This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited.

In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit:

http://www.elsevier.com/authorsrights
Robust observer-based output feedback control for fuzzy descriptor systems

Peter Liu a,⇑, Wen-Tsung Yang b, Chang-En Yang a

a Department of Electrical Engineering, Tamkang University, 25137 Tamsui, New Taipei City, Taiwan
b Department of Electrical Engineering, Chung-Yuan Christian University, 32023 Chung-Li, Taiwan

A R T I C L E I N F O

Keywords:
Fuzzy descriptor systems
T–S fuzzy model
Linear matrix inequalities

A B S T R A C T

This paper proposes a robust observer-based output feedback control for fuzzy descriptor systems. First, we represent singular nonlinear dynamic system into Takagi–Sugeno (T–S) fuzzy descriptor model which have a tighter representation for a wider class of nonlinear systems in comparison to general state-space models. To achieve the control objective, we design a fuzzy controller and observer in a unified and systematic manner. The stability analysis of the overall closed-loop fuzzy system leads to formulation of linear matrix inequalities (LMIs). The advantages of the approach are three fold. First, we consider conditions of immeasurable states which allows a practical design of sensorless control systems. Second, we address the robustness issue in the system which avoids control performance deterioration or instability due to disturbance or approximation errors in the system. Third, we formulate the overall control problem into LMIs. Using the observer and controller gains by solving LMIs, we carry out numerical simulations which verify theoretical statements.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the past decade fuzzy control has been proved to be very fruitful in many applications. Using the T–S fuzzy model (Takagi & Sugeno, 1985) representation of nonlinear systems into local linear fuzzy models has lead to vast amounts of research. For example fuzzy control (Chang, Chang, Tao, & Taur, 2012; Jain, Sivakumar, & Radhakrishnan, 2011; Joh, Chen, & Langari, 1998; Precup, Radac, Tomescu, Petriu, & Pretul, 2013; Wang, Tanaka, & Griffin, 1996); fuzzy model based control and synchronization (Lian, Chiu, Chang, & Liu, 2001b; Tanaka, Ikeda, & Wang, 1998b); robust fuzzy control and observer based approaches (Balasubramaniam, Vembarasan, & Rakkiyappan, 2012; Chiang & Liu, 2012; Chen, Tseng, & Uang, 1999, 2000; Lendek, Lauber, Guerra, Babuka, & Schutter, 2010; Lian, Chiu, Chang, & Liu, 2001a; Soliman, Elshafei, Bendary, & Mansour, 2009; Sung, Kim, Park, & Joo, 2010; Tanaka, Ikeda, & Wang, 1996, 1998a; Tognetti, Oliveira, & Peres, 2012; Tsai, 2011; Tanaka & Sano, 1994) which take modeling errors, external disturbances, measurement errors into considerations. Many of the mentioned works approach the design of controllers and observers in an systematic manner. The stability analysis of the closed-loop systems leads to formulation of linear matrix inequalities (LMIs) (Boyod, El Ghaoui, Feron, & Balakrishnan, 1994; Muralisankar, Gopalakrishnan, & Balasubramaniam, 2012). Then the controller and observer gains are found once the feasible LMIs are solved. The process of solving LMIs can be done numerically by powerful packaged software toolboxes (e.g., MATLAB LMI Toolbox). On the other hand, descriptor systems have a tighter representation for a wider class of systems in comparison to traditional state-space models. This concept has also been extended to T–S fuzzy model descriptor systems (Chang & Yang, 2011; Taniguchi, Tanaka, & Wang, 2000). Note that using traditional T–S fuzzy modeling for Lagrangian mechanical systems, we need a fuzzy model representation for the inverse of the inertia matrix. This matrix inverse will drastically increase the rule numbers. On the other hand, if the fuzzy descriptor system is used, the number fuzzy rules will be decreased. This rule reduction is an important issue for LMI-based control synthesis since larger number of LMI rules may lead to infeasible problems.

In this paper, we extend the good properties of fuzzy descriptor systems and fuzzy observers into the design of robust output feedback control for fuzzy descriptor systems. The overall controller and observer design leads to formulating of LMIs. Then a multiple-stage process is utilized in place of simultaneously solving controller and observer parameters. The advantages of the approach are three fold. First, we consider conditions of immeasurable states which allows a practical design of sensorless control systems. Second, we address the robustness issue in the system which avoids control performance deterioration or instability due to disturbance and approximation errors. Third, we formulate the overall control problem into LMIs in a systemic and unified manner.

The rest of the paper is organized as follows. In Section 2, we introduce the fuzzy descriptor system representation of a singular nonlinear dynamic system. In Section 3, we carry out the stability
analysis of the fuzzy descriptor system and formulate the LMI criterion. In Section 4, we carry out numerical simulations on the control design. Finally some conclusions are made in Section 5.

2. Preliminaries and problem formulation

A general singular nonlinear system is given as

\[M(x(t)) \dot{x}(t) = f(x(t)) + g(x(t)) u(t) + \omega(t) \]

(1)

where \(x(t) = [x_1(t) \ x_2(t) \ \cdots \ x_d(t)]^T \in \mathbb{R}^d \) is the state vector; \(u(t) = [u_1(t) \ u_2(t) \ \cdots \ u_d(t)]^T \in \mathbb{R}^d \) is the control input; \(\omega(t) \) is the unknown but bounded disturbance; \(M(x(t)) \), \(f(x(t)) \), \(g(x(t)) \) are smooth functions with \(f(0) = 0 \); and \(y(t) \in \mathbb{R}^p \) is the output. The T–S fuzzy representation of (1) is as follows:

Plant Rule \(k \):

IF \(z_1(t) \) is \(N_{k1} \) and \(\cdots \) and \(z_d(t) \) is \(N_{k_d} \)

THEN

\[E_k \dot{x}(t) = A_{k} x(t) + B_i u(t) + \omega(t) \]

(2)

where \(N_{k_i} \) and \(F_{k_i} \) are fuzzy sets; \(E_k \in \mathbb{R}^{r \times d} \) is the descriptor matrix; \(A_i \in \mathbb{R}^{r \times r} \), \(B_i \in \mathbb{R}^{r \times m} \), \(C_i \in \mathbb{R}^{m \times r} \) are constant matrices with appropriate dimensions, and RHS stands for right-hand-side. The inferred output

\[
\sum_{k=1}^{r} \mu_k(z(t)) E_k \dot{x}(t) = \sum_{i=1}^{n} \nu_i(z(t)) \{ A_i x(t) + B_i u(t) + \Delta f + \omega(t) \}
\]

(3)

Fig. 1. State trajectories of descriptor system. State feedback: solid line; observer-based control: dotted line.

Fig. 2. Controller performance with the observer-based control approach.
If $\Delta f^*, \phi^*(t), A_h$ is omitted from (3), then we name the system as an “approximate system”. On the other hand, (3) is the “true system”.

The fuzzy descriptor system (3) is admissible Masubuchi, Kamitane, Ohara, and Suda (1997) if there exists $V(x^*(t)) = x^*(t)E^T x^*(t)$ and the following conditions are satisfied – (1) det $[SE^* - \sum_{i=1}^{r} vi(z_i(t)) P_{ki}(z_i(t))] = 0$; (2) the open-loop system is impulse-free. Consequently, these conditions are satisfied if a common matrix $X \in R^{n3x2n}$, det $X = 0$ such that $E^T X = E^T E \geq 0$ and $A^*_h X + X A^*_h < 0$.

First, we consider the open-loop system of (3) which is

$$E x^*(t) = \sum_{i=1}^{r} v_i(z_i(t))u_i(z_i(t))A^*_h x^*(t) + \Delta f^* + \phi^*(t). \quad (4)$$

Second, we now design the controller rule as follows.

Control rule i: If $z_i(t)$ is F_{ki} and \ldots and $z_g(t)$ is F_{kg} THEN

$$u(t) = -K^*_h x^*(t) \quad \text{for} \quad i = 1, 2, \ldots, r.$$

where $K^*_h = [K_{ik} 0]$ and K_h are controller gains to be chosen later.

We propose a modified PDC

$$u(t) = -\sum_{i=1}^{r} \sum_{k=1}^{r} v_i(z_i(t))\mu_k(z_i(t))K^*_h x^*(t) \quad (5)$$

to stabilize the fuzzy descriptor system (3).

2.1. Immeasurable states

To estimate the immeasurable states, we design the observer rule as follows:

Plant Rule k:

- IF $z_i(t)$ is N_{ki} and \ldots and $z_g(t)$ is N_{kg} THEN

RHS Observer Rule i:

- IF $z_i(t)$ is F_{ki} and \ldots and $z_g(t)$ is F_{kg} THEN

$$E_k \hat{x}(t) = A_k \hat{x}(t) + B_k u(t) + L_k (y(t) - \hat{y}(t))$$

$$\hat{y}(t) = C_k \hat{x}(t)$$

and L_i is the observer gain of the ith observer rule to be chosen later.

The overall inferred output is

$$\hat{y}(t) = \sum_{i=1}^{r} v_i(z_i(t))C_k \hat{x}(t)$$

where $z_i(t) \sim z_g(t)$ are the premise variables which consist of the states of the system; F_j ($j = 1, 2, \ldots, g$) are the fuzzy sets; r is the number of fuzzy rules; E_k, A_k, B_k, C_k are system matrices with appropriate dimensions. For simplicity, we assume that the membership functions have been normalized, i.e., $\sum_{i=1}^{r} \sum_{k=1}^{r} F_{ki}(z_i(t)) = 1$. Using the singleton fuzzifier, product inference, and weighted defuzzifier, the augmented fuzzy system is inferred as follows:

$$E \hat{x}^*(t) = \sum_{i=1}^{r} \sum_{k=1}^{r} v_i(z_i(t))\mu_k(z_i(t)) \{A^*_h \hat{x}^*(t) + B^*_h u(t) + L^*_h (y(t) - \hat{y}(t))\}$$

$$= \sum_{i=1}^{r} \sum_{k=1}^{r} v_i(z_i(t))v_j(z_j(t))\mu_k(z_i(t))\{A^*_h \hat{x}^*(t)$$

$$+ B^*_h u(t) + L^*_h C_j \hat{e}^*(t) + L^*_h \Delta h\}$$

$$\hat{y}(t) = \sum_{i=1}^{r} v_i(z_i(t))C_j \hat{e}^*(t). \quad (7)$$

where $L^*_h = [0 I_{10}^T]$. Instead of (5), the PDC fuzzy controller

$$u(t) = -\sum_{i=1}^{r} \sum_{k=1}^{r} v_i(z_i(t))\mu_k(z_i(t))K^*_h x^*(t). \quad (8)$$

where $x^*(t) = [x^*(t) \hat{x}^*(t)]^T$. Combining the fuzzy controller (8), fuzzy observer (7) and denoting $e^*(t) = x^*(t) - \hat{x}^*(t)$. $e^*(t) = [e^*(t) \hat{e}^*(t)]^T$, we arrive with the system representations:

$$E \hat{x}^*(t) = \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} v_i(z_i(t))v_j(z_j(t))\mu_k(z_i(t)) \{A^*_h - B^*_h K^*_h \} \hat{x}^*(t) + B^*_h K^*_h \hat{e}^*(t) + \Delta f^* + \phi^*(t)$$

$$E \hat{e}^*(t) = \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} v_i(z_i(t))v_j(z_j(t))\mu_k(z_i(t)) \{A^*_h - L^*_h C_j \} \hat{e}^*(t) + \Delta f^* + \phi^*(t) - L^*_h \Delta h \quad (9)$$

Assumption 1. There exists a known bounding matrix $D_f\phi$ such that $||D_f|| \leq ||D_f\phi||$.

From the assumption above, we have

$$\Delta f^*\Delta f^* - D_f^*D_f < (D_f\phi\hat{x}(t))^T(D_f\phi\hat{x}(t)) = (\Phi\hat{x}^*(t))^T(\Phi\hat{x}^*(t))$$

where $\Phi = [D_f \phi 0]$. The following theorem gives the sufficient condition of stability for (4) and (9).

Assumption 2. There exist bounding matrices ϕ_e, ϕ_c such that $||D_f|| \leq ||D_f\phi_e||$, $||\sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} v_i(z_i(t))\mu_k(z_i(t)) L^*_h \phi_e|| < ||\sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} v_i(z_i(t))\mu_k(z_i(t)) L^*_h \phi_c||$ for all $e(t)$.

According to Assumption 2, we have

$$\Delta h^* \Delta h^* = (\Phi e^* e^*(t))^T(\Phi e^* e^*(t))$$

where $\Phi = [\Phi e 0]$.

$$\Delta h^* \Delta h^* = \left(\sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} v_i(z_i(t))\mu_k(z_i(t)) L_{ik} \phi_e e^*(t)\right)^T$$

$$\times \left(\sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} v_i(z_i(t))\mu_k(z_i(t)) L_{ik} \phi_c e^*(t)\right)$$

$$\leq \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} v_i(z_i(t))\mu_k(z_i(t)) L_{ik} \phi_e e^*(t)$$

$$\times \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} v_i(z_i(t))\mu_k(z_i(t)) L_{ik} \phi_c e^*(t)$$

$$\leq \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} v_i(z_i(t))\mu_k(z_i(t)) L_{ik} \phi_e e^*(t)$$

$$\times \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} v_i(z_i(t))\mu_k(z_i(t)) L_{ik} \phi_c e^*(t)$$

where $\Phi_{ac} = [L_{ik} \phi_c]$ for $i = 1, 2, \ldots, r$. Then $e(t), \Delta f, \Delta h$ are omitted from (9), we name the system as an “approximate error system.”

3. Stability analysis

In details, we present the stability criterion for the open-loop system (4) in the following:
Theorem 1. The open-loop approximate fuzzy descriptor system (4) (where Δf and $\omega(t)$ are omitted) is quadratically stable if there exists a common matrix X such that

$$E^TX = X^TE \succ 0$$ \hspace{0.5cm} (10)

$$A_d^TX + X^TA_d^T \preceq 0$$

Furthermore, if there exists a common matrix X and $Q \succ 0$ such that (10) and

$$\begin{bmatrix} A_d^TX + X^TA_d^T + \Phi_d^T \Phi_d + Q + X^TX & X \\ X^T & -\frac{1}{\rho^2} I \end{bmatrix} < 0$$ \hspace{0.5cm} (11)

are satisfied for all the pairs (i,k) except for pairs $v_i(z(t)) \mu_i(z(t)) = 0$ for all $z(t)$, then the true system (4) has the following robust performance

$$\int_0^T x^T(\tau)Qx(\tau)d\tau \leq \int_0^T x^T(0)Qx(0) + \frac{1}{\rho^2} \int_0^T \|\omega(\tau)\|d\tau.$$ \hspace{0.5cm} (12)

Proof 1. Choose the Lyapunov function candidate

$$V(x^T(t)) = x^T(t)E^TXx(t).$$

The time derivative

$$\dot{V}(x^T(t)) = x^T(t)E^TXx(t) + x^T(t)E^TXx(t)$$

$$= \sum_{i=1}^r \sum_{k=1}^r \mu_i(z(t)) \mu_k(z(t)) \left(A_d^TX + X^TA_d^T \right) x^T(t)$$

$$+ (\Delta f + \omega(t))^T Xx(t) + x^T(t)X^T(\Delta f + \omega(t))$$

$$\leq \sum_{i=1}^r \sum_{k=1}^r \mu_i(z(t)) \mu_k(z(t)) \left(A_d^TX + X^TA_d^T \right) x^T(t)$$

$$+ \frac{1}{\rho^2} \omega(t)\omega(t) + (\Phi_d x(t))^T (\Phi_d x(t))$$

$$+ x^T(t)X^TXx(t)$$

$$= \sum_{i=1}^r \sum_{k=1}^r \mu_i(z(t)) \mu_k(z(t))$$

$$\times \eta^T(t) \left[A_d^TX + X^TA_d^T + \Phi_d^T \Phi_d + Q + X^TX \right] \eta(t)$$

$$+ \frac{1}{\rho^2} \omega^T(t)\omega(t) - x^T(t)Qx(t)$$

$$\leq -x^T(t)Qx(t) + \frac{1}{\rho^2} \omega^T(t)\omega(t)$$ \hspace{0.5cm} (13)

where $\eta(t) = [x^T(t) \omega^T(t)]$. Integrating on both sides of (13) with respect to time, we obtain the robust property (12). □

Corollary 1. Let $Q = \text{block-diag} \{Q_{11}, Q_{22}\} > 0$. The conditions (10) and (11) are satisfied if there exists feasible solutions to the following EVP maximize $\rho^2 S_1 S_2 M_1$, subject to

$$S_1 = S_1^T \succeq 0$$ \hspace{0.5cm} (14)

$$\begin{bmatrix} X_{11} & X_{12} & S_1^T & S_2^T & S_1 & S_2 \\ X_{12} & X_{22} & 0 & S_1^T & 0 & S_1 \\ S_1 & 0 & -\frac{1}{\rho^2} I & 0 & 0 & 0 \\ S_2 & S_1 & 0 & -\frac{1}{\rho^2} I & 0 & 0 \\ S_1 & 0 & 0 & 0 & -I & 0 \\ S_2 & S_1 & 0 & 0 & 0 & -I \end{bmatrix} < 0$$ \hspace{0.5cm} (15)

where

$$\begin{align*}
X_{11} &= A_d^TS_3 + S_3A_d + \Delta f_1^T \Delta f_2 + Q_{11}, \\
X_{12} &= S_1^T + A_d^TS_1 - S_1^T E_4, \\
X_{22} &= -E_4^TS_1 - S_1E_4 + Q_{22}.
\end{align*}$$

Proof 2. Define

$$X = \begin{bmatrix} S_1 & 0 \\ S_2 & S_1 \end{bmatrix}.$$ \hspace{0.5cm} (16)

Then rewrite $E^TX = X^TE \succ 0$. The above inequality implies

$$E^TX = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} S_1 & 0 \\ S_2 & S_1 \end{bmatrix} = \begin{bmatrix} S_1 & 0 \\ S_2 & S_1 \end{bmatrix} \succ 0.$$

$$X^TE = \begin{bmatrix} S_1^T & S_2^T \\ 0 & S_1^T \end{bmatrix} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} S_1^T & 0 \\ 0 & 0 \end{bmatrix} \succ 0.$$

Therefore (14) is proven.

From (11) and using Schur complements, we have

$$\begin{bmatrix} A_d^TX + X^TA_d^T + \Phi_d^T \Phi_d + Q + X^TX & \eta(t) \\ \eta^T(t) & -\frac{1}{\rho^2} I \end{bmatrix} < 0$$

Then by definition of X, the LMI (15) is obtained. □

In the following, we discuss the case where the overall controller and observer is considered.

Theorem 2. The fuzzy descriptor system (2) along with controller (8) and observer (6) forming the closed-loop system (9) is asymptotically stable, if there exist nonsingular matrices P and R, matrices $Z_1, Z_2, R_1, R_2, M_1, H_1$, and scalars $\gamma, \rho, \epsilon_0 > 0, n = 1, 2, \ldots, 8$ satisfying the following LMIs:

$$Z_1^T = Z_1 > 0, \hspace{0.5cm}$$ \hspace{0.5cm} (16)

$$\begin{bmatrix} \phi_{11} & \phi_{12} & Z_1 & 0 & Z_1^T \Delta \phi_2^T \\ \phi_{12}^T & \phi_{22} & -Z_2 & Z_1 & 0 \\ Z_1^T - \frac{1}{\rho^2} W_{11} & -\frac{1}{\rho^2} W_{12} & Z_1 & 0 & 0 \\ 0 & Z_1^T - \frac{1}{\rho^2} W_{12} & -\frac{1}{\rho^2} W_{22} & 0 \\ \Delta \phi_2 Z_1 & 0 & 0 & 0 & -\epsilon_4 I \end{bmatrix} < 0, \hspace{0.5cm} i = 1, 2, \ldots, r. \hspace{0.5cm}$$ \hspace{0.5cm} (17)
\[
\begin{bmatrix}
\tilde{\phi}_{11} & \tilde{\phi}_{12} & 2Z_1 & 0 & 2Z_1^T \Delta \phi_i^T \\
\tilde{\phi}_{12} & \tilde{\phi}_{22} & -2Z_1 & 2Z_1 & 0 \\
2Z_1^T & -2Z_1^T & -\frac{1}{p^2} W_{11} & -\frac{1}{p^2} W_{12} & 0 \\
0 & 2Z_1^T & -\frac{1}{p^2} W_{12} & -\frac{1}{p^2} W_{22} & 0 \\
2\Delta \phi_i Z_1 & 0 & 0 & 0 & -2c_i I
\end{bmatrix} < 0, \quad i < j.
\]

\[
R_i^T = R_i > 0.
\]

\[
Y_{11} = \begin{bmatrix}
\lambda_{11} & \lambda_{12} & R_1^T & 0 & \phi_i^T L_R^T \\
\lambda_{12} & \lambda_{22} & 0 & R_1^T & 0 & \phi_i^T L_R^T \\
R_1 & 0 & -\frac{1}{p} I & 0 & 0 & 0 \\
R_2 & R_1 & 0 & -\frac{1}{p} I & 0 & 0 \\
0 & 0 & 0 & 0 & -c_i I & 0 \\
L_k \phi_{t1} & L_k \phi_{t2} & 0 & 0 & 0 & -c_i I
\end{bmatrix},
\]

where matrices are denoted as

\[
Y_{12} = \begin{bmatrix}
\phi_A^T K_R & e_k R_k & 0 & e_k R_k & 0 & e_k R_k \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix},
\]

\[
Y_{22} = \text{diag}[-c_i I, -c_i I, -c_i I, -c_i I, -c_i I, -c_i I].
\]

\[
\tilde{Y}_{11} = \begin{bmatrix}
\tilde{\lambda}_{11} & \tilde{\lambda}_{12} & 2R_1^T & 2R_1^T & 0 & \phi_i^T L_R^T \\
\tilde{\lambda}_{12} & \tilde{\lambda}_{22} & 0 & 2R_1^T & 0 & \phi_i^T L_R^T \\
2R_1 & 0 & -\frac{1}{p} I & 0 & 0 & 0 \\
2R_1 & 2R_1 & 0 & -\frac{1}{p} I & 0 & 0 \\
0 & 0 & 0 & 0 & -c_i I & 0 \\
L_k \phi_{t1} & L_k \phi_{t2} & 0 & 0 & 0 & -c_i I \\
L_k \phi_{t1} & L_k \phi_{t2} & 0 & 0 & 0 & -c_i I
\end{bmatrix},
\]

\[
\tilde{Y}_{12} = \begin{bmatrix}
\phi^T_A e_k R_k & e_k R_k & e_k R_k & e_k R_k & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix},
\]

\[
\tilde{Y}_{22} = \text{diag}[-\frac{1}{2} c_i I, -\frac{1}{2} c_i I].
\]

The controller and observer gains are accordingly \(K_R = M_R Z_1^{-1}\) and \(L_k = R_k^{-1} H_k\), if there exists a common matrix \(Q > 0\) and \(S > 0\), the system (9) has the following robust performance

\[
\begin{align*}
\int_0^T x^T(\tau) Q x(\tau) d\tau &\leq \int_0^T e^T(\tau) P e(\tau) d\tau + \frac{1}{p^2} \int_0^T \|\omega(\tau)\|^2 d\tau, \\
\int_0^T e^T(\tau) S e(\tau) d\tau &\leq \int_0^T e^T(\tau) Q e(\tau) d\tau + \frac{1}{p^2} \int_0^T \|\omega(\tau)\|^2 d\tau
\end{align*}
\]

Proof 3. Define

\[
P = \begin{bmatrix} S_1 & 0 \\ S_1 & 0 \end{bmatrix}, \quad Q = \begin{bmatrix} Q_{01} & 0 \\ 0 & Q_{02} \end{bmatrix}, \quad R = \begin{bmatrix} R_1 & 0 \\ 0 & R_1 \end{bmatrix}, \quad S = \begin{bmatrix} S_1 & 0 \\ 0 & S_{02} \end{bmatrix},
\]

\[
\psi(t) = [x^T(t) e^T(t)].
\]

Then, we rewrite \(E^T P E > 0\) as \(P^T E^T = E^T P > 0\) and \(E^T R^T = R^T E > 0\). The above inequality implies

\[
\begin{bmatrix} S_1 & 0 \\ 0 & S_{02} \end{bmatrix} > 0, \quad \begin{bmatrix} S_1 & 0 \\ S_1 & S_{02} \end{bmatrix} > 0.
\]

We then arrive with

\[
\begin{bmatrix} Z_1 & -Z_2 \\ 0 & Z_1 \end{bmatrix} > 0, \quad \begin{bmatrix} Z_1 & 0 \\ 0 & Z_1 \end{bmatrix} > 0.
\]

where \(Z_1 = S_1^{-1}\) and \(Z_2 = S_2^{-1} S_1^{-1}\). Note that

\[
\begin{bmatrix} S_1 & 0 \\ S_1 & S_1 \end{bmatrix} > 0, \quad \begin{bmatrix} Z_1 & 0 \\ -Z_2 & Z_1 \end{bmatrix} > 0.
\]

We consider the Lyapunov function candidate

\[
V(\psi(t)) = \sum_{i=1}^2 V_i(\psi(t)),
\]

where

\[
V_1(\psi(t)) = x^T(t) E^T P e(t), \quad V_2(\psi(t)) = e^T(t) E^T R e(t).
\]
Therefore the time derivative
\[V_1'(x(t)) = x^T(t)E^TPx(t) + x^T(t)E^TPx(t), \]
\[V_2'(e(t)) = e^T(t)E^TRe(t) + e^T(t)E^TRe(t). \]
Therefore the time derivative along (9) is
\[
V_1'(x(t)) \leq \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} \sum_{l=1}^{r} \mu_i(z(t)) \mu_j(z(t)) \mu_k(z(t)) \mu_l(z(t)) \\
\times \left\{ x^T(t) \left(C_{ik} + p^T C_{ik} \right) x(t) + e^T(t) \left(B_{ik}K_{ik} \right)^T P x(t) + x^T(t)P \left(B_{ik}K_{ik} \right) e(t) + \left(\Delta f^T + \omega^T(t) \right) x(t) + \left(\Delta f^T + \omega^T(t) \right) x(t) + x^T(t)\left(B_{ik}K_{ik} \right) e(t) + e^T(t) \left(B_{ik}K_{ik} \right) e(t) \right\} \\
+ x^T(t)\left(\Delta f^T + \omega^T(t) \right) x(t) + x^T(t)\left(\Delta f^T + \omega^T(t) \right) x(t) + \frac{1}{p^2} \omega^T(t) x(t) \\
+ \frac{1}{p^2} \omega^T(t) x(t) + x^T(t)\left(B_{ik}K_{ik} \right) e(t) + e^T(t) \left(B_{ik}K_{ik} \right) e(t) \right\} \\
+ 2 \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} \sum_{l=1}^{r} \mu_i(z(t)) \mu_j(z(t)) \mu_k(z(t)) \mu_l(z(t)) \\
\times \left\{ x^T(t) \left(\left(C_{ik} + p^T C_{ik} \right) + \left(C_{ik} + p^T C_{ik} \right) \right) x(t) + e^T(t) \left(\left(B_{ik}K_{ik} \right)^T + \left(B_{ik}K_{ik} \right)^T \right) P x(t) + x^T(t)P \left(\left(B_{ik}K_{ik} \right)^T + \left(B_{ik}K_{ik} \right)^T \right) e(t) \right\} \\
+ x^T(t)\left(\Delta f^T + \omega^T(t) \right) x(t) + x^T(t)\left(\Delta f^T + \omega^T(t) \right) x(t) + \frac{1}{p^2} \omega^T(t) x(t) \\
+ \frac{1}{p^2} \omega^T(t) x(t) + x^T(t)\left(B_{ik}K_{ik} \right) e(t) + e^T(t) \left(B_{ik}K_{ik} \right) e(t) \right\} \\
\text{which further leads to}
\[
V_1'(x(t)) \leq \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} \sum_{l=1}^{r} \mu_i(z(t)) \mu_j(z(t)) \mu_k(z(t)) \mu_l(z(t)) \\
\times \left\{ x^T(t) \left(C_{ik} + p^T C_{ik} \right) x(t) + e^T(t) \left(B_{ik}K_{ik} \right)^T P x(t) + x^T(t)P \left(B_{ik}K_{ik} \right) e(t) + \frac{1}{p^2} \omega^T(t) x(t) \right\} \\
+ e^T(t) \left(B_{ij}K_{ij} + B_{ij}K_{ij} \right)^T P x(t) + x^T(t)P \left(B_{ij}K_{ij} + B_{ij}K_{ij} \right) e(t) + x^T(t)\left(\Delta f^T + \omega^T(t) \right) x(t) + \frac{1}{p^2} \omega^T(t) x(t) \\
+ \frac{1}{p^2} \omega^T(t) x(t) + x^T(t)\left(B_{ik}K_{ik} \right) e(t) + e^T(t) \left(B_{ik}K_{ik} \right) e(t) \right\} \\
\text{According to inequality } 2 \hat{x}^T y \leq \hat{x}^T x + e^{-1} \hat{y}^T \hat{y}, \text{ where } e > 0, \text{ we have}
\[
e^T(t)B_{ij}K_{ij}x(t) + x^T(t)B_{ij}K_{ij}x(t) + e^T(t)(B_{ij}K_{ij}x(t)) \leq e_{ij} e^T(t)(B_{ij}K_{ij}x(t)) + e_{ij} e^T(t)(B_{ij}K_{ij}x(t)), \quad i = j.
\]
\[
e^T(t)B_{ij}K_{ij}x(t) + x^T(t)B_{ij}K_{ij}x(t) + e^T(t)(B_{ij}K_{ij}x(t)) \leq e_{ij} e^T(t)(B_{ij}K_{ij}x(t)) + e_{ij} e^T(t)(B_{ij}K_{ij}x(t)), \quad i = j.
\]
and
\[
\left(\Delta f^T + \omega^T(t) \right) x(t) + \frac{1}{p^2} \omega^T(t) x(t) \leq e_{ij} e^T(t)(B_{ij}K_{ij}x(t)) + e_{ij} e^T(t)(B_{ij}K_{ij}x(t)), \quad i = j.
\]
We therefore have
\[
V_2'(e(t)) \leq \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} \sum_{l=1}^{r} \mu_i(z(t)) \mu_j(z(t)) \\
\times \left\{ \left(\left(A_{ik} - L_k C_{ik} \right) x(t) - L_k \Delta h + \Delta f^T + \omega^T(t) \right)^T x(t) + e^T(t)R \left(A_{ik} - L_k C_{ik} \right) x(t) - L_k \Delta h + \Delta f^T + \omega^T(t) \right\} \\
+ e^T(t) x(t) + e^T(t) x(t) + \frac{1}{p^2} \omega^T(t) x(t) \\
- \frac{1}{p^2} \omega^T(t) x(t) \right\}
\]
which further leads to
\[
V_2'(e(t)) \leq \sum_{i=1}^{r} \sum_{j=1}^{r} \sum_{k=1}^{r} \sum_{l=1}^{r} \mu_i(z(t)) \mu_j(z(t)) \\
\times \left\{ e^T(t) \left(W_{ik} + W_{ik} \right) x(t) + e^T(t) \left(W_{ik} + W_{ik} \right) x(t) \right\} \\
+ e^T(t)R \left(A_{ik} - L_k C_{ik} \right) x(t) - L_k \Delta h + \Delta f^T + \omega^T(t) \right\} \\
+ e^T(t) x(t) + e^T(t) x(t) + \frac{1}{p^2} \omega^T(t) x(t) \\
- \frac{1}{p^2} \omega^T(t) x(t) \right\}
\]
where $G_{ik} = A_{ik} - B_{ik}K_{ik}$, $W_{ik} = A_{ik} - L_k C_{ik}$, $\Delta h_{ik} = -\sum_{i=1}^{r} \sum_{j=1}^{r} \mu_i(z(t)) \mu_j(z(t)) \mu_k(z(t)) \mu_l(z(t))$, with inequalities
\[
\Delta h_{ik} x(t) + e^T(t) \Delta h_{ik} x(t) \leq e_{ij} e_{ij} e^T(t) x(t) + e_{ij} e^T(t) x(t),
\]
and
\[
\left(\Delta f^T + \omega^T(t) \right) x(t) + e^T(t) \Delta f^T + \omega^T(t) \right) x(t) \leq e_{ij} e_{ij} e^T(t) x(t) + e_{ij} e^T(t) x(t).
\]
From the Assumption 1 and 2 above, we have
\[
\Delta h_{ik} x(t) + e^T(t) \Delta h_{ik} x(t) \leq e_{ij} e_{ij} e^T(t) x(t) + e_{ij} e^T(t) x(t),
\]
and
\[
\left(\Delta f^T + \omega^T(t) \right) x(t) + e^T(t) \Delta f^T + \omega^T(t) \right) x(t) \leq e_{ij} e_{ij} e^T(t) x(t) + e_{ij} e^T(t) x(t).
\]
respectively. Then, we set and complete the proof of the theorem. This completes the proof of the theorem.

> problem. In the first step, the following observer inequality is equal

\[\dot{z}_k(t) = A_z z_k(t) - e^{-T}(t)S e^T(t) + \frac{1}{p} \dot{w}_k(t) \]

where \(\dot{z}_k(t) = [x^T(t) \, o^T(t)] \), \(z_k(t) = [e^{-T}(t) \, o^T(t)] \), and

\[\begin{bmatrix} C_{iak} + P^T G_{ak} + Q + e^T i \Phi_i \Phi_i^T + e_{i1} P^T P & P^T \\ & -p I \end{bmatrix} \]

\[\begin{bmatrix} C_{a} + P^T (G_{ia} + G_{ii}) + 2Q + 2 \varepsilon_i \Phi_i \Phi_i^T \\ 2 \varepsilon_i P^T P + \varepsilon_i P^T B_i^T \Phi_i^T B_i + \varepsilon_i P^T B_i^T \Phi_i \\ 2 R \\ -p I \end{bmatrix} \]

\[\begin{bmatrix} \frac{W_{ik}^T R + R^T W_{ia} + S + e^T i K_{ia} K_{ia}^T + e_{i1} \Phi_i \Phi_i^T}{R} \\ \frac{0}{R} \end{bmatrix} \]

\[\begin{bmatrix} \frac{(W_{ik} + W_{ik})^T R + R^T (W_{ia} + W_{ia}) + 2S + e_{i1} \Phi_i \Phi_i^T}{R} \\ \frac{0}{R} \end{bmatrix} \]

Integrating on both sides of (24) with respect to time, we obtain the robust property (22). Therefore, when \(E^{T} P + P E > 0, E^{T} R = R^{T} E > 0, A_{1}, A_{2}, A_{3} < 0, A_{4} < 0, A_{4} < 0, A_{4} < 0, A_{4} < 0 \), the stability and the closed-loop system (9) is proven. We multiply the inequality \(A_{1} < 0 \) and \(A_{2} < 0 \) by the matrix \(\text{diag} [P^T P, P^T] \) and its transpose on the left and right, respectively. Then, we set

\[P = \begin{bmatrix} Z_1^T & -Z_1^T \\ 0 & Z_1^T \end{bmatrix} = \begin{bmatrix} \tilde{P} \end{bmatrix} \]

where \(Z_1 > 0 \). Define new variables \(\tilde{Q}_{i1} = \tilde{P} Q_{i1} \tilde{P}^T, \tilde{Q}_{i2} = \tilde{P} Q_{i2} \tilde{P}^T \),

\[W = \tilde{P} \tilde{P}^T = \begin{bmatrix} W_{11} & W_{12} \\ W_{12}^T & W_{22} \end{bmatrix} > 0 \]

and by Schur complement, the inequalities \(A_{1} < 0 \) and \(A_{2} < 0 \) are equivalent to (16)–(18), which \(M_{2a} = K_{2a} Z_{2a} \) (or \(M_{2a} = K_{2a} Z_{2a} \)). From the feasible solutions of (19)–(21), substitute \(K_{2a} M_{2a} Z_{1a} \) (or \(K_{2a} M_{2a} Z_{1a} \)) and scalars \(\varepsilon_1 \sim \varepsilon_a \) into the inequality \(A_{4} < 0, A_{4} < 0 \). Let \(H_a = R_{11}^T \tilde{R}_a, R_3 = R_3, \) then \(R_1 > 0 \). Then we have \(A_{1} < 0 \) and \(A_{2} < 0 \), which are equivalent to (19)–(21) by the Schur complement. This completes the proof of the theorem.

Since the simultaneous solution of observer gains in (19)–(21) is not trivial, we utilize the multiple-step method to cope with the problem. In the first step, the following observer inequality is equal to the following LMI

\[V(\psi(t)) \leq \sum_{i=1}^{n} \left\{ p_i^2(\psi(t)) \mu_i(\psi(t)) \phi_i(\psi(t)) - x^T(t) Q \phi_x(t) \right\} + \sum_{i=1}^{n} \left\{ p_i^2(\psi(t)) \mu_i(\psi(t)) \phi_i(\psi(t)) - x^T(t) Q \phi_x(t) \right\} + \frac{1}{p^2} o^T(t) o(t) \}

\[+ 2 \sum_{i=1}^{n} \left\{ p_i^2(\psi(t)) \mu_i(\psi(t)) \phi_i(\psi(t)) - x^T(t) Q \phi_x(t) \right\} \]

\[\times \left(\phi_i^T(t) \Lambda_i \phi_x(t) - x^T(t) Q \phi_x(t) \right) + \frac{1}{p^2} o^T(t) o(t) \}

\[\leq x^T(t) Q \phi_x(t) - x^T(t) S e^T(t) + \frac{1}{p^2} o^T(t) o(t) \]
$\mu_1(\hat{x}_1(t)) = \frac{1 - \cos(\hat{x}_1(t))}{2}, \quad \mu_2(\hat{x}_1(t)) = \frac{1 + \cos(\hat{x}_1(t))}{2}, \quad \psi_1(\hat{x}_2(t)) = \frac{\hat{x}_2(t)}{2}, \quad \psi_2(\hat{x}_2(t)) = 1 - \frac{\hat{x}_2(t)}{2}$. According to LMIs (16)–(21), we can obtain control gains K_a and observer gains L_a separately where $K_{11} = 0.5833 - 0.8304, \quad K_{12} = \begin{bmatrix} 0.3829 & -1.0396 \end{bmatrix}, \quad K_{21} = \begin{bmatrix} 0.5833 & 0.7696 \end{bmatrix}, \quad K_{22} = \begin{bmatrix} 0.3829 & 0.5604 \end{bmatrix}$. $L_{11} = [-0.4288 -2.0061]^T, \quad L_{12} = [-0.3544 -2.1465]^T, \quad L_{21} = [-0.4096 0.6630]^T, \quad L_{22} = [-0.3125 0.5497]^T$.

The Figs. 1 and 2 show the convergence result under the observer-based control law

$$\bar{u}(t) = -\sum_{i=1}^{r} \sum_{j=1}^{r} \psi_i(\hat{x}(t))\mu_i(\hat{x}(t))K_{ij}\hat{x}(t)$$

with initial condition $\bar{x}(0) = [0.7 -0.7]^T$ and $\bar{x}(0) = [0.3 0.6]^T$.

5. Conclusions

We have proposed an robust observer-based output feedback controller for fuzzy descriptor systems in presence of immeasurable states, approximation errors and uncertainty. The observer and controller design has been implemented in a unified and systematic manner where gains are solved by a set of LMIPs. Numerical simulation results verify the theoretical claims.

Acknowledgment

This work was supported by National Science Council, R.O.C., under Grant NSC 101-2221-E-032-023.

References

