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Many  published  papers  show  that  a TSK-type  fuzzy  system  provides  more  powerful  representation  than
a Mamdani-type  fuzzy  system.  Radial  basis  function  (RBF)  network  has  a  similar  feature  to the  fuzzy
system.  As  this  result,  this  article  proposes  a dynamic  TSK-type  RBF-based  neural-fuzzy  (DTRN)  system,
in which  the  learning  algorithm  not  only  online  generates  and  prunes  the  fuzzy  rules  but  also  online
adjusts  the  parameters.  Then,  a supervisory  adaptive  dynamic  RBF-based  neural-fuzzy  control  (SADRNC)
system  which  is composed  of  a DTRN  controller  and  a supervisory  compensator  is proposed.  The DTRN
daptive control
liding-mode control
eural-fuzzy system
haotic system

nverted pendulum

controller  is  designed  to  online  estimate  an  ideal  controller  based  on  the  gradient  descent  method,  and
the  supervisory  compensator  is designed  to eliminate  the effect  of  the  approximation  error  introduced
by  the  DTRN  controller  upon  the  system  stability  in the  Lyapunov  sense.  Finally,  the  proposed  SADRNC
system  is  applied  to control  a chaotic  system  and  an  inverted  pendulum  to  illustrate  its  effectiveness.
The  stability  of  the  proposed  SADRNC  scheme  is  proved  analytically  and  its  effectiveness  has  been  shown
through  some  simulations.
. Introduction

Since a mathematical model of control plants is difficult to
evelop accurately due to the lack of knowledge of some param-
ters or external disturbances, a controller design should take an
ppropriate action to counteract the presence of uncertainties and
xternal disturbances. To attack this problem, there have been con-
iderable interests in exploring the applications of a neural-fuzzy
ystem to deal with the uncertain nonlinear systems [4,5,15,27].
he most important feature of the adaptive neural-fuzzy con-
rol schemes is the self-learning ability that neural-fuzzy systems
re used to approximate arbitrary linear or nonlinear mappings
hrough online learning algorithms without requiring preliminary
ffline tuning. The learning algorithms are based on the Lyapunov
tability theorem or gradient decent method, so that the stability
f the adaptive neural-fuzzy control system can be guaranteed.

Generally, the neural-fuzzy systems can be divided into two
ypes which are Mamdani-type neural-fuzzy system and Takagi-
ugeno-Kang (TSK)-type neural-fuzzy system [20]. The output

eights are equipped with singleton-type form in Mamdani-type
eural-fuzzy systems but with functional-type form in TSK-type
eural-fuzzy systems. Thus, the TSK-type neural-fuzzy systems

∗ Corresponding author.
E-mail addresses: fei@ee.tku.edu.tw (C.-F. Hsu),

ml@saturn.yzu.edu.tw (C.-M. Lin).
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provide more powerful representation than Mamdani-type neural-
fuzzy systems. Recently, the adaptive TSK-type neural-fuzzy
control schemes have grown rapidly in many previous published
papers [2,11,14,17,21,25].  Though the control performance of the
adaptive TSK-type neural-fuzzy control are acceptable, the learning
algorithm only considers the parameter learning but does not con-
sider the structure learning. The structure of the used neural-fuzzy
system is determined by some trial-and-error tuning procedure.
It is a trade-off between the approximation performance and the
number of fuzzy rules.

An adaptive neuro fuzzy inference system (ANFIS) is a kind of
neural network that is based on Takagi-Sugeno fuzzy inference
system. Since it integrates both neural networks and fuzzy logic
principles, it has potential to capture the benefits of both in a sin-
gle framework. Its inference system corresponds to a set of fuzzy
IF-THEN rules that have learning capability to approximate nonlin-
ear functions [13]. Recently, the Radial basis function (RBF) network
has been successfully applied in many fields, such as identification,
control and pattern recognition [6,8,10,18,22,23]. RBF network can
be viewed as a fuzzy rule base with specified membership functions
and fuzzy inference operations. The output value is calculated using
the weighted sum method. Then, the number of hidden nodes in
the RBF network is the same as the number of fuzzy IF-THEN rules

in the fuzzy system [22].

To attack the problem of determining the number of hidden
neurons in an RBF network, several dynamic structure learning
algorithms which can vary its structure dynamically to keep the

dx.doi.org/10.1016/j.asoc.2012.12.028
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:fei@ee.tku.edu.tw
mailto:cml@saturn.yzu.edu.tw
dx.doi.org/10.1016/j.asoc.2012.12.028
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rescribed approximation accuracy have been proposed [1,12,16].
ortman and Aladjem [1] used a significance criterion and a growth
riterion to design the structure learning algorithm for an RBF net-
ork. However, it lacks the real-time adaptation ability. Huang

t al. [12] present a generalized growing and pruning algorithm.
he growing and pruning strategy is based on linking the required
earning accuracy with the significance of the nearest. However, the
lgorithm is only suitable for low dimensional applications. Leung
nd Tsoi [16] studied a structure learning algorithm for recurrent
BF networks. It can delete some unimportant RBF nodes based
n the recursive least square approach; however, the computation
oading is heavy.

This article proposes a dynamic TSK-type RBF-based neural-
uzzy (DTRN) system which can vary its structure dynamically to
eep the prescribed approximation accuracy with a simple compu-
ation. Since the output value of the DTRN system is calculated with
unctional-type form, it can provide more powerful representation
han neural-fuzzy system and RBF network. It starts with a small
umber of fuzzy rules and then adds new fuzzy rules if there is no
xisting fuzzy rules can efficiently represent the input data. More-
ver, some of existing fuzzy rules can be removed if the removing
ondition is satisfied. Then, a supervisory adaptive dynamic RBF-
ased neural-fuzzy control (SADRNC) system which is composed of

 DTRN controller and a supervisory compensator is proposed. To
how the effectiveness of the proposed SADRNC system, it is applied
o control a chaotic system and an inverted pendulum. In the sim-
lation study, it is shown that the proposed SADRNC system can
chieve a favorable control performance. In summary, according
o the learning methods including structure learning and parame-
er learning, the proposed learning algorithms can be classified as
nline learning algorithm.

. Problem statement

A model of nonlinear systems can be expressed in the following
orm as

¨(t) = f (x, t) + g(x, t)u(t) (1)

here x = [x(t), ẋ(t)]T is the state vector of the system, f(x, t) and
(x,t) are the system dynamics and u(t) is the control input. Without
osing generality, assume g(x, t) > 0 for all x. The control problem is
o find a control law so the state x(t) can track a command xc(t)
losely. To determine a control law, define a tracking error as

(t) = xc(t) − x(t). (2)

f the system dynamics are known, there exists an ideal controller
s [24]

∗ = 1
g(x, t)

[−f (x, t) + ẍc(t) + k1ė(t) + k2e(t)] (3)

here k1 and k2 are nonzero positive constants. Applying (3) into
1) yields

¨(t) + k1ė(t) + k2e(t) = 0. (4)

f k1 and k2 are chosen to correspond to the coefficients of a Hurwitz
olynomial, it implies that lim

t→∞
e(t) = 0 [24]. Since the terms f(x,

) and g(x, t) may  be unknown or perturbed, the ideal controller
annot be precisely obtained.

To attack this problem, many approaches under various
ypotheses to account for the uncertainties have been introduced

o treat the control problem in the last few decades. Sliding-mode
ontrol schemes have been developed as popular robust strategies
o treat uncertain control systems [24]. But, designing a sliding-

ode controller requires nominal model of the nonlinear system.
uting 13 (2013) 1620–1626 1621

Based on the linearization method, rewriting (1),  the nominal
model can be represented as follows

ẍ(t) = fn(x, t) + gn(x, t)u(t) (5)

where fn(x, t) and gn(x, t) represent the nominal behavior of f(x,
t) and g(x, t), respectively. If the system uncertainties occur, i.e.,
parameters of system deviate from the nominal value, the con-
trolled system can be modified as

ẍ(t) = [fn(x, t) + �f  (x, t)] + [gn(x, t) + �g(x, t)]u(t)

= fn(x, t) + gn(x, t)u(t) + w(x, t) (6)

where �f(x, t) and �g(x, t) denote the system uncertainties
and w(x, t) is called the lumped uncertainty which is defined
as w(x, t) = �f  (x, t) + �g(x, t)u(t). The lumped uncertainty is
assumed to be bounded, i.e.,

∣∣w(x, t)
∣∣ ≤ W where W is a given

positive constant. Then, a sliding surface is defined as

s(t) = ė(t) + k1e(t) + k2

∫ t

0

e(�)d� (7)

where k1 and k2 are nonzero positive constants. The sliding-mode
control law is given as [24]

usm = ueq + uht (8)

The equivalent controller ueq is represented as

ueq = 1
gn(x, t)

[−fn(x, t) + ẍc(t) + k1ė(t) + k2e(t)] (9)

and the hitting controller uht is designed as

uht = 1
gn(x, t)

[Wsgn(s(t))] (10)

where sgn(·) is a sign function. Substituting (8) into (6) yields

ë(t) + k1ė(t) + k2e(t) = −w(x, t) − Wsgn(s(t)) = ṡ(t). (11)

Consider the candidate Lyapunov function in the following form as

V1(t) = 1
2

s2(t). (12)

Differentiating (12) with respect to time and using (11), we can
obtain

V̇1(t) = s(t)ṡ(t)=−w(x, t)s(t) − W
∣∣s(t)

∣∣ ≤
∣∣w(x, t)

∣∣ ∣∣s(t)
∣∣ − W

∣∣s(t)
∣∣

= − (W −
∣∣w(x, t)

∣∣) ∣∣s(t)
∣∣ ≤ 0. (13)

In summary, the sliding-mode controller can guarantee the stability
in the sense of the Lyapunov theorem [24]. However, a large control
gain W often causes an outcome of a large amount of chattering.
The chattering phenomena in control efforts will wear the bearing
mechanism.

3. SADRNC system design

3.1. Structure learning of a DTRN system

In Fig. 1, the proposed DTRN system includes an input layer,
a membership layer, a TSK layer and an output layer. The signal
propagation and basic function in each space are introduced in the
following.

Layer 1 – Input layer: No function is performed in this layer. The
node only transmits input values to layer 2.

Layer 2 – Membership layer: In this layer, the Gaussian function
is adopted as the membership function. The output of the i-th fuzzy

rules is designed as

hi = exp[− (s(t) − ci)
2

�2
i

], i = 1, 2, ..., n(N) (14)
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Fig. 1. Dynamic TSK-type RBF-based neural-fuzzy system.

here n(N) is the number of the fuzzy rules at the N-th sampling
ime and ci and �i denote the center and width of the membership
unction, respectively.

Layer 3 – TSK layer: The TSK layer represents the linear combi-
ation function. Each node in this layer is denoted by

i = ˛i0 + ˛i1s(t) = ˛T
i � (15)

here ˛i0 and ˛i1 are the parameters designed by the designer,
i = [˛i0, ˛i1]T and � = [1, s(t)]T.

Layer 4 – Output layer: The output node together with links
onnected it act. The single node computes the overall output as
he summation of all incoming signals. The output of the DTRN
ystem can be represented as

dc =
n(N)∑
i=1

uihi =
n(N)∑
i=1

˛T
i �hi. (16)

etermining an appropriate number of fuzzy rules n(N) is an impor-
ant issue because of the trade-off between a computation loading
nd a learning performance. In general, a larger number of fuzzy
ules results in a smaller approximation error.

To attack the problem, this article proposes an online structuring
earning algorithm. The first step of the structural learning is to
etermine whether or not to add a new fuzzy rule. The weighting
i in (14) can be represented as the degree to which the incoming
ata belong to the existing fuzzy rules. For an incoming data, find
9]

 = arg max
1≤i≤n(N)

hi. (17)

t implies that the K-th fuzzy rule has the maximum firing weight. If
K ≤ Gth is satisfied, where Gth ∈ (0, 1) a pre-given threshold, then a
ew fuzzy rule is generated. The initial parameters associated with
he new fuzzy rule are given by

n(N)+1 = s (18)

n(N)+1 = � (19)

n(N)+1 = 0 (20)
here � is a pre-specified constant. To avoid the structure of the
TRN system growing unboundedly, an algorithm for pruning the

nappropriate fuzzy rules is needed to prevent the endless grow-
ng of the DTRN system and the computation loading. A pruning
Fig. 2. The block diagram of the SADRNC system.

algorithm based on the density is studied in this article, where the
density is the number of times each fuzzy rule is used in the algo-
rithm. Thus, each fuzzy rule has its own  density. A density of the
i-th fuzzy rule is defined as

di(N + 1) =
{

di(N) , if hi < �

di(N) + 1 , if hi ≥ �
(21)

where the initial value of di is 0 in each time iterations and � is a
designed constant. The least-important fuzzy rule is the one that
has the smallest density. After some iterations, if di ≤ Dth are satis-
fied, where Dth a pre-specified threshold, then the i-th fuzzy rule is
deleted. The proposed DTRN system can delete some unimportant
fuzzy rules based on the density approach with a simple compu-
tation. Thus, it is more suitable for real-time implementation than
other dynamic structure learning algorithms [1,12,16].

3.2. Parameter learning of a DTRN system

The proposed SADRNC system as shown in Fig. 2 is composed of
a DTRN controller and a supervisory compensator, i.e.

usdac = udc + usc. (22)

Substituting (22) into (1) and using (3),  the error dynamic equation
can be obtained as

ë(t) + k1ė(t) + k2e(t) = g(x, t)(u∗ − udc − usc) = ṡ(t). (23)

Multiplying both sides of (23) by s(t) gives

s(t)ṡ(t) = s(t)g(x, t)(u∗ − udc − usc). (24)

The parameter learning algorithm is derived based on a gradient
descent algorithm and aims to minimize s(t)ṡ(t) for achieving fast
convergence of s. According to the gradient descent method, the
correction �˛i applied to the weight ˛i is given by [19]

�˛i(N) = −�˛
∂s(t)ṡ(t)

∂˛i
= −�˛

∂s(t)ṡ(t)
∂udc

∂udc

∂˛i
= �˛s(t)g(x, t)hi�

(25)
where �˛ is a positive learning rate. The weight ˛i is updated
according to the following equation

˛i(N + 1) = ˛i(N) + �˛i(N). (26)
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oreover, the corrections �ci and ��i applied to the center and
idth, respectively, for the i-th fuzzy rules can be obtained as [19]

ci(N) = −�c
∂s(t)ṡ(t)

∂ci
= −�c

∂s(t)ṡ(t)
∂udc

∂udc

∂hi

∂hi

∂ci

= 2�cs(t)g(x, t)˛i�
(s(t) − ci)

�2
i

hi (27)

�i(N) = −��
∂s(t)ṡ(t)

∂�i
= −��

∂s(t)ṡ(t)
∂udc

∂udc

∂hi

∂hi

∂�i

= 2��s(t)g(x, t)˛i�
(s(t) − ci)

2

�3
i

hi (28)

here �c and �� are positive learning rates. The center and width
re updated as following

i(N + 1) = ci(N) + �ci(N) (29)

i(N + 1) = �i(N) + ��i(N). (30)

.3. Stability analysis

Since the number of fuzzy rules in the DTRN system is finite
or real-time practical applications, there exists an approximation
rror between the ideal controller and the DTRN controller, i.e.

∗ − unc = ε(t) (31)

here ε(t) denotes the approximation error. Substituting (31) into
23) yields

˙ (t) = g(x, t)[ε(t) − usc] (32)

he approximation error cannot be easily measured in practi-
al applications. In this article, the supervisory compensator is
esigned as

sc = ε̂(t) + ks(t) (33)

here ε̂(t) denotes the estimated value of approximation error and
 is a small positive constant. Substituting (33) into (32) yields

˙ (t) = g(x, t)[ε(t) − ε̂(t) − ks(t)] = g(x, t)[ε̃(t) − ks(t)] (34)

here ε̃(t) = ε(t) − ε̂(t). To guarantee the stability of the SADRNC
ystem, a Lyapunov function candidate is defined as

2(t) = 1
2

s2(t) + 1
2�ε

ε̃2(t) (35)

here �ε is a positive learning rate. Differentiating (35) with
espect to time and using (34) obtain

˙ 2(t) = s(t)ṡ(t) + 1
�ε

ε̃(t) ˙̃ε(t) = s(t)g(x, t)[ε̃(t) − ks(t)] + 1
�ε

ε̃(t) ˙̃ε(t)

= ε̃(t)[s(t)g(x, t) + 1
�ε

˙̃ε(t)] − kg(x,  t)s2(t) (36)

or achieving V̇2(t) ≤ 0, the error estimation law is designed as

˙̂ (t) = − ˙̃ε(t) = �εs(t)g(x, t) (37)

hen (36) can be rewritten as

˙ 2(t) = −kg(x, t)s2(t) ≤ 0. (38)

ince V̇2(t) is negative semidefinite, that is V2(t) ≤ V2(0), it implies
hat s(t) and ε̃(t) are bounded. Let function ˝(�) ≡ kg(x, t)s2(t) ≤
V̇2(t), and integrate ˝(t) with respect to time, then it is obtained
hat
t

0

˝(�)d� ≤ V2(0) − V2(t). (39)
Fig. 3. Behavior of uncontrolled chaotic system.

Because V2(0) is bounded and V2(t) is nonincreasing and bounded,
the following result can be obtained

lim
t→∞

∫ t

0

˝(�)d� < ∞ (40)

Moreover, since ˙̋ (t) is bounded, by Barbalat’s Lemma, lim
t→∞

˝(t) =
0 [24]. That is, s(t) → 0 as t→ ∞.  As a result, the stability of the
proposed SADRNC system can be guaranteed.

Since the terms g(x, t) may  be unknown or perturbed, the adap-
tive laws (25), (27), (28) and (37) cannot be precisely obtained. To
deal with the unavailable system dynamics, g(x, t) is rewritten as
|g(x, t)|sgn(g(x, t)). Therefore, the update laws (25), (27) and (28)
can be rewritten as follows

�˛i(N) = ˇ˛s(t)hi� (41)

�ci(N) = 2ˇcs(t)˛i�
(s(t) − ci)

�2
i

hi (42)

��i = 2ˇ�s(t)˛i�
(s(t) − ci)

2

�3
i

hi (43)

and the error estimation law (37) can be rewritten as follows
˙̂ε = − ˙̃ε = ˇεs(t) (44)

where the terms �˛|g(x, t)|, �c|g(x, t)|, �� |g(x, t)| and �ε|g(x, t)| are
absorbed into the new positive learning rates ˇ˛, ˇc, ˇ� and ˇε,
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Fig. 4. Simulation results of the chaotic system for q = 2.1.

espectively. These new learning rates are specified by the users.
onsequently, only the sign of g(x, t) is required in the design pro-
edure and it can be easily obtained from the physical characteristic
f the control plants.

. Simulation results

In this section, the proposed SADRNC system is applied to con-
rol a chaotic system and an inverted pendulum. It should be
mphasized that the development of the SADRNC system does not
eed to know the control system dynamics. For practical imple-
entation, the parameters and the number of the fuzzy rules in

he DTRN system can be online tuned by the proposed algorithm.

.1. Chaotic system

Chaotic phenomena have been observed in numerous fields of
cience such as physics, chemistry, biology and ecology [3,7,26].
haotic behavior has been detected in some fields such as laser
echnology, plasma, mechanical engineering and chemistry. An
nteresting subject in chaos theory is to eliminate the chaotic
ehavior by means of control systems. However, in some occa-
ions, it is desired to excite the chaotic mode of the system. It can
e observed in many nonlinear circuits and mechanical systems.
onsider a second-order chaotic system such as [3]
¨ (t) = −pẋ(t) − p1x(t) − p2x3(t) + q cos(ωt) + u(t)

= f (x, t) + u(t) (45)
Fig. 5. Simulation results of the chaotic system for q = 7.0.

where f (x, t) = −pẋ(t) − p1x(t) − p2x3(t) + q cos(ωt) is the system
dynamics, t is the time variable, ω is the frequency, u(t) is the
control input, and p = 0.4, p1 = −1.1, p2 = 1.0, ω = 1.8 and q is a con-
stant. Depending on the choices of these constants, the solutions
of system (45) may  display complex phenomena, including various
periodic orbits behaviors and some chaotic behaviors. To observe
the complex phenomena, the time responses of the uncontrolled
chaotic system with initial point (0,0) for q = 2.1 and q = 7.0 are
shown in Fig. 3(a) and (b), respectively. For the time responses with
q = 2.1, an uncontrolled chaotic trajectory can be found, but a period
motion chaotic trajectory happens with q = 7.0. It is shown that the
uncontrolled chaotic system has different trajectories for different
system parameters.

Then, the proposed SADRNC system is applied to control the
chaotic system. The parameters of the SADRNC system are selected
as k1 = 2, k2 = 1, ˇ˛ = 0.1, ˇc = ˇ� = 0.01, �ε = 1.0, k = 1, � = 2.0, Gth = 0.6,
Dth = 300, and � = 0.3. The choices of these values are through some
trials considering the requirement of stability condition. The simu-
lation results of the SADRNC system for q = 2.1 and q = 7.0 are shown
in Figs. 4 and 5, respectively. The tracking responses of state x
are shown in Figs. 4(a) and 5(a), the tracking responses of state
ẋ are shown in Figs. 4(b) and 5(b), the control inputs are shown
in Figs. 4(c) and 5(c), and the numbers of fuzzy rules are shown
in Figs. 4(d) and 5(d). The simulation results show that not only a
satisfied tracking performance can be achieved after the controller

parameters having been learned. Moreover, the structure learning
approach demonstrates the properties of generating or pruning the
fuzzy rules of the DTRN system automatically.
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.2. Inverted pendulum

Consider an inverted pendulum stabilizing problem as shown
n Fig. 6 to demonstrate the robustness of the proposed control
cheme. Let x be the angle of the pendulum with respect to the ver-
ical line. The dynamic equations of the inverted pendulum system
re [15,20]

¨(t) = f (x, t) + g(x, t)u(t) (46)
here x = [x(t), ẋ(t)]T is the state vector, f (x, t) =
mlẋ sin(x) cos(x)−(M+m)g sin(x)

ml cos2(x)− 4
3 l(M+m)

and g(x, t) = − cos(x)
ml cos2(x)− 4

3 l(M+m)
are the

ystem dynamics, u(t) is the control input, M is the mass of cart, m

Fig. 7. Simulation results of the inverted pendulum system for Case 1.
Fig. 8. Simulation results of the inverted pendulum system for Case 2.

is the mass of rod, g = 9.8 m/sec2 is the acceleration due to gravity,
and l is the half length of rod. In this example, it is assumed that
M = 1 kg, m = 0.1 kg, and l = 0.5 m.  The parameters of the SADRNC
system are selected as k1 = 2, k2 = 1, ˇ˛ = 0.1, ˇc = ˇ� = 0.01, �ε = 1.0,
k = 1, � = 2.0, Gth = 0.6, Dth = 600, and � = 0.3. According to the initial
states, two simulation cases are simulated. The setting of Case
1 is (x, ẋ) = (0.25,  0) and this of Case 2 is (x, ẋ) = (−0.25, 0). The
simulation results of the SADRNC system are shown in Figs. 7 and 8
for Case 1 and Case 2, respectively. The tracking responses of the
state x(t) are shown in Figs. 7(a) and 8(a), the tracking responses
of the state ẋ(t) are shown in Figs. 7(b) and 8(b), the control inputs
are shown in Figs. 7(c) and 8(c), and the numbers of fuzzy rules are
shown in Figs. 7(d) and 8(d). The simulation results verify that the
favorable tracking performance and no chattering phenomena can
be achieved by the proposed SADRNC system. Moreover, the struc-
ture learning approach demonstrates the properties of generating
or pruning the fuzzy rules of the DTRN system automatically.

5. Conclusions

A dynamic TSK-type RBF-based neural-fuzzy (DTRN) system is
proposed in this article. In the proposed DTRN system, a new fuzzy
rule will be generated if the incoming data does not belong to the
existing fuzzy rules, and the existing fuzzy rules will be pruned if
the used density is smaller than a pre-specified threshold. Then,

a supervisory adaptive dynamic RBF-based neural-fuzzy control
(SADRNC) system has been successfully developed. The proposed
SADRNC system is composed of a DTRN controller and a supervi-
sory compensator. The DTRN controller is used to approximate an
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deal controller and the supervisory compensator is designed to
liminate the effect of the approximation error introduced by the
TRN controller upon the system stability in the Lyapunov sense.
inally, the proposed SADRNC system is applied to control a chaotic
ystem and an inverted pendulum. The simulation results verify
hat a favorable control performance can be achieved by the pro-
osed SADRNC scheme after the controller parameters have been

earned. The stability of the proposed SADRNC scheme has been
hown and the effectiveness of the technique has been demon-
trated through computer simulations.
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