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Abstract: The aim of this study was to investigate novel chalcones with potent  

anti-inflammatory activities in vivo. Chalcone and two chalcone analogues (compound 5 

and 9) were evaluated using a caudal fin-wounded transgenic zebrafish line “Tg(mpx:gfp)” 

to visualize the effect of neutrophil recruitment dynamically. Results showed that treatment 

with compound 9 not only affected wound-induced neutrophil recruitment, but also 

affected Mpx enzymatic activity. Moreover, protein expression levels of pro-inflammatory 

factors (Mpx, NFκB, and TNFα) were also regulated by compound 9. Taken together, our 

results provide in vivo evidence of the anti-inflammatory effects of synthesized chalcone 

analogues on wound-induced inflammation. 
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1. Introduction 

Chalcone (1,3-diphenyl-2-propen-1-one), is a phenolic compound abundant in vegetables. Natural 

occurring chalcones as well as synthetic chalcone analogues have demonstrated many pharmaceutical 

effects, including anti-inflammatory, anti-oxidant, anti-parasite, and anti-tumor activities [1–7]. 

Recently studies revealed that chalcones (chalcone and synthetic chalcone analogues) can inhibit NO 

synthesis and inducible NO synthetase (iNOS) and cycloxygenase 2 (COX-2) protein expression in 

lipopolysaccharide (LPS)-stimulated cells, and indicated the importance of chalcones as anti-inflammatory 

agents [8]. However, current knowledge regarding the anti-inflammatory effects of chalcones in 

vertebrates has all been reported in vitro. Thus, it is essential to establish an effective animal model to 

study the in vivo the anti-inflammatory effects of chalcones. 

Inflammation is a complex biological event of a tissue response to a harmful stimulus (bacterial 

infection, burn or wound, for example). Acute inflammation usually involves dynamic regulation of 

pro-inflammatory mediators (Mpx, NFκB, TNFα) and the recruitment of white blood cells to harmed 

sites [9]. Neutrophils are one type of white blood cells which can migrate towards the harmed sites and 

are considered as the hallmark of acute inflammation [9]. For this reason, monitoring the number and 

the migration activity of neutrophils is an efficient way to evaluate acute inflammatory responses. 

The optical transparency of zebrafish embryos allows noninvasive and dynamic imaging of the 

inflammation process in vivo. Especially, a transgenic zebrafish line Tg (mpx:gfp) expressing green 

fluorescent protein (GFP) under the control of neutrophil-specific mpx promoter enables us to count 

the number and to monitor the migration activity of neutrophils more efficiently [10]. In this study, a 

wounded zebrafish model was used to assess the anti-inflammatory effects of chalcones (chalcone and 

chalcone analogues) on wound-induced inflammation in vivo. We also evaluated the Mpx expression 

by histochemical staining, and examined the protein levels of three evolutionarily conserved  

pro-inflammatory factors (Mpx, NFκB, and TNFα) upon chalcones treatment. 

2. Results and Discussion 

2.1. Chemistry 

For this study, we have developed simple methods for the synthesis of chalcone derivatives 5 and 9 

from O-isoproxyacetophenones 2 and 7. These two compounds are known compounds [11,12]. The 

aldol intermediates were obtained by using the similar procedure described previously [13]. 

Unfortunately, the reaction yield using this method was very low (~15%). Yields didn’t improve on 

using different bases (KOH/NaOH). It is possible that intramolecular hydrogen bonding such as that 

observed in 1 or 6 prevents the aldol reaction. Therefore, O-isoproxyacetophenones 2 and 7 were used 

as the starting material for our synthesis. The preparation of O-isoproxyacetophenones 2 and 7 was 

straightforward. Acetophenones 1 and 6 were protected with isopropyl bromide and potassium 

carbonate in DMF in excellent yield. (Figure 1, Schemes 1 and 2) The isolated product 2 and 7 were 

then reacted with appropriate benzaldehydes with 5N KOH whereupon intermediates 4 and 8 were 

isolated in 76% and 90% yields. The O-isopropyl ether was removed quantitatively with BCl3 to afford 

the target chalcones 5 and 9. Inspection of the 1H-NMR spectra of chalcones clearly indicated that they 

were trans configured (JHH = 15–16 Hz). 
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Figure 1. Synthesis of compound 5 and compound 9. 

 

2.2. Effects of Chalcones on Wound-Induced Neutrophil Recruitment and Mpx Enzymatic Activity 

We have previously developed a protocol to detect the level of wound-induced neutrophil 

recruitment in transgenic zebrafish Tg (mpx:gfp) embryos [14]. The same protocol was employed to 

evaluate the newly synthesized chalcone analogoes 5, and 9 with chalcone for comparison (Figure 2). 

Figure 2. Schematic representation of experimental protocols performed in this study. Fins 

of Tg(mpx:gfp) zebrafish embryos were amputated by 72 hpf, and were cultivated with 

(chalcone, compound 5, and 9) or without chemicals (mock control) for 8 h. By 80 hpf, 

embryos were collected for fluorescent recording, Mpx staining or western blotting 

experiments. Structures of chalcone, compound 5 and compound 9 were listed in the bottom. 

 

As shown in Figure 3, green fluorescent neutrophils (hereafter referred to as Mpx:GFP(+) cells) 

tended to migrate toward the wound site upon fin amputation in wounded zebrafish (Figure 3A, 

Mock). Upon treatment with 1 ppm of chalcone and compound 5 for 8 h, no obvious increase in 

Mpx:GFP(+) cells was observed (Figure 3B,C) compared with the wounded mock control group 

(Figure 3A). In contrast, the difference between the compound 9-treated group (Figure 3D) and 

wounded mock control control (Figure 3A) was reduced. Statically, the ANOVA method was first 

applied to examine the effect of treatment (‘Mock’, ‘chalcone’, ‘5’, ‘9’; n = 15) on the mean number of 
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Mpx. Of primary interest here is a test of the hypothesis of no difference in mean numbers of Mpx 

between treatment groups. The test reports a p-value of 0.0007, indicating a highly significant 

difference between treatment groups. To pinpoint which treatment means are significantly different 

from each other, the Tukey-Kramer HSD test was further used for pairwise comparisons. Figure 3E 

presents the mean numbers of Mpx and their 95% confidence intervals for four treatment groups. It 

reports the mean numbers of Mpx for ‘Mock’, ‘chalcone’, ‘5’, ‘9’ groups are 26.93, 25.00, 26.64, and 

17.21 with common stand error being 1.78, and also identified the mean number of Mpx for ‘Mock’ 

group differs significantly from the ‘9’ group at familywise error rate 0.05.  

We further treated wounded zebrafish with different doses of compound 9, followed by statistical 

analysis. The ANOVA method for examining the effect of compound 9 dose (‘0’, ‘0.1’, ‘0.5’ and ‘1’ 

ppm) on the mean number of Mpx reported a highly significant difference between compound 9 

dosage groups (p-value < 0.0001). The Tukey-Kramer HSD test for pairwise comparisons of dosage 

groups reported the mean numbers of Mpx (standard error, sample size) for four dose groups (‘0’, 

‘0.1’, ‘0.5’ and ‘1’) are 25.21 (1.22, n = 14), 23.14 (1.22, n = 14), 18.00 (1.22, n = 14), and 15.14  

(1.22, n = 14), respectively. Figure 4 presents the mean number of Mpx and their 95% confidence 

interval for these dosage groups and concludes that the mean number of Mpx for ‘0.5’ and ‘1’ groups 

differ significantly from the ‘0’ group at familywise error rate 0.05. These in vivo results demonstrated 

that wound-induced neutrophil recruitment in living zebrafish was attenuated by chalcone analogue 

(compound 9) treatment in a dose-dependent manner.  

Figure 3. Myeloperoxidase (Mpx) expression in zebrafish larvae in response to wounding 

or chalcones (chalcone, compound 5 and 9) treatment. (A–D) The distribution of 

neutrophils in living Tg(mpx:gfp) zebrafish larvae using GFP fluorescence as a marker. 

Dashed line outlines the region of caudal fin. (E) The Tukey-Kramer HSD reports the 

mean numbers of Mpx and their 95% confidence intervals for four treatment groups 

(‘Mock’, ‘chalcone’, ‘5’, ‘9’). 

 

To further evaluate the effect of chalcone (chalcone, 5 and 9) treatment on Mpx enzymatic activity 

in neutrophils, endogenous Mpx enzymatic activity in the zebrafish embryos derived from each 

experimental group was observed by histochemical staining with peroxidase substrate benzidine. 

Positively-stained cells [hereafter indicated as Mpx(+) cells] revealed endogenous Mpx enzymatic 

activities in vivo and in situ. As shown in Figure 5A, an increased cell number of Mpx(+) was 

observed in wounded zebrafish (Figure 5A, Mock), revealed an increase in Mpx enzymatic activity. 

Upon compound 5 treatment, no evident decrease of the Mpx(+) cells was observed in compound  
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5-treated group (Figure 5B) versus mock control (Figure 5A). However, a decrease of the Mpx(+) cells 

was observed both in chalcone and compound 9-treated group (Figure 5C,D, vs. 5A). Taken together, 

we suggest that: (1) chalcone is able to attenuate endogenous Mpx enzymatic activity rather than the 

wound-induced neutrophil recruitment in vivo; and (2), compound 9 is able to suppress Mpx enzymatic 

activity as well as neutrophil recruitment. 

Figure 4. The Tukey-Kramer HSD test reports the mean numbers of Mpx:GFP (+) and 

their 95% confidence intervals for each group which were treated with different doses of 

compound 9 (0, 0.1, 0.05 and 1 ppm). 

 

Figure 5. Endogenous myeloperoxidase (Mpx) activity in zebrafish larvae in response to 

wounding or chalcones (chalcone, compound 5 and 9) treatment. Fin-amputated zebrafish 

embryos derived from the mock control (A) or the chemicals-treated groups (B–D) were 

stained with benzidine dihydrochloride to visualize endogenous Mpx activities. 
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2.3. Molecular Mechanism of Anti-inflammatory Effects of Compound 9 

To further investigate the molecular mechanism of anti-inflammatory effects of compound 9, we 

examined the effects of compound 9 on Mpx, NFκB and TNFα at the protein level (Figure 6). The 

protein expression level of Mpx in zebrafish larvae at 80-hpf (8 hours post-treatment) were detected by 

whole-mount immunostaining using antibody against Mpx (Figure 6A,B). After fin amputation 

followed by compound 9 treatment, Mpx expression appeared to decrease compared with mock control 

(no-treatment) group (Figure 6A vs. 6B). These immunostaining results revealed that compound 9 

slightly attenuated the protein expression of Mpx in wound-induced inflammation, which is consistent 

with the above-mentioned Mpx enzymatic activity revealed by histochemical staining. On the other 

hand, western blotting results revealed that the protein expression amount of NFκB and TNFα change 

little, but amount of Mpx is reduced (Figure 6C). Taken together, our results suggested that the  

anti-inflammatory effects of compound 9 on wound-induced inflammation were mediated through the 

regulation of Mpx. 

Figure 6. Effects of compound 9 on fin-amputated zebrafish larvae. Fin-amputated 

zebrafish embryos derived from the mock control (A) or the compound 9-treated groups  

(B) were stained with antibody against Mpx. (C) Results of western blot analysis of the 

mock control and the compound 9-treated embryonic lysates using antibodies against Mpx, 

NFκB, TNFα and GAPDH. 

 

3. Experimental 

3.1. General 

Proton NMR spectra were recorded at 300 MHz Varian Mercury-300 NMR spectrometer. Carbon 

NMR spectra were recorded at 75 MHz Varian Mercury-300 NMR spectrometer. Proton and carbon 

chemical shifts are reported on the delta scale as parts per million (ppm) downfield from 

tetramethylsilane (TMS) as internal reference. All reagents were used as obtained commercially. 
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3.2. Synthesis of New Chalcone Analogues 

Synthesis procedure examples: 

3-(4-Hydroxyphenyl)-1-(2-hydroxyphenyl)propenone (5).1H-NMR (CDCl3, 300MHz) δ: 13.96 (1H, s,  

-OH), 7.93 (1H, d, J = 8.7 Hz), 7.90 (1H, d, J = 15.8 Hz), 7.57 (2H, d, J = 8.7 Hz), 7.52 (1H, d,  

J = 15.8 Hz), 7.49 (1H, t, J = 8.7 Hz), 7.0–6.8 (4H, m); 13C-NMR (CDCl3, 75MHz) δ: 193.8, 163.5, 

158.3, 145.4, 136.3, 130.8, 129.6, 124.6, 122.2, 118.8, 118.6, 116.1, 115.9 

1-(2,6-Dihydroxy-4-methoxyphenyl)-3-phenylpropenone (9): 1H-NMR (d6-acetone, 300 MHz) δ: 12.07 

(2H, bs, -OH), 8.25 (1H, d, J = 15.6Hz), 7.73 (1H, d, J = 15.6 Hz), 7.71–7.66 (2H, m), 7.46–7.40 (3H, 

m), 6.04 (2H, s), 3.81 (3H, s); 13C-NMR (d6-acetone, 75MHz) : 193.4, 167.2, 165.4, 142.9, 136.4, 

130.9, 129.8, 129.1, 128.3, 106.2, 94.6, 55.8 

3.3. Zebrafish Larvae, Fin Amputation and Chalcones Treatment 

Zebrafish larvae (wild-type, WT; AB strain) and Tg(mpx:gfp) were raised at 28.5 °C and staged 

according to standard protocols [15,16]. Fin amputation was carried out by cutting out half of the 

caudal fin as shown in Figure 2. Chalcone (C15H12O, Sigma-Aldrich), compound 5 and 9 were 

dissolved in dimethylsulfoxide (DMSO) as stock solution (2,500 ppm), and diluted to 1 ppm for 

treatment. Wounded zebrafish larvae were randomly divided into no-treatment “control” group 

(Mock), chalcone, compound 5, and compound 9-“treated” group (chalcone, 5, 9). Each group was 

exposed to DMSO (no treatment, Mock) or chalcones (chalcone, 5, 9) in the dark at 28.5 °C for  

8 h (Figure 2).  

3.4. Myeloperoxidase Staining, Antibody Labeling and Western Blotting 

Myeloperoxidase staining and antibody labeling experiments were performed as previously 

described with minor modifications [14,17–21]. Western blotting followed standard procedures except 

for the use of antibodies against Mpx (AnaSpec), NFκB (AnaSpec), TNFα (AnaSpec) or GAPDH 

(Santa Cruz) as primary antibodies. 

3.5. Statistical Analysis 

All analyses in this study were carried out according to Matlab software (version 7.7 R2008b). The 

ANOVA (analysis of variance) test was applied to examine the effect of treatment (or dosage) on the 

mean number of Mpx. The p-value reported by ANOVA method associates with the null hypotheses 

that samples in all treatment (or dosage) groups are drawn from the same population. The Tukey-Kramer 

HSD (honestly significant difference) test was further used to compare the population marginal mean 

number of Mpx for each treatment (or dosage) group. A significance level 0.05 was used in all statistic 

analyses and a familywise error rate 0.05 was controlled for Tukey-Kramer HSD test. 
  



Molecules 2013, 18 2059 

 

 

4. Conclusions  

This zebrafish model of wound-induced inflammation can be readily applied to in vivo screening of 

the therapeutic potential of anti-inflammatory compounds. This study suggested that some chalcones, 

especially compound 9, may have the potential to be developed as an anti-inflammatory agent. 

However, further studies are necessary to establish such as examination of the underlying molecular 

mechanisms and direct targets at the transcriptional or post-transcriptional level in mammals. 
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