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Abstract—Gyros are a particularly interesting form of 

nonlinear systems that have attracted many researchers 
due to their applications in the navigational, aeronautical 
and space engineering domains. In this paper, a problem of 
synchronization between two chaotic gyros based on a 
mater-slave scheme is studied. An adaptive 
Hermite-polynomial-based CMAC neural control 
(AHCNC) system which is composed of a neural controller 
and a smooth compensator is proposed. The neural 
controller using a Hermite-polynomial-based CMAC 
neural network (HCNN) is main controller and the smooth 
compensator is designed to guarantee system stable in the 
Lyapunov stability theorem. Finally, the simulation results 
show that the proposed AHCNC scheme can achieve 
favorable chaos synchronization after the controller 
parameters learning. 
 

Keywords—Adaptive control, Neural control, CMAC 
neural network, Hermite polynomial. 

I. INTRODUCTION 

Though favorable control performance can be 
achieved using a classical control theory, it requires that 
a mathematical model be used in designing a controller 
[1]. Since the system parameters and external load 
disturbance may be unknown or perturbed, the classical 
control systems are difficult to implement. To tackle this 
problem, many intelligent control techniques based on 
neural networks have become popular topics of research 
[2-6]. The most important feature of these intelligent 
control schemes is the self-learning ability that neural 
networks are used to approximate arbitrary linear or 
nonlinear mappings through online learning algorithms. 
By adequately choosing network structures, training 
methods and sufficient input data, the intelligent control 
techniques have been developed to compensate for the 
effects of nonlinearities and system uncertainties. 

Cerebellar model articulation controller (CMAC) 
neural network, pro-posed by Albus, is a kind of 
supervised neural network inspired by the human 
cerebellum. Unlike multilayer perceptron networks, 
CMAC neural network learns input-output mappings 
based on the premise that similar inputs should produce 
similar outputs. The basis function of CMAC neural 
network can be categorized into two main types. One is 
the constant basis function and the other is the 
non-constant differentiable basis function such as 
Gaussian function. Recently, the CMAC neural network 
have been adopted widely for the control of complex 

dynamical systems owing to its fast learning property, 
good generalization capability, and simple computation 
compared with the neural network [7-10].  

It is well-known that any series expansion can be 
expressed to any desired level of accuracy as long as 
sufficient number of terms is used. This well-known fact 
is very much analogous to the approximation capability 
of a FNN neural network. As a result, some researchers 
proposed a Hermite-polynomial-based neural network 
(HNN) which each hidden neuron employs a different 
orthogonal Hermite polynomial basis function for its 
activation function [11, 12]. Various test examples 
shown in [11-13] verify that the HNN with different 
orthogonal Hermite polynomial basis function as 
activation functions possesses a more efficient search 
space and improved performance compared to the ones 
of the conventional neural networks with identical 
sigmoid or radial basis functions as activation functions. 

Gyros are one of the most attractive subjects of 
dynamic systems and have attracted intensive study [14]. 
Synchronization of two chaotic gyros has been widely 
investigated due to its great utility in areas of secure 
communications, attitude control of long duration 
spacecraft and signal processing in optical gyros. Until 
now, many different methods have been applied 
theoretically and experimentally to synchronize chaotic 
gyros [15-17]. Yau [15] proposed a nonlinear rule-based 
controller for chaos synchronization. However, the fuzzy 
rules should be pre-constructed by a time-consuming 
trial-and-error tuning procedure to achieve the required 
performance. Poursamad and Davaie-Markazi [16] 
proposed a robust adaptive fuzzy controller with a 
switching compensator to ensure system stable; however, 
the switching compensator will cause chattering 
phenomena. Hsu [17] proposed an adaptive fuzzy 
wavelet neural synchronization control system. All the 
control parameters are evolved in the Lyapunov sense to 
ensure the system stability, but how to build a 
suitable-sized wavelet neural network structure required 
a trial-and-error tuning procedure. 

In this paper, an adaptive Hermite-polynomial-based 
CMAC neural control (AHCNC) system which is 
composed of a neural controller and a smooth 
compensator is proposed to synchronize two chaotic 
gyros based on a Hermite-polynomial-based CMAC 
neural network (HCNN). The HCNN uses different 
Hermite polynomials for different hidden neurons and a 
nonlinear combination of input variables for output layer, 
thus the developed HCNN provides a good 
discrimination capability. The smooth compensator is 
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designed to guarantee system stable in the Lyapunov 
stability theorem. Finally, in the simulation study, it is 
shown that the proposed AHCNC system can drive the 
slave gyro system to synchronize the master gyro system. 

II. PROBLEM FORMULATION 

Gyros as shown in Fig. 1 for sensing angular motion 
are used in airplane automatic pilots, rocket vehicle 
launch-guidance, space-vehicle attitude systems, ship 
gyrocompasses and submarine inertial auto navigators 
[14]. It has been proved in special situations a gyro may 
show chaotic dynamics. A symmetric gyro with 
linear-plus-cubic damping is given as [14] 
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nonlinear resilience force. It is known the solutions of (1) 
may perform complex dynamics. The open-loop system 
behavior was simulated with 1002  , 1 , 5.01  , 

05.02   and 2  for observing the chaotic 

unpredictable behavior. The phase trajectory for 33f  

can find the uncontrolled chaotic trajectory is period 2 
motion and the phase trajectory for 36f  can find the 

uncontrolled chaotic trajectory is quasi-period motion 
[14]. The time responses of the uncontrolled chaotic gyro 
with initial condition (1,1) with 33f  and 36f  are 

shown in Figs. 2(a) and 2(b), respectively. It is shown 
that the uncontrolled chaotic gyro has different 
trajectories for different system values. 
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Fig. 1. A schematic diagram of the symmetric gyro system. 
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Fig. 2. Uncontrolled chaotic trajectories for different system 

parameters. 

 
Generally, the two chaotic gyros in synchronization 

are called the drive (master) system and response (slave) 
system, respectively. The chaos synchronization 
problem has the following features: the trajectories of a 
slave system can track the trajectories of a master system. 
Consider two coupled chaotic gyros systems as [14] 
Master system: 
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Slave system: 
 y ug y   (3)  
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 and u  is the control input. If uncertainties occur, i.e., 
the parameters of the system deviate from the nominal 
value or an coupling term is added into the system, the 
two coupled chaotic gyros can be modified as 

 xx ggx   (4)  
and 
 Fuggy yy   (5) 

where xg  and yg  denote the system uncertainties of 

master system and slave system, respectively, and F  
denotes the coupling term. The interest in chaos 
synchronization is the problem of how to design a 
controller to drive a slave chaotic gyro to track a master 
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chaotic gyro closely. The control objective of the two 
coupled chaotic gyros are synchronized by designing an 
appropriate signal control input u  even under different 
initial conditions and a coupling term is added. To 
achieve the control objective, a tracking error and a 
sliding surface are defined as 
 yxe   (6) 

  dekekes
t
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0

21 )(  (7) 

From (4)-(7), the error dynamic equation can be obtained 
as 
 Fggugge yxyx   
 wugg yx   (8) 

where the lumped uncertainty w  is defined as 
Fggw yx  . If the system dynamics xg , yg  

and w  can be obtained, there is an ideal controller as [1] 
 ksekekwggu yx  21

*   (9) 

where the 1k , 2k  and k  are positive constants. 

Imposing the control law *uu   in (8) with (9) yields 
 ksekekes  21

 . (10) 

Define a Lyapunov function candidate in the following 
form 

 2

1 2

1
),( stsV  . (11) 

Differentiating (11) with respect to time and using (10) 
obtains

  0),( 2

1  kssstsV  . (12) 

As a result, the stability of the ideal controller is 
guaranteed. Since the system dynamics of the chaotic 
gyros are unknown, the ideal controller cannot be 
implemented. 
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Fig. 3. Block diagram of the AHCNC system for chaos synchronization. 

III. AHCNC SYSTEM DESIGN 

This paper proposed an adaptive 
Hermite-polynomial-based CMAC neural control 
(AHCNC) system as shown in Fig. 3 which is composed 
of a neural controller and a smooth compensator. The 
controller output is defined as 

 scncanc uuu  . (13) 

The neural controller ncu  uses a 

Hermite-polynomial-based CMAC neural network 
(HCNN) to approximate an ideal controller and the 
smooth compensator scu  is designed to cope with the 

influence of residual approximation error introduced by 
the neural controller. Substituting (13) into (8) and using 
(9) yield 
 ksuuus scnc  * . (14) 

A. Description of HCNN 

In Fig. 4, the structure of the HCNN is a multi-layer 
neural network which includes an input layer (Layer 1), a 
Hermite layer (Layer 2), a association layer (Layer 3), a 
receptive layer (Layer 4), a TSK layer (Layer 5) and an 
output layer (Layer 6). The signal propagation and basic 
function in each space are introduced in the following. 
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Fig. 4. Structure of HDWNN. 

 
Layer 1 – Input layer: No function is performed in this 
layer. The node only transmits input values to layer 2. 
Layer 2 – Hermite layer: In this layer, the orthogonal 
Hermite polynomial basis functions represented as [13] 
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where the orthogonal Hermite polynomials are given 
recursively by 
 1)(0 sH  (16) 

 ssH 2)(1   (17) 
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In general, a better approximated performance can be 
obtained if a higher-order orthogonal Hermite 
polynomial basis functions is used. 
Layer 3 – Association layer: In this space, several 
elements can be accumulated as a block. Each block 
performs a receptive-field basis function. The Gaussian 
function is adopted as the receptive-field basis function 
which can be represented as 
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where )( iijφ   presents the j-th block of the i-th input 

with the mean ijm  and variance ij  and Bn  is the 
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number of blocks. 
Layer 4 – Receptive layer: In this receptive-field space, 
the multidimensional receptive-field function is defined 
as 
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where kb  is associated with the k-th receptive-field. The 

number of receptive-field n  is equal to Bn  in this paper. 

Layer 5 – TSK layer: The TSK layer represents the linear 
combination function. Each node in this layer is denoted 
by [18, 19] 
 ΦuT

kkkk suu  10 , for nk ...,,2,1  (22) 

 
where 0ku  and 1ku  are the parameters designed by the 

designer, T

kkk uu ],[ 10u  and Ts],1[Φ . 

Layer 6 – Output layer: The output node together with 
links connected it act. The output of the neural network 
can be represented as 
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B. Parameter Learning 

The online learning algorithm is a gradient descent 
algorithm in the space of network parameters and aims at 
minimizing ss  for achieving fast convergence of s . 
Multiplying both sides of (14) by s  gives 

 2* )( ksuuusss scnc  . (24) 

According to the gradient descent method, the learning 
rules are summarized as follows. 
(1) The weights ju  are updated by the following 

equation [20] 
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where ju  is the updated value of the j-th connection 

weights between the TSK layer and output layer and u  

is a positive learning rate. The connective weights can be 
updated according to the following equation 
 )()()1( kkk jjj uuu  . (26) 

(2) The parameters of wavelet neurons can also be 
adjusted in the following equation to increase the 
learning capability 
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where jc  and j  are the updated values of the j-th 

hidden neuron, respectively, and c  and   are the 

positive learning rates. The parameters of the hidden 
neurons are updated as following 
 )()()1( kckckc jjj   (29) 

 )()()1( kkk jjj   . (30) 

C. Stability Analysis 

Since the number of hidden neurons is finite, an 
approximation error is inevitable. There exists an 
approximation error between optimal neural controller 
and ideal controller as 
  **

ncuu  (31) 

where *

ncu  is the optimal neural controller and   denotes 

an estimate approximation error between the ideal 
controller and optimal neural controller. To ensure the 
closed-loop control system’s stability, a compensator 
should be designed to dispel the approximation error. For 
guaranteeing the system stability, the smooth 
compensator is designed as 
 susc   ˆ  (32) 

where ̂  denotes the estimated value of the 
approximation error and   is a positive constant. 
Substituting (32) and (31) into (14) yields 
 sksks )(~ˆ    (33) 

where  ˆ~  . To guarantee the stability of the 
AHCNC system, consider a Lyapunov function 
candidate in the following form as 
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where   is a positive learning rate. Differentiating (34) 

with respect to time and using (33) obtains 
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For achieving 0),~,(2 tsV  , the error estimation law is 

designed as 

 s   ~ˆ  (36) 

then (35) can be rewritten as 

 0)( 2

2  skV  . (37) 

Similar to (12), the stability of the AHCNC system can 
be guaranteed [1]. 

IV. SIMULATION RESULTS 

In this section, the proposed AHCNC system is 
applied to synchronize two chaotic gyros with nonlinear 
damping. The development of the proposed AHCNC 
method does not require the knowledge of the system 
dynamics. For practical implementation, the controller 
parameters of the AHCNC system can be tuned online by 
the proposed adaptive laws. Two simulation cases 
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including parameter variation and initial variation are 
considered. 
Case 1: )1,1,1,1(),,,( yyxx  , 33xf  and 33yf . 

Case 2: )1,1,1,1(),,,( yyxx  , 33xf  and 36yf . 

The control parameters of the proposed AHCNC system 
are chosen as 21 k , 12 k , 1.0 , 1.0u , 

002.0  c , and 001.0 . All the gains are 

chosen in consideration of the requirement of stability.  
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Fig. 5. Simulation results of the AHCNC system for Case 1. 
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Fig. 6. Simulation results of the AHCNC system for Case 2. 
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Fig. 7. Simulation results of the AHCNC system for Case 1 with a 

coupling term. 
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Fig. 8. Simulation results of the AHCNC system for Case 2 with a 

coupling term. 

 
The simulation results of the proposed AHCNC 

system are shown in Figs. 5 and 6 for Cases 1 and 2, 
respectively. The tracking responses of states ),( yx  are 

shown in Figs. 5(a) and 6(a), the tracking responses of 
states ),( yx   are shown in Figs. 5(b) and 6(b), and the 

control inputs are shown in Figs. 5(c) and 6(c). The 
simulation results show that the proposed AHCNC 
system can achieve favorable synchronization 
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performance because the proposed online learning 
algorithms are applied.  

To demonstrate the robust control performance of the 
proposed AHCNC system, a coupling term 

)sin(2),( yxyxF    is examined here. The simulation 

results of the proposed AHCNC system are shown in 
Figs. 7 and 8 for Cases 1 and 2, respectively. The 
tracking responses of states ),( yx  are shown in Figs. 7(a) 

and 8(a), the tracking responses of states ),( yx   are 

shown in Figs. 7(b) and 8(b), and the control inputs are 
shown in Figs. 7(c) and 8(c). The simulation results show 
that perfect tracking responses can be achieved. 

V. CONCLUSIONS 

An adaptive Hermite-polynomial-based CMAC 
neural control (AHCNC) system is proposed to 
synchronize two chaotic gyros. The proposed AHCNC 
system which is composed of a neural controller and a 
smooth compensator can automatically tune the 
controller parameters. The neural controller uses a 
Hermite-polynomial-based CMAC neural network 
(HCNN) to online approximate an ideal controller based 
on gradient descent algorithm and the smooth 
compensator is designed to eliminate the effect of the 
approximation error in the sense of Lyapunov stability. 
The HCNN which combines a CMAC neural network 
with a Hermite neural network is designed to improve the 
accuracy of functional approximation. Finally, the 
simulation results show that the high performance in 
chaos synchronization of gyro systems can be achieved 
by the proposed HCNN system after the controller 
parameters. 
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