area of interest is intelligent data analysis. She is particularly interested
in developing process models for knowledge discovery in databases and data mining algorithms, problems
pertaining to modeling of changes in discovered knowledge in evolving (streaming) data sets, handling
user subjectivity in KDD, projected clustering, outlier detection.

Sharanjit Kaur received her master’s degree in computer applications in 1994 and bachelor’s degree in
computer science in 1991. She started teaching in 1995. Currently she is pursuing her doctoral studies in
the area of ‘Data Mining’ from Department of Computer Science, University of Delhi, Delhi, India. Her
research interest spans the area of Data Mining, Databases and Operating System.

Laurent Mignet received his MS in computer science (1997) from Paris VI/CNAM/ENST and PhD in
Database (2001) from INRIA/CNAM. He then spent two years at the Department of Computer Science of
University of Toronto with an INRIA fellowship the first year. Since February 2004 he joined IBM research
in Delhi. His research works resulted to international publications in journals and top conferences as well
as patents filled in USPTO. Some of his work has been transferred to the industry in a 2 startup during his
PhD and now in IBM products. He is DB2 subject matter expert as well as IBM advocate for the informa-
tion management brand for some IBM customers.

International Journal of Data Warehousing & Mining, 5(1), 57-73, January-March 2009 57

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Abstract

Existing algorithms for high-utility itemsets mining are column enumeration based, adopting an Apriori-
like candidate set generation-and-test approach, and thus are inadequate in datasets with high dimensions
or long patterns. To solve the problem, this paper proposed a hybrid model and a row enumeration-based
algorithm, i.e., Inter-transaction, to discover high-utility itemsets from two directions: an existing algorithm
can be used to seek short high-utility itemsets from the bottom, while Inter-transaction can be used to seek
long high-utility itemsets from the top. Inter-transaction makes full use of the characteristic that there are
few common items between or among long transactions. By intersecting relevant transactions, the new
algorithm can identify long high-utility itemsets, without extending short itemsets step by step. In addition,
we also developed new pruning strategies and an optimization technique to improve the performance of
Inter-transaction.

Keywords:	 high-utility itemset; hybrid model; large high-dimensional data; partition method

Introduction

Traditional association rule mining (ARM) as-
sumes that the important must be frequent and
aims at discovering frequent itemsets. However,
in the real world, the frequent is not necessarily
important; some infrequent itemsets may have
high utility values and thus are important to us-
ers. For example, in a transaction database, there

are 1000 sale records of milk which occupy 10%
of the total transaction number, contributing 1%
of the total profit. In the meantime, there are
600 sale records of birthday cake that occupy
6% of the total transaction number, contributing
5% of the total profit. If the support threshold
is 8%, according to traditional algorithms for
frequent itemset mining, milk will be reported
as a frequent itemset and birthday cake will be

A Hybrid Method for High-Utility
Itemsets Mining in Large
High-Dimensional Data

Guangzhu Yu, Donghua University, China

Shihuang Shao, Donghua University, China

Bin Luo, Guangdong University of Technology, China

Xianhui Zeng, Donghua University, China

58 International Journal of Data Warehousing & Mining, 5(1), 57-73, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

ignored. But in fact, market professionals must
be more interested in birthday cake because it
contributes a larger portion to total profit than
milk. The example shows that support is not
sufficient to reflect users’ interests and such
mining results might not be satisfactory.

According to Expectancy Theory (Vroom,
1964), we have the well-known equation “mo-
tivation = probability * utility”, which says that
motivation is determined by the utility of mak-
ing a decision and the probability of success. In
retailing field, users are not only interested in
the frequency of occurrence of an itemset (sup-
port), but also its utility. So a decision-oriented
ARM algorithm should output both the support
and the utility of interesting patterns. For this
reason, utility-based ARM (or utility mining
for short) has been proposed to discover all the
itemsets in a database with utility values higher
than a user-specified threshold.

Utility of an item is a subjective term, de-
pending on users and applications; it could be
measured in terms of profit, cost, risk, aesthetic
value or other expressions of user preference.
For easy understanding, in this paper, “utility” is
viewed as economic utility such as sales profit,
and all databases are regarded as transaction
databases, so that we can define the utility of
an item as the product of quantity sold and the
unit profit of the item. Table 1 is an example
of a simplified transaction database where
the total utility value is 162. The number in
each transaction in Table 1 is the sales profit
of each item. If s(X) and u(X) represent the
support and utility of itemset X respectively
(for details, refer to definition 4 in Section
2), then u(A,B)=43, s(A,B)=5, u(A,B,C) =54,
s(A,B,C)=3, u(A,B,C,D)=45, s(A,B,C,D)=2,
u(A,B,C,D,E)=57, and s(A,B,C,D,E)=2.

If the support threshold is 3 and the utility
threshold is 50, {A, B} is a frequent but not a
high-utility itemset. On the other hand, {A,B,C}
is both a frequent and high-utility itemset,
{A,B,C,D} is neither a frequent nor a high-utility
itemset and {A,B,C,D,E} is a high-utility but
non-frequent itemset.

From the above example, we can draw a
conclusion: downward closure property, which

states that if an itemset is frequent by support,
all its nonempty subsets must also be frequent
by support, does not apply to utility mining. Rel-
evant studies have shown that utility constraint
is neither anti-monotone, monotone, succinct,
nor convertible (Shen, Zhang, & Yang, 2000;
Yao, Hamilton, & Geng, 2006). Because of this
property, most algorithms for frequent pattern
mining such as FP-Tree (Han, Pei, Yin, & Mao,
2004), CARPENTER (Pang, Cong, Tung, Yang,
& Zaki, ������������������������������������ 2003��������������������������������), Tree-projection (Agarwal, Ag-
garwal, & Prasad, 2000) and so on can not be
used to find high-utility itemsets.

Lots of researches have been conducted
to improve the usefulness of traditional ARM.
Ngan, Lam, Wong, and Fu (2005) proposed an
algorithm called COFI+BOMO to mine N-most
interesting itemsets, but the interestingness mea-
sure still depends on the support. Value added
association rule (Wang, Zhou, & Han, 2002;
Lin, Yao, & Louie, 2002) extends traditional
association rule by taking the semantics of
data into consideration. The difference between
Wang et al. (2002) and Lin et al. (2002) is that
price and quantity of supermarket sales are
considered in the former, while the latter tries
to attach a value to every item in the database
and use the added values to rank the association
rule. Weighted association rule gives up treating
all the items and all the transactions uniformly

A B C D E

T1 0 0 5 0 1

T2 2 3 0 0 0

T3 3 5 15 7 4

T4 0 0 4 7 2

T5 4 5 8 0 0

T6 9 4 0 0 2

T7 6 0 8 3 6

T8 0 0 0 6 3

T9 3 0 0 9 5

T10 3 5 6 1 8

Table 1. A transaction database

International Journal of Data Warehousing & Mining, 5(1), 57-73, January-March 2009 59

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

by assigning different weights to items (Cai, Fu,
Cheng, & Kong, 1998) or transactions (Lu, Hu,
& Li, 2001). These weights essentially reflect
the users’ preferences. Quantitative association
rule mining (Aumann & Lindell, 2003; Webb,
2001) introduces statistical inference theory
into the data mining field to find extraordinary
phenomena in the database. In order to provide
efficient data initialization for mining associa-
tion rules in data warehouse, Tjioe and Taniar
(2005) proposed four algorithms, which focus
on quantitative attributes.

To find frequent high-utility itemsets,
Shen et al. (2002) proposed an objective-ori-
ented Apriori (OOApriori) model by putting
utility constraint into the Apriori algorithm.
Chan, Yang, and Shen (2003) proposed an
algorithm to mine top-k frequent high-utility
closed patterns. To reduce search space, Chan
et al. (2003) developed a new pruning strategy
based on a weaker but anti-monotonic condi-
tion to prune low-utility itemsets. Barber and
Hamilton (2003) use itemset share as a measure
to overcome the lack of support. Item share is
defined as a fraction of some numerical values.
It can reflect the impact of the sales quantities
of items on the cost or profit of an itemset, and
thus it should be regarded as a utility.

All the algorithms mentioned above are
utility-related, but none of them are utility-
based. To the best of our knowledge, only
UMining (Yao & Hamilton, 2006) and Two-
phase (Liu, Liao, & Choudhary, 2005) can be
used to find high-utility itemsets. In UMining
algorithm, the utility upper bound property is
used to reduce the size of the candidate set. In
addition, the support upper bound property is
used in a heuristics model to predict whether
an itemset should be added into the candidate
set. Unfortunately, the heuristics model can not
guarantee an accurate prediction. In Two-phase
algorithm, transaction weighted downward
closure property is used to reduce search space.
The algorithm often overestimates the utility of
a candidate itemset, especially in long transac-
tion databases.

Both the UMining and Two-phase are
Apriori-like algorithms, they are inadequate in

datasets with long patterns or high dimensions.
To solve the problem, we proposed a hybrid
top-down/bottom-up search model and a row
enumeration-based algorithm, Inter-transaction,
to discover all high-utility itemsets from two
directions. Under the hybrid model, an existing
algorithm such as Two-phase can be used to
seek the short high-utility itemsets by starting
from the bottom, while Inter-transaction seeks
long high-utility itemsets by starting from the
top, they complement each other.

Different from inter-transaction associa-
tion rule (Feng, Li, & Wong, 2001; Feng, Yu,
Lu, & Han, 2002; Liu, Feng, & Han, 2000),
which aims at discovering correlation between
transactions, our Inter-transaction algorithm
aims at discovering long high-utility itemsets.
It is based on the characteristic that there are
few common items between or among long
transactions, which means that the intersection
of multiple long transactions is usually very
short. In a high-dimensional data environment,
the characteristic is especially obvious. By
intersecting relevant transactions, Inter-transac-
tion can identify long itemsets directly, without
extending short itemsets step by step. In addi-
tion, new pruning strategies were developed to
cut down the search space and an optimization
technique was adopted to improve the perfor-
mance of the intersection of transactions. This
paper emphasizes on the introduction of Inter-
transaction algorithm.

The remainder of the paper is organized
as follows: Section 2 formally defines relevant
terms and notations; Section 3 presents the new
algorithm; Section 4 introduces an optimization
technique. Experimental results are presented
in Section 5 and we summarize our work in
Section 6.

DEFINITIONS

This section presents definitions and terminol-
ogy used in the description of the algorithm. Let
I= {i1, i2… im} be a set of items, T= {T1, T2… Tn}
be a transaction database. Each transaction Tq
in database T (Tq ∈ T) is a subset of I, i.e., Tq ⊆

60 International Journal of Data Warehousing & Mining, 5(1), 57-73, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

I . To simplify a notation, we sometimes write
a set { i1, i2 … ik } as i1 i2 … ik. Adapting from the
notations described in (Yao et al., 2006; Liu et
al., 2005; Savasere, Omiecinsky, & Navathe,
1995), we have following definitions:

Definition 1. The transaction utility of item
x in transaction Tq, denoted u(x, Tq), is the
utility brought on by item x when transaction
Tq occurs. Take the example from Table 1,
u(A,T1)=0, u(A,T2)=2.

Definition 2. The transaction utility of
itemset X in transaction Tq, denoted u(X, Tq),
is the sum of the transaction utility of item x
contained in X, i.e.,

(,) (,)
x

q q
X

u X T u x T
∈

= ∑ 		 (1)

For example, in Table 1, u(AB,T2)=
u(A,T2)+ u(B,T2)=2+3=5, u(ABC,T5)=
u(A,T5)+u(B,T5)+u(C,T5) =4+5+8=17. When
X=Tq, we refer to u(X, Tq) as the utility of
transaction Tq, denoted u(Tq, Tq).

Definition 3. The partition utility of itemset
X in partition Pi , denoted u(X, Pi), is the sum
of the transaction utility of itemset X in parti-
tion Pi, i.e.,

(,) (,)
q i q

i q
T P X T

u X P u X T
∈ ∧ ⊆

= ∑ 	 (2)

For more details about partitions, refer to
(Savasere et al., 1995).

Definition 4. The utility of X in database T,
denoted u(X), is the sum of the transaction utility
of itemset X in database T, i.e.,

() (,) (,)
q q i i q q

i q
X T T P P T T T X T

u X u X P u X T
⊆ ∧ ∈ ∧ ⊆ ∈ ∧ ⊆

= =∑ ∑
				 (3)

Examples can be seen in Section 1.

Definition 5. Transaction identifier list, denot-
ed tidlist, is a set of transaction identifiers.

We define an intersection transaction,
denoted Ttidlist, as an itemset obtained from the
intersection of transactions listed in a tidlist. For
example, let T1=ABDFHILM, T2=ADFGJKOP,
T3=ADFMNOQP, then one of the tidlists is
{1,2,3}, and the corresponding intersection
transaction T{1,2,3} = T1∩T2∩T3 = ADF. If
|tidlist|=k (1≤k≤n, n is the number of transac-
tions), we refer to the Ttidlist as a k-intersection
transaction. A k-intersection transaction is the
intersection of k individual transactions. It can
also be regarded as the intersection of two other
intersection transactions. For example, the 4-
intersection transaction T{1,3,5,6} = T1∩T3∩T5∩T6
= T{1,3}∩T{5,6} = T{1,5}∩T{3,6}, and so on. When
k=1, Ttidlist is an individual transaction.

Both k-intersection transaction and k-item-
set are a set of items, but there are some differ-
ences between them. For example, a k-itemset
is an itemset with k items. The term does not
tell us any information about its support s(Ttidlist)
(i.e., the number of transactions containing
the itemset); on the contrary, a k-intersection
transaction does not tell us how many items
the itemset has, but it tells us that the itemset
stems from the intersection of k transactions,
with support no less than k. To distinguish the
difference between k and s(Ttidlist), we refer
to k as the current support of k-intersection
transaction Ttidlist. Obviously, k≤s(Ttidlist).

For any Ttidlist, we can regard the transactions
listed in the tidlist as a partition, denoted Ptidlist.
According to definitions, the current support
of k-intersection transaction Ttidlist should be
the number of transactions contained in Ptidlist,
denoted s(Ttidlist, Ptidlist). We also refer to the cor-
responding partition utility of the Ttidlist as the
current utility of Ttidlist under current support
(or under current tidlist). If u(Ttidlist) stands for
the utility of Ttidlist and u(Ttidlist,Ptidlist) for the
current utility of Ttidlist, according to equation
(2) and equation (3), u(Ttidlist, Ptidlist) should be
less than u(Ttidlist). If s(Ttidlist, Ptidlist)= s(Ttidlist),
the corresponding tidlist is called maximal
tidlist, and u(Ttidlist, Ptidlist) = u(Ttidlist) holds.
Actually, the meaning of the term “maximal
tidlist” corresponds to the feature support set
in (������������������� Pang �������������� et al., ������2003��).

International Journal of Data Warehousing & Mining, 5(1), 57-73, January-March 2009 61

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

We define a long transaction/itemset/pat-
tern as the transaction/itemset/pattern that
includes more than minlen items. Minlen is a
user-defined value. Otherwise, it is called a short
transaction/itemset/pattern. Likewise, we define
a high-utility itemset as the itemset with a utility
value higher than a user-specified threshold, i.e.,
minutil. If an itemset is a high-utility itemset, we
say the itemset is high, otherwise, the itemset
is low. The goal of utility-based ARM is to find
all high-utility itemsets. We also define a long
high-utility itemset as the high-utility itemset
with more than minlen items.

A local (long) high-utility itemset is a
(long) itemset in partition pi with partition utility
value higher than the local utility threshold
minutil/N, N is the partition number. A (long)
high-utility itemset is also called a global (long)
high-utility itemset.

INTER-TRANSACTION
ALGORITHM

This section describes Inter-transaction algo-
rithm. As we know, each itemset is determined
either by a transaction or by a group of transac-
tions listed in a tidlist. If we let any two transac-
tions intersect each other (|tidlist|=2), we can
obtain all itemsets (2-intersection transaction)
with support no less than two. Likewise, we can
obtain all itemsets (k-intersection transaction)
with support no less than k by intersecting any k
transactions (|tidlist|=k, 1�≤k≤n, n is the number
of transactions). Theoretically, by intersecting
transactions, we can obtain all itemsets along
with corresponding supports and utility values.
Like CARPENTER, Inter-transaction is based
on row enumeration.

Partition Method

This subsection presents the necessity and cor-
rectness of partition method. Suppose n is the
number of transactions, there will be 2n combi-
nations of transactions at the worst situation. As
the number of rows grows, the explosive growth

of the combination of rows causes the perfor-
mance of row-enumeration methods decrease
dramatically. In a real database, n can easily
reach to several millions, and enumerating all
the 2n intersection transactions is not feasible.
To solve the problem, Inter-transaction adopts a
partition method to divide a database into mul-
tiple partitions, with each partition containing a
fitting number of transactions. In the first scan
of a database, Inter-transaction finds all local
long high-utility itemsets from every partition,
and then these local long high-utility itemsets
are merged to generate a set of potential long
high-utility itemsets. In the second scan of the
database, the actual utility and support for these
itemsets are computed and global high-utility
itemsets are identified. The whole process is
just like the one described in (Savasere et al.,
1995). The correctness of the partition method
is guaranteed by Theorem 1:

Theorem 1. Suppose T is a transaction data-
base, P= {P1, P2, …, PN } is a set of partitions
of

T (
1

, ,
N

i u v

i

P T P P u v
=

= ∩ = ≠


).

If X ⊆ I is a high-utility itemset, it will appear
as a local high-utility itemset in at least one of
the partitions.
Proof. Let X be a high-utility itemset, then
u(X)�≥minutil. Divide database T into N parti-
tions, then X may fall into M partitions (1≤M≤N).
Assume B=Max [u(X, Pi)] denotes the biggest
partition utility value of X in all partitions, By
definition 4, we have:

() (,)
q q i i

i
X T T P P T

u X u X P MB
⊆ ∧ ∈ ∧ ⊆

= ≤∑

				 (4)

If B ≤ minutil/N, then u(X) ≤ M*minutil/N ≤
minutil. This is a contradiction. □

Let u be total utility value, and coefficient
a be the minimum acceptable ratio of the utility
value of an itemset to the total utility value in
the database. That is to say, minutil = a*u.

62 International Journal of Data Warehousing & Mining, 5(1), 57-73, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Suppose we divide the database T into N par-
titions, the local utility threshold (minutil/N =
a*u/N) should be far larger than the average
transaction utility (u/n), denoted as a*u/N >>
u/n. Otherwise, a large number of local high-
utility itemsets would be generated. Let S be
the size of partitions, we have:

S = n/N >> 1/a			 (5)

Inequation (5) contradicts the goal of the
partition method (reducing the number of trans-
actions in a partition). Experiments (in Figure
8) show that it is applicable for S to be between
5/a and 10/a in the context of our datasets.

Task Decomposing

This subsection explains why we decompose
the mining task. If the partition number is
N, the average size of partitions will be n/N
(a positive integer), and the total number of
potential intersection transactions becomes

2
n

NN . When n is too large, enumerating 2
n

NN
intersection transactions is still not feasible.
The partition method is insufficient in reducing
the search space.

Given a proper length threshold minlen,
most of the patterns in a database belong to the
category of short itemsets. In other words, long
patterns are relatively “sparse” compared with
short patterns. Although the number of long
patterns is usually much smaller than that of
short patterns, it is usually true for these long
patterns to cost most of the resources in finding
all high-utility (or frequent) itemsets when a
down-top method is adopted, since a long pat-
tern always means a lot of short patterns have
to be handled ahead. On the other hand, there
are few common items between or among long
transactions, which means the intersection of
multiple long transactions, i.e., intersection
transaction is usually very short. By intersect-
ing transactions, we can obtain long itemsets
directly, without extending short itemsets step
by step. On the contrary, short itemsets are
relatively dense; the overhead of enumerating
all short intersection transactions is too high.

Based on the different features, it is reasonable
for us to decompose the mining task into two
subtasks (discovering long patterns and short
patterns), so that we can choose proper algo-
rithms to solve them separately.

In the process of identifying long high-util-
ity itemsets, we can filter out all short (inter-
section) transactions. The rationale behind this
method is that short transactions have no effect
on the support or utility of long patterns/item-
sets, and the intersection of a short transaction
with another transaction must be short. Now
that the intersection of two long transactions is
usually very short, a large number of intersection
transactions can be pruned out in time.

The Algorithm

The subsection describes the Inter-transaction
algorithm. Based on above discussions, the new
algorithm can be described in Figure 1.

The algorithm is very similar to the parti-
tion algorithm (Savasere et al., 1995), but there
are two important differences between them.
One is that in the partition algorithm, the size
of partitions is chosen in terms of the main
memory size, such that at least those itemsets
and other information that is used for generating
candidates can fit in the main memory, whereas
Inter-transaction seeks balance between keeping
a higher local utility threshold and reducing
the number of transactions in a partition: given
transaction number n and minutil, if partition
number N is small, the local utility threshold
(minutil/N) will be large (we hope so), but the
number of transactions in a partition (n /N)
will also be large (we want to avoid), and vice
versa. The other difference is that in the partition
algorithm a certain algorithm such as Apriori is
used to generate local frequent itemsets of all
length, whereas Inter-transaction discovers only
local long high-utility itemsets via enumerating
intersection transactions.

In order to compute the current support and
current utility of an intersection transaction, a
tidlist is used to record which transactions are
involved in the intersection transaction. If Ttidlist.
tidlist represents the transaction identifier list as-

International Journal of Data Warehousing & Mining, 5(1), 57-73, January-March 2009 63

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

sociated with Ttidlist, let tidlist= tidlist1∪tidlist2
(tidlist1≠tidlist2), according to relevant defini-
tions, we have:

tidlist tidlist1 tidlist2

tidlist1 tidlist2

T T
 T T

∪=
= ∩

		 (6)

tidlistT .tidlist tidlist
tidlist1 tidlist2

=
= ∪

	 (7)

tidlist tidlist tidlists(T ,P) | T .tidlist |

 | tidlist1 tidlist2 |
=
= ∪

	 (8)

(,)

 (,)
q tidlist tidlist q

q tidlist

tidlist tidlist tidlist q
T P T T

tidlist q
T P

u(T ,P) u T T

u T T
∈ ∧ ⊆

∈

=

=

∑

∑
				 (9)

In equation (9), the condition Ttidlist ⊆ Tq
is always met in partition Ptidlist. If X is a sub-
itemset of Ttidlist (X ⊆ Ttidlist), we can use equation
(10) to compute the current utility of X under
the current tidlist:

(,) (,)

 (,)
q tidlist q

q tidlist

tidlist q
T P X T

q
T P

u X P u X T

u X T
∈ ∧ ⊆

∈

=

=

∑

∑
				 (10)

Both equation (9) and equation (10) stem
from equation (2). When the number of transac-
tions in Ptidlist is one, i.e., | Ptidlist |=1, Ttidlist denotes
an individual transaction, and equation (1) can
be regarded as a special form of equation (10).
Likewise, when | Ptidlist |=n, i.e., Ptidlist=T, equa-
tion (3) is also a special form of equation (2).
For simplicity, in later sections of the paper,
we use equation (10) to compute the current
utility of an itemset.

Gen-LHU-Itemsets is responsible for gen-
erating all local long high-utility itemsets in a
partition. To achieve the goal, the subroutine
computes the intersection of any two long
(intersection) transactions, and then decides
whether to call subroutine Mine-Single-Trans
to mine every long intersection transaction
obtained. The process is repeated until no
long intersection transaction is generated. This
method guarantees that all the maximal tidlists
of all long intersection transactions can be dis-
covered and finally all local long high-utility
itemsets in the partition can be identified. Since
the intersection of two transactions is not longer
than any of the two transactions, the method
has a good convergence. Gen-LHU-Itemsets
can be described in Figure 2.

Subroutine Mine-Single-Trans (described
in Figure 3) tries to discover all local long high-
utility itemsets that an intersection transaction

Name: Inter-transaction
Input: A database T, minutil, minlen
Output: All long high-utility itemsets.
1.	 Divide T into N equal partitions; //N=number of partitions
2.	 For (i=1; i�≤N, i++) {
3.	 Read in partition Pi ;
4.	 Call subroutine Gen-LHU-Itemsets to obtain all local long high-utility

itemsets in Pi, generating a set of potential long high-utility itemsets
CG;

5.	 }
6.	 For (i=1; i�≤N, i++) {
7.	 Read in partition Pi ; // second scan of the data
8.	 For each candidate c∈CG, compute the utility of c in terms of equation

(3), along with its support;
9.	 }
10.	 If itemset c is high, output its utility and support.

Figure 1. The inter-transaction algorithm

64 International Journal of Data Warehousing & Mining, 5(1), 57-73, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Ttidlist contains. First, the subroutine chooses a
sorting algorithm to sort the items in descend-
ing order by utility values so that we can build
multiple monotone decreasing sequences of
itemsets. Then, in each monotone decreasing
sequence, we build and test long high-utility
itemsets by utility values from top to bottom. In
this way, a large number of low-utility itemsets
can be pruned off.

By replacing tk-j with tr, we can obtain a
monotone decreasing sequence of k-itemsets
(from step 5 to step 7). For example, if j=1, by
replacing tk-1 with tk, tk+1, …, tL-1 respectively,
we can obtain following monotone decreasing
sequence of k-itemsets:

t0 t1 t2 … tk-2 tk;
t0 t1 t2 … tk-2 tk+1;
t0 t1 t2 … tk-2 tk+2;
…
t0 t1 t2 … tk-2 tL-1.

Obviously, u(t0 t1 t2 … tk-2 tk+u, Ttidlist)�≥u(t0
t1 t2 … tk-2 tk+v, Ttidlist) (u�≤v). When j varies
from one to k, multiple monotone decreasing
sequences can be generated (step 4 to step 9).
For example, let j=2, by replacing tk-2 with tk,
tk+1, …, tL-1 respectively, we can obtain another
monotone decreasing sequence:

t0 t1 t2 … tk-3 tk-1 tk;
t0 t1 t2 … tk-3 tk-1 tk+1;
t0 t1 t2 … tk-3 tk-1 tk+2;

…
t0 t1 t2 … tk-3 tk-1 tL-1.

In subroutine Mine-Single-Trans, the fol-
lowing pruning strategies are used:

Strategy 1: if no k-itemset is high, all (k-j)-
itemsets must be low and thus can be pruned
off (1�≤j≤k), subroutine ends (step 3).

Strategy 2: in each monotone decreasing
sequence, if a certain k-itemset is low,
subsequent k-itemsets in the same mono-
tone decreasing sequence must be low
(step 6).

Strategy 3: if X' =t0 t1 t2 , …, tk-j-1 tk-j+1… tk-2 tk-1
tk is low, all the k-itemsets in subsequent
monotone decreasing sequences must be
low (step 8).

In a monotone decreasing sequence,
strategy 2 is easy to understand. To understand
strategy 3, consider X" = t0 t1 t2 , …, tk-i-1 tk-i+1… tk-2
tk-1 tk, which is obtained by replacing tk-i with tk,
the first (and thus the largest) one in a monotone
decreasing sequence. When i ����� > ���j, u(X')�≥u(X").
So if X' is low, X" must be low. For strategy 1,
we have following theorem:

Theorem 2. (Current Utility Upward Closure
Property) Given an intersection transaction
Ttidlist, if an itemset X ⊆ Ttidlist is high, all superset
of X must be high. In other words, under the

Figure 2. The Gen-LHU-itemsets subroutine

Name: Gen-LHU-Itemsets
Input: A partition Pi, minutil, minlen
Output: All local long high-utility itemsets in Pi
1.	 Take a partition Pi and calculate the current utility of each long (intersection) transaction Ttidlist (Ttidlist can

also be an individual transaction, i.e., | Ptidlist |=1) independently according to equation (10). If u(Ttidlist,
Ptidlist)≥minutil/N, put Ttidlist into the set of potential long high-utility itemsets: CG = CG ∪ Ttidlist, and then
call subroutine Mine-Single-Trans to identify all local long high-utility itemsets that Ttidlist contains;

2.	 Perform all the intersections of any two long (intersection) transactions;
3.	 If the number of long (intersection) transactions is not larger than one, the subroutine ends;
4.	 Filter out all the short intersection transactions;
5.	 Check all the long intersection transactions. If Ttidlist1=Ttidlist2, merge the repetitious intersection transac-

tions into a single one, i.e., Ttidlist, such that Ttidlist = Ttidlist1 = Ttidlist2, tidlist = tidlist1∪tidlist2. All the long
intersection transactions can form a new partition, go to step 1;

International Journal of Data Warehousing & Mining, 5(1), 57-73, January-March 2009 65

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

same current support, if an itemset is low, all
its subsets must be low.
Proof. Suppose I' and I" are two itemset,
satisfying I' ⊂ I" ⊆ Ttidlest. All the transactions
listed in tidlist form a partition Ptidlist, and every
transaction in Ptidlist contains both I' and I".
That’s to say, I' and I" have the same current
support. Suppose the current support is r, let
I" = I' + X (X ≠ f), and tidlist={1,2,…,r}, by
definition 3, we have:

t 1
(,) (',) (,)

q idlist q

r

tidlist q q
T P I T q

u I P u I T u I T
′∈ ∧ ⊆ =

′ ′= =∑ ∑

Likewise, we have

t 1

1 1 1

(,) (,) (,)

((),) (,) (,)

q idlist q

r

tidlist q q
T P I T q

r r r

q q q
q q q

u I P u I T u I T

u I X T u I T u X T

′′∈ ∧ ⊆ =

= = =

′′ ′′ ′′= =

′ ′= + = +

∑ ∑

∑ ∑ ∑

Since
1

r

q=
∑u(X, Tq) > 0, then we have:

u(I", Ptidlist) > u(I', Ptidlist).

So if I' is high, I" must be high. □

The following example can show how
the subroutine works. Suppose there are three
transactions T1, T3, and T7, their intersection is
equal to ABCDEF, i.e., T{1,3,7}=ABCDEF, and
the corresponding utility values can be seen
in Table 2.

After sorting, T{1,3,7} can be expressed as
ACBEFD, with item utility values decreasing
gradually. Here the length of T{1,3,7} is six, i.e.,
L=6. If minutil=18, minlen=3, itemsets will be
examined in the order shown in Table 3.

Four-itemsets ACBE, ACBF and ACBD
are in the same monotone decreasing sequence,
which can be generated by replacing E of ACBE
with F and D respectively. Since ACBF is low,
there is no need to build and test ACBD.

Name: Mine-Single-Trans
Input: Ttidlist, minutil, minlen // Ttidlist can also be an individual transaction
Output: All local long high-utility itemsets in Ttidlist
Method:
1.	 Sort the (intersection) transaction Ttidlist decreasingly by its utility value: Ttidlist= t0 t1 t2 … tk-1 tk...tL-1, such that

u(ti, Ptidlist) ≥ u(tj, Ptidlist)(i ≤ j);
2.	 For (k=L-1; k ≥ minlen; k--) { // L is the length of Ttidlist
3.	 Select the top left k items to build a k-itemset X, i.e., X= t0 t1 t2 … tk-1. The utility of X is the largest

among all k-itemsets. Compute u(X,Ptidlist) in terms of equation (10), if u(X, Ptidlist)�≥minutil/N, add X
into CG, go to next step. Otherwise, the subroutine ends;

4.	 For (j=1; j ≤ k; j++) {
5.	 For (r=k; r≤L-1; r++) {
6.	 Replace tk-j (1≤j≤k) in X with tr, obtaining X' =t0 t1 , …, tk-j-1 tk-j+1… tk-2 tk-1 tr .If

X' is high, add X' into CG, otherwise, exit the loop;
7.	 }
8.	 For any j∈[1, k], if X' =t0 t1 t2 , …, tk-j-1 tk-j+1… tk-2 tk-1 tk (replacing tk-j with tk) is low, stop building and test-

ing all k-itemsets that Ttidlist contains;
9.	 }
10.	 }

Figure 3. The mine-single-trans subroutine

A B C D E F

T1 2 1 1 0.3 1 0.5

T3 3 1 2 0.3 1 0.5

T7 1 2 2 0.4 1 1

Partition
utility 6 4 5 1 3 2

Table 2. Three transactions and the utility value
of each item

66 International Journal of Data Warehousing & Mining, 5(1), 57-73, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Although sorting an (intersection) transac-
tion is costly, according to step 1 of subroutine
Gen-LHU-Itemsets, only a small number of
(intersection) transactions need to call the
subroutine Mine-Single-Trans. So this method
will not cause high computational cost.

OPTIMIZATION TECHNIQUE

Generally, a database can usually be imple-
mented in HIV, HIL, VTV and VTL format
(Shenoy, Haritsa, Sundarshan, Bhalotia, Bawa,
& Shah 2000; Zaki & Gouda, 2003). If we
express each transaction in HIV format, an
intersection transaction can be obtained from
the intersection of bit-vectors. Although the
bitwise logical (And) operation is well supported
by computer hardware and very efficient, the
overall performance of the intersection of two
transactions decreases dramatically with the
increase of the number of items. For example,
if the number of items is eight kilos, we have
to use one kilo bytes (8K bits) to express each
transaction. In order to perform the intersection
of two transactions, eight kilo bit operations are
needed and this is not acceptable.

Some optimization techniques such as
run-length encoding (RLE), VIPER (Shenoy
et al., 2000) and DIFFSET (Zaki & Gouda,
2003) have been proposed to enhance the per-
formance of the intersection of two bit-vectors
in vertical mining algorithms. These existing
optimizations adopt various compressed for-

mats to store databases. Since data compressing
and uncompressing is costly, these methods
have limited effect on increasing the speed of
the intersection of long bit-vectors. So in our
algorithm, we not only refrain from compress-
ing each row in main memory, but also use
redundant information to reduce the number
of bitwise logical operations.

Besides the HIV format, we also store each
transaction in HIL format. Although this method
wastes lots of memory, the cost is affordable
because the partition method can save lots of
memory (every time we read only a partition
into a continuous memory address space). HIV
format is used to perform the intersection of
bit-vectors, while HIL format is used to store
redundant information which guide us to choose
only necessary bits in a bit-vector to perform
bitwise logical (And) operation. If the length of
transaction T1 in HIL format is longer than that
of T2, we choose T2 (the shorter transaction) as
the benchmark to determine on what bits the
bitwise logical operation should be performed: if
the k-th bit in T2 is one, “And” operation should
be performed on the k-th bit, and the other bits
should be set zero directly in the result.

For example, there are three transactions
T1, T2, and T3, and the corresponding data can
be seen in Table 4. If we want to compute T{1,2,3},
we can firstly compute T{1,2} by intersecting T1
with T2, and then we compute T{1,2,3} by inter-
secting T{1,2} with T3. In step one, we choose
the shorter transaction T2 as the benchmark
and decide bitwise logical (And) operation

Itemset Utility Results Comments

u(ACBEF, P{1,3,7})= 20 ACBEF is high The largest 5-itemset consisting of the top left 5-items

u(ACBED, P{1,3,7})= 19 ACBED is high obtained by replacing F of ACBEF with D

u(ACBFD, P{1,3,7})= 18 ACBFD is high obtained by replacing E of ACBEF with D

u(ACEFD, P{1,3,7})= 17 stop finding 5-itemsets obtained by replacing B of ACBEF with D

u(ACBE, P{1,3,7}) =18 ACBE is high The largest 4-itemset consisting of the top left 4-items

u(ACBF, P{1,3,7}) =17 stop finding 4-itemsets obtained by replacing E of ACBE with F

u(ACB, P{1,3,7}) =15 Algorithm end The largest 3-itemset consisting of the top left 3-items

Table 3. The ��� p�� rocess of �������������������������������������� c������������������������������������� alculating �������������������������� u������������������������� tility ������������������ values of itemsets

International Journal of Data Warehousing & Mining, 5(1), 57-73, January-March 2009 67

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

should be performed only on the first bit, the
fourteenth bit and the fifteenth bit (written in
bold Italic in Table 4), other bits should be set
at zero. As an intermediate result, we obtain
T{1,2}={1,15}(in HIL format). In step two, we
choose T{1,2} as the benchmark and decide that
bitwise logical (And) operation should be per-
formed only on the first bit and the last bit. We
get the final result T{1,2,3}= {1,15}. As shown in
Table 4, only five bit operations are needed for
the whole process.

In this way, the number of bit operations
linearly depends only on the length of the short
transaction in HIL format. Experiment shows
this optimization technique is a key to the suc-
cess of Inter-transaction.

EXPERIMENTAL RESULTS

All the experiments were performed on a 2GHz
Legend server with 4GB of memory, running
windows 2003. The program was coded in
Delphi 7.

Seven datasets were used in our experi-
ments; all were generated by IBM quest data
generator (retrieved from the web May 10, 2007.
http://www.almaden.ibm.com/cs/projects/
iis/hdb/Projects/data_mining/datasets/syndata.
html). Six of them are T40.I30.D8000K with
0.5K, 1K, 2K, 4K, 8K and 16K items respec-
tively, the seventh is T20.I6.D8000K with 4K
items, where T# stands for the average length of
transactions, I# for the average length of maxi-

mal potentially large itemsets and D# for the
number of transactions. Because the generator
only generates the quantity of zero or one for
each item in a transaction, we use Delphi func-
tion “RandG” to generate random numbers with
Gaussian distribution, which mimic the quantity
sold of an item in each transaction. The unit profit
of each item is defined as item ID%100, where
% is a modulus operator. The utility threshold
minutil is defined as the minimum acceptable
ratio of the utility value of an itemset to the
total utility value in the database.

Figure 4 presents the scalability of Inter-
transaction by increasing the number of transac-
tions from 0.25M (million) to 8M. Experimental
results show that our algorithm scales linearly
with the number of transactions.

Figure 5 shows the performance when the
number of items varies. Different from other
algorithms, the performance of Inter-transaction
improves as the number of items increases. The
reason is that the number of items is directly
related to the sparseness of a dataset. The more
items there are, the sparser the dataset is, and the
shorter the intersection of two transactions may
be. That means Inter-transaction can enumer-
ate all long intersection transactions easily in a
sparse dataset. From Figure 5 we can observe
that Inter-transaction is suitable for those data-
sets with more than one kilo (1K) items.

In Figure 6, minlen (a positive integer) is
the minimum length of itemsets that the Inter-
transaction can discover within a reasonable
time (within 2 hours). It actually determines
the task assigned to Inter-transaction. Figure
6 shows that minlen decreases as the number
of items increases, which means Inter-trans-
action can complete more mining tasks in a
sparse database. The reason is just the same as
mentioned above.

Figure 7 shows the execution time of
Inter-transaction when the utility threshold
varies. Since the number of candidate itemsets
decreases as the minimum utility threshold
increases, the execution time decreases, cor-
respondingly.

Figure 8 shows that the size of partitions is
very important to Inter-transaction. Just as we

	 HIV format HIL format

T1 1011,0000,1100,001 1,3,4,9,10,15

T2 1000,0000,0000,011 1,14,15

T{1,2} 1000,0000,0000,001 1,15

T3 1011,1100,0001,001 1,3,4,5,6,12,15

T{1,2,3} 1000,0000,0000,001 1,15

Table 4. Three transactions and the process of
computing T{1,2,3}

68 International Journal of Data Warehousing & Mining, 5(1), 57-73, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Figure 4. Scalability with the number of transactions

Figure 5. Scalability with the number of items

Figure 6. The effect of the number of items on minlen

Items=1K,Minutil=0.01,Minlen=10,
Partition size=600

0

1000

2000

3000

4000

5000

0 2 4 6 8 10
Number of transactions (M)

Ex
cu

tio
n

tim
e (

Se
c.)

Transaction=1M,Minutil=0.01,Minlen=12,
Partition size=600

0
500

1000
1500
2000
2500
3000
3500
4000

0 5 10 15 20
Number of items(K)

Ex
ec

ut
io

n
tim

e(
Se

c.)

International Journal of Data Warehousing & Mining, 5(1), 57-73, January-March 2009 69

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Figure 7. Scalability with utility threshold

Figure 8. The effect of size of partitions on performance

 Transaction=1M,Item=1K,Minlen=12,
Partition size=600

0

200

400

600

800

1000

0 1 2 3 4 5 6
Minutil(%)

Ex
ec

ut
io

n
tim

e(
Se

c.)

 Transaction=1M,Items=1K,Minutil=0.01,
Minlen=12

0
500

1000
1500
2000
2500
3000

0 200 400 600 800 1000 1200
The size of partition

Ex
ec

ut
io

n
tim

e(
Se

c.)

have mentioned above, a partition that is too
small or too large will degrade the performance
of the algorithm. From Figure 8, we can see
the reason why we set the size of partitions to
600 in all other experiments. When minutil is
divided into half of the initial value, that is,
minutil/2, we can keep the local utility threshold
unchanged by doubling the size of partitions. In
this way, large amounts of candidate itemsets
can be avoided. This is why our method can
work well under a small minutil.

Figure 9 shows the effect of minlen on the
performance of Inter-transaction. As we have
mentioned, minlen actually assigns mining tasks
between Inter-transaction and its cooperator,
such as Umining or Two-phase. The larger the
minlen, the fewer the tasks assigned to Inter-
transaction, and the shorter the execution time

needed for Inter-transaction. Although a larger
minlen always means a shorter execution time
for Inter-transaction, more tasks will be left for
its cooperator, and the overall performance is
not necessarily high. On the other hand, a too
small minlen does not benefit the overall per-
formance of the hybrid model either. If minlen
is too small, Inter-transaction has to enumerate
too many intersection transactions, the running
time increases dramatically. So a proper minlen
is a key parameter for the hybrid model. Figure 6
indicates that we should choose different minlen
in terms of the number of items.

To test the total performance of the hybrid
model, we choose Two-phase to mine short high-
utility itemsets, then compare the performance
of the hybrid method (here hybrid method means
Inter-transaction + Two-phase) with that of

70 International Journal of Data Warehousing & Mining, 5(1), 57-73, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Two-phase. That is, the total running time of the
hybrid method is equal to the running time of
Inter-transaction (used to find long high-utility
itemsets) plus the running time of Two-phase
(used to find short high-utility itemsets). The
reason for choosing Two-phase is that we are
certain that it is the best approach for utility
mining by now. Experiments were performed
on T20I6D8000K and T40I30D8000K, with
one kilo and four kilo items, respectively. Min-
len is set three for T20I6D8000K and five for
T40I30D8000K, corresponding performance
curves are illustrated in Figures 10, 11, 12
and 13.

From Figures 10 and 11 we can observe
that the hybrid model does not suit datasets

with only short patterns. The reason is that
Inter-transaction can not take obvious effect
on these datasets. As for those datasets with
lots of long patterns or high dimensions, Two-
phase has to extend short itemsets step by step
to obtain long itemsets, while Inter-transaction
can obtain long itemsets directly by intersect-
ing relevant transactions. In this situation, the
hybrid method has great advantages over the
Two-phase algorithm. Figures 12 and 13 show
the hybrid method is not sensitive to utility
threshold minutil. With minutil growing down,
the performance of Two-phase decreases rap-
idly. When minutil is less than 0.25, our hybrid
method outperform Two-phase even on the
datasets with only short patterns.

Figure 9. The effect of minlen on performance

Figure 10. Scalability with the number of transactions on T40I30D8000

 Items=4K,Minutil=0.01,Minlen=5,
Partition size=600

0
1000
2000
3000
4000
5000
6000

0 2 4 6 8 10
Number of transactions(M)

Ex
ec

ut
io

n
tim

e(
Se

c.
)

Hybrid method Two-phase

 Transaction=1M,Items=1K,Minutil=0.01,
Partition size=600

0
200
400
600
800

1000
1200
1400

0 5 10 15 20
Minlen

Ex
ec

ut
io

n
tim

e(
Se

c.)

International Journal of Data Warehousing & Mining, 5(1), 57-73, January-March 2009 71

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Figure 13. Scalability with utility threshold on T20I6D8000

Figure 11. Scalability with the number of transactions on T20I6D8000

 Items=1K,Minutil=0.01,Minlen=3,
Partition size=600

0
200
400
600
800

1000
1200

0 2 4 6 8 10
Number of transactions(M)

Ex
ec

ut
io

n
tim

e(
Se

c.
)

Hybrid method Two-phase

Figure 12. Scalability with utility threshold on T40I30D8000

Transaction=1M,Items=4K,Minlen=5,
Partition size=600

0
1000
2000
3000
4000
5000
6000

0 2 4 6 8
Minutil(%)

Ex
ec

ut
io

n
tim

e(
Se

c.
)

Hybrid method Two-phase

 Transaction=1M,Items=1K,Minlen=3,
Partition size=600

0

100

200

300

400

0 2 4 6 8
Minutil(%)

Ex
ec

ut
io

n
tim

e(
Se

c.
)

Hybrid method Two-phase

72 International Journal of Data Warehousing & Mining, 5(1), 57-73, January-March 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

CONCLUSION

The paper proposes a hybrid model to discover
high-utility itemsets from two directions. The
intention of the hybrid model is to decompose
a complex problem into two easy subtasks,
and then use proper methods to solve them
separately.

By integrating the advantages of the parti-
tion algorithm and row enumeration algorithms,
Inter-transaction can handle large high-dimen-
sional databases efficiently. It scans a database
at most twice, and is ideally suited for parallel-
ization. Since inter-transaction is based on the
sparseness of long patterns, its performance is
affected by the characteristics of the database,
including data skew and the number of items.
Parameters such as minimum length threshold
minlen and the size of partitions also affect its
performance. In our next plan, we will make
an intensive study of how to choose minimum
length threshold minlen to achieve the best
performance for the hybrid model.

REFERENCES

Agarwal, R. C., Aggarwal, C. C., & Prasad, V.V.V.
(2000). A tree projection algorithm for generation of
frequent itemsets, Journal of Parallel and Distributed
Computing, 61(3), 350-371.

Aumann, Y., & Lindell, Y. (2003). A Statistical Theory
for Quantitative Association Rules. Journal of Intel-
ligent Information Systems, 20(3), 255–283

Barber, B., & Hamilton, H. J. (2003). Extracting Share
Frequent Itemsets with Infrequent Subsets. Data
Mining and Knowledge Discovery, 7, 153-185.

Cai, C. H., Fu, A. W. C., Cheng, C. H., & Kong, W.W.
(1998). Mining Association Rules with Weighted
Items. Proceedings of the International Database
Engineering and Applications Symposium.���������� Cardiff,
UK, (pp. 68-77).

Chan, R., Yang, Q., & Shen, Y. D. (2003). Mining
high utility itemsets. Proceedings of the 3rd IEEE
International Conference on Data Mining, (pp.
19-26).

Feng, L., Li, Q., & Wong, A. (2001). Mining Inter-
Transactional Association Rules: Generalization and
Empirical Evaluation. Proc. of the 3rd International
Conference on Data Warehousing and Knowledge
Discovery, Lecture Notes in Computer Science,
Germany, (pp. 31-40).

Feng, L., Yu, J. X., Lu, H. J., & Han, J. W. (2002). A
Template Model for Multidimensional Inter-Trans-
actional Association Rules. International Journal of
Very Large Data Bases, 11(2), 153-175.

Han, J. W., Pei, J., Yin, Y., & Mao, R. (2004). Mining
Frequent Patterns without Candidate Generation: A
Frequent pattern Tree Approach, Data Mining and
Knowledge Discovery, 8 (1), 53-87.

Lin, T. Y., Yao, Y. Y., & Louie, E. (2002). Mining
Value Added Association rules. Proceedings of
PAKDD, (pp. 328-333)

Liu, H.��� ,�� Feng, L.��������������������������������� ,�������������������������������� & Han, J. (2000). Beyond intra-
transactional association analysis: Mining multi-
dimensional inter-transaction association rules.
ACM Transactions on Information Systems, 18(4),
423-454.

Liu, Y., Liao, W. K., & Choudhary, A. (2005). A fast
high-utility itemsets mining algorithm. Proceedings
of the First International Workshop on Utility-based
Data Mining.�������������������������������� Chicago, Illinois, (pp. 90-99).

Lu, S. F., Hu, H. P., & Li, F. (2001). Mining weighted
association rules. Intelligent Data Analysis, 5(3),
211-225. IOS Press.

Ngan, S. C., Lam, T., Wong, R. C. W., & Fu, A. W.C.�
(2005).�� Mining N-most interesting itemsets without
support threshold by the COFI-tree. Journal of Busi-
ness Intelligence and Data Mining, 1, 88-106

Pang, F., Cong, G., Tung, A., Yang, J., & Zaki, M.
(2003). Carpenter: Finding closed patterns in long
biological datasets. Proceedings of the SIGKDD’03��.
(pp. 637-642).

Savasere, A., Omiecinsky, E. & Navathe, S. (1995).
An efficient algorithm for mining association rules
in large databases. Proceedings of ����������������� 21st Int'l Conf.
on Very Large Databases.��������������������������� Zurich, Switzerland, (pp.
432-444).

Shen, Y. D., Zhang, Z., & Yang, Q. (2002). Ob-
jective-oriented utility-based association mining.
Proceedings of the 2002 IEEE International Con-
ference on Data Mining.���������������������������� Maebashi City, Japan, (pp.
426-433).

International Journal of Data Warehousing & Mining, 5(1), 57-73, January-March 2009 73

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Shenoy, P., Haritsa, J. R., Sundarshan, S., Bhalotia,
G., Bawa, M., & Shah, D. (2000). Turbo-charging
Vertical Mining of Large Databases. Proceedings of
ACM SIGMOD International Conference on Man-
agement of Data.����������������������������� Dallas, Texas, (pp. 22-33).

Tjioe, H.C., �� & �������������������������������������� Taniar, D. (2005). Mining association
rules in data warehouses. Journal of Data Warehous-
ing and Mining, 1(3), 28-62.

Vroom, V. H. (1964). Work and Motivation. New
York, John Wiley & Sons.

Wang, K., Zhou, S., & Han, J. (2002). Profit mining:
from patterns to action. Proceedings of International
Conference on Extending Database Technology.
(pp. 70-87).

Webb, G. I. (2001). Discovering associations with
numeric variables. Proceedings of the seventh ACM
SIGKDD international conference on Knowledge
discovery and data mining.� San Francisco, California,
(pp. 383-388).

Yao, H.�� ,��������������������������������������� Hamilton, H. J.����������������������� , & Geng, L.����������� (2006). A
Unified Framework for Utility Based Measures for
Mining Itemsets. Proceedings of the 2006 Inter-
national Workshop on Utility-Based Data Mining.�
Philadelphia, USA, (pp. 28-37).

Yao, H., & Hamilton, H. J. (2006). Mining itemset
utilities from transaction databases. Data & Knowl-
edge Engineering, 59, 603 – 626.

Zaki, M. J., ��� & ��������������������������������������� Gouda, K. (2003). Fast vertical mining
using diffsets. In Proc. of ACM SIGKDD��.� Washington
DC, (pp. 326-335).

Guangzhu Yu received his master’s degree in computer science from the Yangtze University, Jingzhou, China
in 2002. He is currently a doctoral student at the Donghua University (formerly China Textile University),
Shanghai, China. His research interests include data mining and network security.

Shihuang Shao received his bachelor’s degree in electrical engineering from Southeast University, Nanjin,
China, in 1960. He was a Visiting Scientist at the University of Maryland, College Park, from 1986 to
1988, and was the Chairman of Donghua University, Shanghai, China, from 1994 to 2001. He is currently
a Professor of the same university. His research interests include fuzzy control, neural networks, genetic
algorithms, chaos control, and data mining.

Bing Luo was born in April 1966. He got his master’s degree from Jianghan Petroleum Institute in 1996
and doctor’s degree from Guangdong University of Technology in 2007. Now he is working in Guangdong
University of Technology as an associate professor. His research interests include data mining, information
acquisition and processing.

Xianhui Zeng received his master’s degree from the Donghua University, Shanghai, China, in 1999. He
is currently an associate professor and a doctoral student at the same University. His research interests
include data mining, decision support system and intelligent information processing.

Order through most subscription
agents or directly from IGI Global

Visit www.infosci-books.com
today to register for your

free, 30-day trial!

Enrich your academic research programs
in computer science and information
technology management with a complete
scholarly book collection, for a fraction
of the combined print cost.

 Perpetual access to complete collection of
nearly 1,000 scholarly and reference
books from 2000-2008 for a one-time fee

 Aggregated full-text database of 16,000+
chapters, reference entries, and
proceeding papers

 Unlimited simultaneous use throughout
your institution

 Deep coverage of 20 subject categories in
computer science, technology, and
information management

 Current-year purchase and annual
 subscription options also available

 Discounts for consortia and other
multi-site groups

Perpetual Access,
Perpetual Value

®

(Formerly Idea Group Inc.)

The Industry Leader in Delivering
Knowledge in Computer Science and
Information Technology Management

Introducing … InfoSci-Books

IGI Global • 701 E. Chocolate Ave., Suite 200 • Hershey, PA 17033-1240 USA
1-866-342-6657 or 717-533-8845 ext. 100 • Fax: 717-533-8661 • eresources@igi-global.com

ww.infosci-books.com

AFFORDABLE | AUTHORITATIVE | COMPREHENSIVE

TM

