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Abstract ─ The application of optimization 
techniques for shape reconstruction of a perfectly 
conducting two-dimensional cylinder buried in a 
slab medium is reported in this paper, for which 
comparative study of four population-based 
optimization algorithms are conducted. The 
method of finite difference time domain (FDTD) 
is employed for the analysis of the forward 
scattering part, while the inverse scattering 
problem is transformed into an optimization one. 
Four algorithms including particle swarm 
optimization (PSO), asynchronous particle swarm 
optimization (APSO), differential evolution (DE) 
and dynamic differential evolution (DDE) are 
applied to reconstruct the location and shape of a 
2-D perfectly conducting cylinder. The 
performance of these optimization techniques is 
tested through the use of simulated fields to mimic 
the experimental measurements contaminated with 
additive white Gaussian noise. The reconstructed 
results show that DDE and APSO algorithms 
outperform the algorithms DE and PSO in terms of 
convergence speed. And DDE is concluded as the 
best algorithm in this study.  
  
Index Terms - Inverse Scattering, Time Domain, 
FDTD, Sub-Grid Finite Difference Time Domain, 
Dynamic Differential Evolution, Asynchronous 
Particle Swarm Optimization, Slab Medium, 
Cubic Spline.  
 

I. INTRODUCTION 
The detection and reconstruction of certain 

buried and inaccessible scatterers by inverting 
microwave electromagnetic measurements is a 
research field of considerable interests because of 
its numerous applications in geophysical 
prospecting, civil engineering, and nondestructive 
testing. Numerical inverse scattering studies found 
in the literature are based on either frequency or 
time domain approaches [1]-[10]. However, it is 
well known that one major difficulty in inverse 
scattering problems is due to its ill-posedness in 
nature [11].      

Another issue with inverse scattering problem 
is related to the nonlinearity because the inverting 
procedure involves the product of two unknowns: 
the electrical property of the object, and the 
electric field within the object. Especially, in the 
inverse problem involved with a dielectric slab 
medium there exists the interaction between the 
interfaces of three layers and the object, which 
leads to the complicated Green’s function for this 
three-layer structure. Owing to the difficulties in 
computing the Green’s function by numerical 
methods, the problems of inverse scattering 
involved with a dielectric slab were treated less 
intensively. In general, the nonlinearity of the 
problem is coped with by applying iterative 
optimization techniques [12]-[13].  

The algorithms based on stochastic strategies 
offer advantages, over traditional deterministic 
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algorithms, which include strong search ability 
simplicity, robustness, and insensitivity to ill-
posedness. In contrast to traditional deterministic 
methods, evolutionary searching schemes provide 
a more robust and efficient approach for solving 
inverse scattering problems. PSO and DE both 
work with a population of solutions; PSO is very 
efficient at exploring the entire search space, while 
DE is able to accomplish the same goal as genetic 
algorithm (GA) in a new and faster way. Thus 
several improved versions such APSO and DDE 
have gained considerable attention [14]-[19]. 

Time domain inverse scattering problems 
appear quite a lot in the area of remote sensing. 
Various time domain approaches had been 
proposed such as the layer-stripping approach 
[20], Born iterative method (BIM) [21], distorted 
Born iterative method (DBIM) [22] and different 
optimization approaches [23], [24]. The inverse 
scattering problems are usually treated by the 
traditional deterministic methods which are based 
on functional minimization via some gradient-type 
scheme. Furthermore, for gradient-type methods, it 
is well known that the convergence of the iteration 
depends highly on the initial guess. If a good 
initial guess is given, the speed of the convergence 
can be very fast. On the other hand, if the initial 
guess is far away from the exact one, the searching 
tends to get fail [25]. In general, they tend to get 
trapped in local minima when the initial trial 
solution is far away from the exact one. Thus, 
some population-based stochastic methods, such 
as GA [26], [27] PSO [28]-[31], DDE [32]-[34] 
are proposed to search the global extrema of the 
inverse problems to overcome the drawback of the 
deterministic methods. 

Concerning the shape reconstruction of 
conducting scatterers, the PSO has been 
investigated whereas the steady-state genetic 
algorithm (SSGA) has been utilized in the 
reconstruction of metallic scatterers [27]. In this 
case, the reported results indicate that PSO is a 
reliable tool for inverse scattering application. 
Moreover, it has been shown that both DE and 
PSO outperform real-coded GA in terms of 
convergence speed [35], [36]. In recent decades, 
some papers have compared different algorithms 
for inverse scattering problems [14], [31], [37], 
[38]. However, to our knowledge, a comparative 
study about the performances of DDE and APSO 

mainly when applied to inverse scattering 
problems has not yet been investigated. 

 In this paper, the shape reconstruction is 
based on the application of DDE and APSO 
mainly. The forward problem is solved by the 
FDTD method, for which the sub-grid technique 
[39] is implemented to closely describe the fine 
structure of the cylinder. The inverse problem is 
formulated into an optimization one, and then the 
global searching schemes DE, DDE, PSO and 
APSO are used to search the parameter space. 
Cubic spline interpolation technique [40] is 
employed to reduce the number of parameters 
needed to closely describe a cylinder of arbitrary 
shape as compared to the Fourier series expansion. 

The cost function of the four algorithms is to 
minimize the discrepancy between the simulated 
field (mimicking the measured one) and the 
estimated scattered field data with respect to the 
parameters of the cubic-spline expansion. 
Numerical results show that DDE outperforms 
APSO slightly in terms of shape reconstruction 
accuracy, giving a lower reconstruction error for 
the same number of iterations. As a whole, DDE 
and APSO algorithms outperform the algorithms 
DE and PSO in terms of convergence speed. 

In section II, the details of the sub-grid FDTD 
method for the forward scattering are presented. In 
section III and IV, inverse problem and the 
numerical results of the proposed study are given, 
respectively. Finally, in section V some 
conclusions are drawn. 
 

II. FORWARD PROBLEM 
Let us consider a two-dimensional three-layer 

structure with the electromagnetic property 1 1( , )   

for region 1, 2 2( , )   for region 2 and 1 1( , )  for 
region 3, as shown in Fig. 1. A perfectly 
conducting cylinder to be de-embedded is buried 
in the second layer, and is parallel to z axis. The 
perfectly conducting cylinder is illuminated by a 
line source with Gaussian pulse shape placed at 
two different positions sequentially denoted by Tx 
in the first layer, and then the scattered E fields are 
recorded simultaneously at those points denoted 
by Rx in the same layer. The cross-section shape 
of the object is starlike and can be represented in 
polar coordinates with respect to the origin 

O O(X ,Y )  of the local coordinate in x-y plane as 
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shown in Fig. 2. The computational domain is 
discretized by using Yee cells [41]. It should be 
mentioned that the computational domain is 
surrounded by some optimized absorber of the 
perfect matching layer (PML) [42] to reduce the 
reflection from the surrounding PML environment. 

),( 11 

),( 22 

1 1( , ) 

 Fig. 1. Geometrical configuration of the problem. 
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 Fig. 2. A cylinder of arbitrary shape is described 
in terms of a closed cubic spline. The cubic spline 
consists of the polynomials of degree 3. O O(X ,Y )  
is the center position in the x-y plane. The 

1 2, , , N    are radius parameters to describe 
cylinder. 

The direct scattering problem is to calculate 
the scattered electric fields while the shape and 
location of the scatterer are given. The shape 
function ( )F   of the scatterer is described by the 
trigonometric series in the direct scattering 
problem  

/ 2 / 2

0 1

( ) cos( ) sin( )
N N

n n

n n

F B n C n  
 

               (1) 

where Bn and Cn are real coefficients to 
expand the shape function. 

In order to closely describe the shape of the 
cylinder for both the forward and inverse 
scattering procedure, the sub-grid technique is 
implemented in the FDTD code; the details are 
presented next. 

The FDTD method is a direct implementation 
of the time-dependent Maxwell equations, written 
in finite-difference form for implementation on a 
computer.   

                                                                      (2) 
 

 (3) 
 

The finite-difference procedure was first 
proposed by Yee [41], who positioned the E and H 
fields at half-step intervals around a unit cell.  
Moreover, the E and H fields are evaluated at 
alternate half time steps, effectively through the 
use of centered difference expressions for both the 
space and time derivatives. The above equations 
can be easily implemented on a computer as 
follows: 

 
                                                                       
 
 

           (4)  
 
                    
 
                                                                      (5) 
 
 
 
                                                                      (6) 
 
 
 
 
Note that for nonmagnetic materials D  is a 

constant.  
 In Fig. 3, E and H stand for the electric and 

magnetic fields on the major grids, respectively, 
while e  and h  denote the electric and magnetic 
fields on the local grids. If the scaling ratio is set at 
odd ratio, for example 1: 3 , the E and H fields 
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coincide with e and h fields in the fine region as 
shown in Fig. 3. Note that the e  and h  fields 
inside the fine region can be updated through the 
normal Yee-cell algorithm [41] except those at the 
main-grid-local-grid (MG-LG) boundary [43], 
such as 1h , 2h  and 3h  in Fig. 3.  

 
Fig. 3. Structure of the zTM  finite difference time 
domain method (FDTD) major grids and local 
grids for the scaling ratio (1:3), H fields are 
aligned with the main-grid-local-grid (MG-LG) 
boundary. 

The h  fields at the MG-LG interface can be 
linearly interpolated as follows : 

 1 1 2 1
2

3
n v n v n v n vh H H H       

2 2
n v n vh H        , for 

1 2
,

3 3
v   and 

3
3

.       (7) 

 
Note that the H  fields don’t exist on the main 

grids actually for 
1
3

v   and 
2
3

 and need extra 

parabolic interpolation calculation by  
2

2
n v n Bv

H H Av                                 (8) 

with  
1 1

2

n nH H
A

 
                                     

1 1 2n n nB H H H                                   
The corresponding flow chart for updating the 

EM fields in the fine region is shown in Fig. 4. 

Note that at the time step 
3
6

n   the 
1
2

n
E


 fields 

on the main grids should be updated by the 

coincided 
3
6

n
e


 fields on the local grids. Similarly, 

at the time step 
6
6

n   the 1nH   fields are updated 

by the coincided 
6
6

n
h


 fields. 

 Fig. 4. The flowchart to update the (E,H) fields on 
the major grids and (e, h) fields on local grids. 

For the time domain scattering and inverse 
scattering problems, the scatterer is assigned with 
the fine region such that the fine structure of the 
scatterer can be easily described. If higher 
resolution is needed, only the fine region needs to 
be rescaled using a higher ratio for sub-grid. This 
can avoid discretizing the whole problem space 
using the finest resolution such that the 
computational resources are utilized in a more 
efficient way, which is quite important for the 
computationally intensive inverse scattering 
problems. More details on the FDTD Sub-grid 
scheme can be found in [39].  

 
III. INVERSE PROBLEM 

For the inverse scattering problem, the shape and 
location of the metallic cylinder are reconstructed 
by the given scattered electric fields measured at 
the receivers, conceptually. The inverse problem is 
resolved by an optimization approach, for which 
the global searching DDE and APSO schemes, 
etc., are employed to minimize the following cost 
function (CF): 

 vn v nvn vn HHHh   2323 3
1
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where exp
zE  and cal

zE  are the mimically 
experimental electric fields and the calculated 
electric fields, respectively. The Ni and M are 
the total number of the transmitters and 
receivers, respectively. Q  is the total time step 
number of the recorded electric fields. The 
details of the proposed DE, DDE, PSO and 
APSO are presented next. 
 

A. Differential Evolution (DE) and Dynamic 
Differential Evolution (DDE) 

DE and DDE algorithms start with an initial 
population of potential solutions that is composed 
by a group of randomly generated individuals 
which represent the center position and the 
geometrical radii of the cylinders. The initial 
population may be expressed by 
 x : 1,  2, ,

j
j Np  , where Np is the population 

size. Each individual in DE or DDE algorithms is 
a D-dimensional vector consisting of D parameters 
to be optimized. After initialization, DE and DDE 
algorithms perform the genetic evolution until the 
termination criterion is met. DE and DDE 
algorithms, like other evolutionary algorithms 
(EAs), also rely on the genetic operations 
(mutation, crossover and selection) to evolve 
generation by generation. The flowchart of the 
DDE algorithm is shown in Fig. 5. DE and DDE 
algorithms go through six procedures as follows: 

 

1. Initialize a starting population: DE and 
DDE algorithms are initialized with a 
population that is composed by a group of 
randomly generated individuals. As 
mentioned above, individuals in DE and 
DDE algorithm represent a set of D-
dimensional vectors in the parameter space 
for the problem,  x : 1,  2, ,

j
j Np  , 

where D is the number of parameters to be 
optimized and Np is the population size. 

2. Evaluate the population using cost 
function: After initialization, DE and DDE 

algorithms evaluate the cost function (9) 
for each individual in the population.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. Flowchart for the dynamic differential 
evolution. Pessimistic sub-area stands for dynamic 
update. 
 

3. Perform mutation operation to generate 
trial vectors: The mutation operation of 
DDE algorithm is performed by 
arithmetical combination of individuals. A 
disturbing vector 1Vk

j
  is generated 

according to following equation: 
 

k 1 k k k k k
i i i i i ij j best j(v ) (x ) [(x ) (x ) ] [(x ) (x ) ]m nF        

 , 0 ~ 1
p

j N  , , [0, 1]
p

m n N  ,             (10) 
m n ; 1 ~i D  

where   and F  are the scaling factors 
associated with the vector differences 

k k
best j(x x )  and k k(x x )m n , respectively. 

The disturbing vector 1vk
j
  due to the 

mutation mechanism consists of parameter 
vector k

jx , the best trial vector k
bestx  and 

two randomly selected vectors kxm  and 

1v k
j


Xk
j

1X Xk k
j j
 

1
1 (v ) , CR

u
(x ) , CR

k
j ik

j k
j i





    

1vk
j


1(u ) (u )k k
j jCF CF 

1 1X uk k
j j
 

( ) ( )k
j bestCF X CF X
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kxn . As comparison, the disturbing vector 
1vk

j
  is generated according to equation 

(11) for typical DE [12]. 
k 1 k k k

i i i ij j(v ) (x ) [(x ) (x ) ]m nF      , 

0 ~ 1pj N  , , [0, 1]
p

m n N  ,        (11) 
m n ; 1 ~i D  

where F  are the scaling factors associated 
with the randomly selected vector 
difference k k

m n(x x ) . One of the main 
differences between DDE and DE is that 
DDE includes the idea of approaching the 
“Best” during the course of optimization 
procedure. 

4. Perform crossover operation with 
probability of crossover CR to deliver 
crossover vectors: The crossover operation 
in DE and DDE algorithms is performed to 
increase the diversity of the parameter 
vectors. This operation is similar to the 
crossover process in GAs. However, the 
crossover operation in DE and DDE 
algorithms just allows delivering the 

crossover vector 
1u k

j


 by mixing the 

components of the current vector x k
j  and 

the disturbing vector 1Vk
j
 . It can be 

expressed as:                  
1

1 (v ) , CR
(u )

(x ) , CR

k
j ik

j i k
j i






 








, 

0 ~ 1
p

j N  , 1 ~i D                             (12) 
where CR is the probability of crossover, 
CR (0,1) .   is the random number 
generated uniformly between 0 and 1.  

5. Perform selection operation to produce 
offspring: Selection operation is conducted 

by comparing the parent vector 
k

jx  with 

the crossover vectors k+1

ju . The vector with 
smaller cost function value is selected as a 
member of the next generation. Explicitly, 
the selection operation for the 
minimization problem is given by: 

       
1 1

1 u , if  CF(u ) CF(x )
x     

x  , otherwise                   

k k k
jk j j

j k
j

 
 





  

, 0 ~ 1pj N                                        (13) 
Another major difference between DDE 
and DE is that DDE algorithm is carried 
out in a dynamic way: each parent 
individual would be replaced by its 
offspring if the offspring has yielded a 
better cost function value than its parent. 
While in a typical DE, all the updating 
actions of the population are performed at 
the end of the generation, for which it is 
referred to as static updating mechanism. 

6. Stop the process and obtain the best 
individual if the termination criterion is 
satisfied, otherwise go to step 2. 

Having realized the ideas of approaching the 
“Best” and dynamic updating, DDE thus exhibits 
better searching capability than DE does regarding 
the convergence speed. Hence, DDE is able to 
reduce the numbers of cost function evaluation 
and reconstruct the microwave image efficiently.  

 

B. The modified asynchronous Particle swarm 
optimization (APSO) 

Particle swarm global optimization is a class 
of derivative-free, population-based and self-
adaptive search optimization technique which was 
introduced by Kennedy and Eberhart [13]. 
Particles (potential solutions) are distributed 
throughout the searching space and their positions 
and velocities are modified based on social 
behavior. The social behaviors in PSO exhibit a 
population of particles moving toward the most 
promising region of the search space. Clerc [44] 
proposed the constriction factor to adjust the 
velocity of the particle for obtaining the better 
convergence; the algorithm was named as 
constriction factor method (CFM). PSO starts with 
an initial population of potential solutions that is 
randomly generated and composed of Np 
individuals (also called particles), of which each 
represents the location and the geometrical radii of 
the cylinder in this study.  

After the initialization step, each particle of 
population is associated with a randomized 
velocity and position. Thus, each particle has a 
position and velocity vector, and can move 
through the problem space. In each generation, 
every particle changes its velocity according to its 
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best position up to date with the latest evolution, 

called pbestx  and the best particle in the swarm, 

called gbestx .  
Assume there are Np particles in the swarm 

that is in a search space of D dimensions, the 
position and velocity of the j-th particle is 
determined according to the following equations 
according to the constriction factor method: 

 
 
1 1 , 1

2 2 , 

( ) ( ) ( )
( )

( ) ( )

k k

j i pbest j i j ik

j i k

gbest j i j i

v c x x
v

c x x







   

 
   

 
 
 

                             

, 0 ~ 1pj N  , 1 ~i D                (14) 

1 1k k k

j j j
x x v   , 0 ~ 1

p
j N  ,  

1 ~i D                            (15) 

where 
2

2

2 4


  


  
, 1 2 4c c    . 

1c  and 2c  are the learning coefficients used to 
control the impact of the local and global 
component in velocity equation (14).   is the 

constriction factor. 1  and 2  are both random 

numbers between 0 and 1. ( )k
j iv  and ( )k

j ix  are 
the velocity and position of i-th dimension of the j-
th particle at the k-th generation. It should be 
mentioned that the Vmax method is also applied to 
control the particle’s searching velocity and to 
confine the particle within the search space [45]. 
The value of Vmax is set to be half of Xmax, where 
Xmax is the upper limit of the search space. Note 
that the Vmax and Xmax are maximum velocity and 
maximum distance, respectively. As an extreme 
case, if the maximum velocity Vmax is set to Xmax, 
the exploration in the inverse scattering problem 
space is not limited. Occasionally, the particles 
may move out of the search space, which could be 
remedied by applying the boundary condition to 
draw the foul particles back to the normal space.  

  The key distinction between PSO and APSO 
is on the updating mechanism, damping boundary 
condition and mutation scheme. In a typical 
synchronous PSO, the algorithm updates the 
velocities and positions of all particles using 
equations (14) and (15) till the end of each 

generation. And then update the best 

positions pbestx and gbestx . Alternatively, the 
updating mechanism of the asynchronous PSO use 
the following rule: after the position movement of 
each particle the new best positions 

pbestx and gbestx will be updated and then used 
for next particle immediately if the cost function 
value for the new position is better than the best 
record up to date. In this way, the swarm reacts 
more quickly to speed up the convergence.  

The “damping boundary condition” is 
proposed by Huang and Mohan [46] to ensure the 
particles move within the legal search space. In 
many practical optimization problems, the rough 
location of the global optimum is usually difficult 
to know in advance. It is therefore required to have 
a boundary condition that can offer a robust and 
consistent performance for the PSO technique 
regardless of the problem. When a particle tends to 
move outside the search space, the position of 
particle is re-located about the search boundary 
and its velocity is multiplied by a random number 
(between 0 and 1) and arranged in the reverse 
direction . 

Mutation scheme is introduced in PSO and 
APSO algorithms to speed up the convergence 
when particles are all around the global optimum. 
The mutation scheme can also avoid premature 
convergences in the searching procedure and help 

gbestx  escape from local optimal positions, thus 
the robustness of the PSO and APSO algorithms is 
assured.  

The flowchart of the modified asynchronous 
PSO (APSO) is shown in Fig. 6. APSO goes 
through seven procedures as follows: 

1. Initialize a starting population: 
randomly generate a swarm of particles. 

2. Calculate the E fields by a home-made 
FDTD code. 

3. Evaluate the population using cost 
function: the APSO algorithm evaluates 
the cost function (9) for each individual 
in the population.  

4. Find pbestx  and gbestx . 
5. Mutation scheme: the PSO algorithm 

has been shown to converge rapidly 
during the initial stages of a global 
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search, but when around the global 
optimum, the search can become very 
slow. For the reason, mutation scheme 
is introduced into APSO. As shown in 
Fig. 6, there is an additional 

competition between the gbestx  and 

mugbestx . The current gbestx  will be 

replaced by the gbest mux  if the 

gbest mux  is better than the current 

gbestx . The gbest mux  is generated by 
following way: 

 

 

 

3 3 3 4 max min

max

3 3 3 4 max min

max

X X 05

X X 05
mu

gbest mu

gbest

gbest mu

k
x c (c c ) , if .

k
x

k
x c (c c ) , if .

k

 

 

       



       

 
   


 
   

(16) 

where 3c  and 4c  are the scaling 

parameter. 3  and mu are both the 

random numbers between 0 and 1. k  is 
the current iteration number. maxk  is 

the maximum iteration number. maxX  

and minX  are the upper limit and lower 
limit of the search space, respectively. 

6. Update the velocity and position. 
7. Stop the process and obtain the best 

individual if the termination criterion is 
satisfied, otherwise, go to step 2. 

It should be noted that since both APSO and 
DDE realize the ideas of approaching the “Best” 
and dynamic updating, they exhibit similar 
searching capability and convergence property.  

 
B. Cubic spline interpolation technique 

It should be noted that in the inverse problem, 
the shape function of the 2-D perfectly conducting 
cylinder is described by a cubic spline in this study 
instead of the trigonometric series (1) shown in the 
section of the forward problem. The cubic spline is 
more efficient in terms of the unknown number 
required to describe a cylinder of arbitrary cross 

section. In addition, by using the cubic spline the 
coordinates of local origin inside the cylinder 
serve as the searching parameters and can move 
around the searching space, which is very hard to 
achieve, if not impossible, when the trigonometric 
series expansion is used in the inversion 
procedure.  Thus by using the cubic spline 
expansion, the justification for the objective of the 
inverse scattering is maintained. 
 

)k
idF (x

)) gbestmugbest xCFxCF  (( 

pbestx

gbestx

mugbestxgbestx
gbestx gbestx

gbestx

)k
idF (x

)) gbestmugbest xCFxCF  (( 

pbestx

gbestx

gbestx gbestx

gbestx

 
Fig. 6. Flowchart for the modified APSO. 

 
As shown in Fig. 2, the cubic spline consists 

of the polynomials of degree 3 ( )iP   , 
1, 2, ,i N  , which satisfy the following smooth 

conditions: 
ii1iii ρ)(θP)(θP    

)()( 1 iiii PP    

                       Ni ,,2,1                      
(17) 

                       )(θP)(θP i1iii   
and  
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)()( 01 NNPP    

                       NNN0 ρ)(θP)(θP 1           
                   )()( 01 NNPP                   (18) 

Through the interpolation of the cubic spline, 
an arbitrary smooth cylinder can be easily 
described through the radius parameters 

1 2, , , N    and the slope N , of which the 
details are referred to [40]. By combining the PSO, 
APSO, DE or DDE algorithm with the cubic 
spline interpolation technique, together with the 
FDTD sub-grid method, we are able to reconstruct 
the microwave image efficiently. 

It should be noted that the coordinates of local 
origin inside the cylinder plus the radii of the 
geometrical spline used to describe the shape of 
the cylinder will be determined by the PSO, 
APSO, DE and DDE algorithms. 

 
IV. NUMERICAL RESULTS 

As shown in Fig. 1, the problem space is 
divided in 68 68  grids with the grid size 

x y   =5.95 mm. The metallic cylinder is 
buried in a lossless slab medium 
( 1 2 3 0     ). The transmitters and 
receivers are placed in free space above the 
homogeneous dielectric. The permittivities in 
regions 1, 2 and 3 are characterized by 1 0   

, 2 08   and 3 0  , respectively, while the 
permeability 0  is used for each region; i.e., only 
non-magnetic media are concerned here.  

The scatterer is illuminated by cylindrical 
waves with the electric field polarized along the z 
axis, while the time dependence of the field is a  
derivative Gaussian pulse. The waveform is 
plotted in Fig. 7. The cylindrical object is 
illuminated by a transmitter at two different 
positions (Ni=2), which are located at (-143mm, 
178.5mm) and (143mm, 178.5mm), respectively. 
The scattered E fields for each illumination are 
collected at the five receivers (M=5), which are 
equally separated by 47.8mm along the line at 
distance 48mm from the interface between region 
1 and region 2.  

The time duration is set to 300 t ( 300q  ). 
In order to describe the shape of the cylinder more 

accurately, the sub-grid FDTD technique is 
employed both in the forward scattering (1:9) and 
the inverse scattering (1:5) - but with different 
scaling ratios as indicated in the parentheses. The 
proposed inversion procedures are implemented 
through some home-made Fortran programs that 
runs on an Intel PC (3.4 GHz/ 2G memory /500 
G). The typical CPU time needed for DDE and 
APSO examples are about 11 and 9.5 hours, 
respectively, in this study. 

 

 
 
Fig. 7. Signal represented in time domain. 

 
Three examples are investigated for the 

inverse scattering of the proposed structure by 
using the DDE and APSO, etc. There are eleven 
unknown parameters to retrieve, which include the 
center position

O O
(X ,Y ) , the radius 

, 1, 2, , 8
i

i    of the shape function and the 

slope N . Relatively wide searching ranges are 
used for DDE and APSO, etc, to optimize the cost 
function given by (9). The parameters and the 
corresponding searching ranges are listed as 
follows: -47.6mm X 47.6mm

O
  , 

-47.6mm Y 47.6mm
O

  , 5.95mm 71.4mm
i

  , 

1, 2, ,8i   , 1 1N   . The operational 
coefficients for the DDE algorithm are set as 
below: The crossover rate CR=0.8. The weighting 
factor F  =0.8 and the population size Np=110.  
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The relative coefficients of the modified APSO are 
set below. The learning coefficients 1c  and 2c  are 
set to 2.8 and 1.3, respectively. The scaling 

parameter, 3c  and 4c , are set to 0.1 and 0.05, 
respectively. The mutation probability is 0.4 and 
the population size is set to 30. Here, the shape 
error DF is defined as 

'
2 2 1 / 2

1

1
{ [ ( ) ( )] / ( )}

'

N
cal

i i i
i

DF F F F
N

  


    (19) 

where the 'N  is set to 720. 
As mentioned above, application of sub-grid 

technique can result in large savings of computer 
time and memory for the FDTD method. Thus, in 
this study, sub-grid FDTD technique is 
implemented to efficiently describe the details of 
the dielectric cylinders shape. For the first 
example, the perfectly conducting cylinder with 
shape function ( ) 29.75F   (unit: mm) is 
tested. In Figs. 8 and 9, the standard FDTD with 
uniform grid of (1:1) case is compared with the 
sub-grid FDTD cases of different scaling ratios 
(1:3), (1:5) and (1:7) for the inverse scattering by 
DDE and APSO algorithms, respectively. The 
reconstructed details are listed in Table I for DDE 
and APSO algorithms, respectively. Obviously, 
the results obtained by using the standard FDTD 
with uniform grid (1:1) are not as good as those of 
the sub-grid FDTD cases. Moreover, the values of 
DF for DDE and APSO algorithms are very close. 
 
Table 1: The errors of the reconstructed shape 
function for example 1 by using different 
subgridding ratios. 
 

subgridding ratio DF via DDE DFvia APSO 

1:1 9.38% 8.92% 

1:3 1.85% 4.50% 

1:5 1.35% 1.68% 
1:7 1.02% 1.52% 
 

It also suggests that the scaling ratio (1:5) is 
suitable for the following examples to be studied. 
On the other hand, in order to achieve the same 
accuracy for the standard FDTD with uniform 
grid, the grid size of the whole space has to be 
reduced to smoothly describe the geometry of the 
perfectly conducting cylinder, however, the 

computation time would be increased quite a lot, 
3.85 times as compared to the subgrid FDTD 
scheme of (1:5) case. Moreover, the convergence 
curves of the cost function versus generation as the 
proposed DDE and APSO algorithms being 
executed five times out of ten by using different 
random seeds are shown in Figs. 10 and 11, 
respectively to demonstrate the stability of the 
algorithms. 
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Fig. 8. The reconstructed shapes of the cylinder for 
example 1 by using different scaling ratios for the 
sub-grid via DDE. The shape function of this 
object is given by ( ) 29.75F   mm. 
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Fig. 9. The reconstructed shapes of the cylinder for 
example 1 by using different scaling ratios for the 
sub-grid via APSO.The shape function of this 
object is given by ( ) 29.75F   mm. 
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For the second example, a non-symmetric 
perfectly conducting cylinder with shape function 

( ) 29.75 11.9cos(2 ) 5.95sin( ) 5.95sin(2 )F       
 (unit:mm) is considered. Figure 12 shows the 
reconstructed images by of the use of DDE, 
APSO, DE and PSO algorithms for comparison. 
The values of DF for DDE, APSO, DE and PSO 
are about 5.8%, 11.4%, 17.9% and 25.3% in the 
final generation, respectively. The cost function 
value versus the number of function call is shown 
in Fig. 13. PSO is severely affected by premature 
convergence and stagnation problem. The key 
differences between PSO and APSO are about the 
convergence speed, the computation time and the 
accuracy, since APSO includes damping boundary 
condition scheme and mutation scheme. The 
performance of DDE is the best in this example. 
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Fig. 10. The convergence curves of the cost 

function versus generation as the proposed DDE 
algorithm being executed five times out of ten by 
using different tables of random number.  

 

In order to investigate the sensitivity of the 
imaging algorithm against random noise, the 
mimical experimental scattered fields are then 
contaminated by white Gaussian noise of zero 
mean. The relative noise level (RNL) is defined 
as:  

2exp

1 1 0
( , , )

( )( )( 1)

i i

g

N M K

z
n m k

i i

RNL

E n m k t

N M K



  



   



 (20)  

The relative noise levels of 10-4, 10-3, 10-2, 0.1 
and 0.5 are tested. Figure 14 shows the values of 
DF of the final reconstructed results vs. RNL. It is 
observed that good reconstruction can be achieved 
regarding the shape of the metallic cylinder when 
the relative noise level is below 10-2.  
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Fig. 11. The convergence curves of the cost 
function versus generation as the proposed APSO 
being executed five times out of ten by using 
different tables of random number. 
 

For the third example, the shape function of 
this object is given by 

( ) 29.75 5.95 cos(3 )F     (unit:mm) is 
considered. Figure 15 shows that the reconstructed 
images by of the use of DDE, APSO, DE and PSO 
algorithms for comparison. The values of DF for 
DDE, APSO, DE and PSO are about 5.3%, 9.6%, 
14.3% and 19.6% in the final generation, 
respectively. Figure 16 shows that the cost 
function versus the number of function call. It is 
clear that the DDE and APSO outperform PSO. 
The latter PSO is severely affected by premature 
convergence and/or stagnation problem, while the 
former DDE and APSO are more robust to avoid 
local optimal due to the inclusion of dynamic 
update and/or the “Best” concept for optimization 
as mentioned previously [32]-[34].  
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Fig. 12. The reconstructed cross section of the 
cylinder of example 2 by DDE, APSO, DE and 
PSO. The shape function of this object is given 
by ( ) 29.75 11.9cos(2 ) 5.95sin( ) 5.95sin(2 )F       mm. 
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Fig. 13. The value of cost function versus the 
number of function call for example 2. The shape 
function of this object is given by 

( ) 29.75 11.9cos(2 ) 5.95sin( ) 5.95sin(2 )F        mm. 
 

Again, investigation on the sensitivity of the 
imaging algorithms against random noise is 
conducted for this example. Figure 17 shows the 
values of DF of the final reconstructed results vs. 
RNL. It could be observed that good 
reconstruction can be achieved regarding the shape 
of the metallic cylinder when the relative noise 
level is below 10-2.  It is worth to mention that the 

image reconstruction at the backside of the 
scatterer is relative hard due to the shadowing 
effect in example 3.  
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Fig. 14. Shape error as function of RNL by DDE, 
APSO, DE and PSO, respectively. The shape 
function of this object is given by 

( ) 29.75 11.9cos(2 ) 5.95sin( ) 5.95sin(2 )F        mm. 

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60

X-coordinate (mm)

Y-
co

or
di

na
te

 (m
m

)

 

 
Exact
DDE
APSO
DE
PSO

 
 

Fig. 15. The reconstructed cross section of the 
cylinder of example 3 by DDE, APSO, DE and 
PSO. The shape function of this object is given 
by ( ) 29.75 17.85 cos(3 )F    mm. 

 

Finally, the computational burden, which is 
related to the generation of new solution 
candidates from the previous ones, is roughly the 
same for DDE and APSO. For the shape 
reconstruction examples studied, the computation 
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time is dominated by the FDTD procedure of the 
direct-scattering problems. 
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Fig. 16. The value of cost function versus the 
number of function call for example 2. The shape 
function of this object is given by 

( ) 29.75 17.85 cos(3 ) mm.F   
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Fig. 17. Shape error as function of RNL by DDE, 
APSO, DE and PSO, respectively. The shape 
function of this object is given 
by ( ) 29.75 17.85 cos(3 )F    mm. 

 

V. CONCLUSION 
The problem of shape reconstruction of 

perfectly conducting cylinder is investigated by 
applying DDE, APSO DE and PSO techniques, for 
which the inverse problem is reformulated into an 
optimization one. Since both DDE and APSO 

realize the ideas of approaching the “Best” and 
dynamic updating, they exhibit similar searching 
capability and convergence property and 
outperform DE and PSO. Numerical results show 
that DDE and APSO are reliable for the time 
domain inverse problem of 2D metallic cylinder 
even when the initial guess is far from the exact 
one. Moreover, DDE and APSO can result in 
accurate reconstruction even when the effects of 
noise are included under the condition of noise 
level less than 10-2. It should be mentioned that 
this comparative study is indicative and its 
conclusion should not be considered generally 
applicable in all inverse scattering problems.  
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