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The Artificial Neural Network (ANN) and the nonlinear regression method are commonly used to build
models from experimental data. However, the ANN has been criticized for incapable of providing clear
relationships and physical meanings, and is usually regarded as a black box. The nonlinear regression
method needs predefined and correct formula structures to process parameter search in terms of the
minimal sum of square errors. Unfortunately, the formula structures of these models are often unclear
and cannot be defined in advance. To overcome these challenges, this study proposes a novel approach,
called ‘‘LMGOT,’’ that integrates two optimization techniques: the Levenberg–Marquardt (LM) Method
and the genetic operation tree (GOT). The GOT borrows the concept from the genetic algorithm, a famous
algorithm for solving discrete optimization problems, to generate operation trees (OTs), which represent
the structures of the formulas. Meanwhile, the LM takes advantage of its merit for solving nonlinear con-
tinuous optimization problems, and determines the coefficients in the GOTs that best fit the experimental
data. This paper uses the LMGOT to investigate the data sets of pavement cracks from a 15-year exper-
iment conducted by the Texas Departments of Transportation. Results show a concise formula for pre-
dicting the length of pavement transverse cracking, and indicate that the LMGOT is an efficient
approach to building an accurate crack model.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Asphalt overlays have been widely used to prolong the service
life of pavement, and recover both structural and functional perfor-
mance of existing pavement. However, the amount of pavement
cracking increases as the service time increases, allowing water
to penetrate the pavement. This decreases the bond between the
overlay and underlying layer in the pavement, strips asphalt mix-
tures, and softens the base and sub-grade layers (Chen & Hong,
2010; Hong & Chen, 2009).

Typical pavement cracks include fatigue cracking, block crack-
ing, edge cracking, longitudinal cracking, and transverse cracking
(SHRP, 1993). This study focuses on the transverse crack, which
is the most common type of crack.

Four factors control the development of transverse cracking:
time served, surface preparation (mill/no mill), material used (vir-
gin/reclaimed asphalt pavement) and thickness of overlay (Hong &
Chen, 2009). Designers usually count the allowed length of trans-
verse cracks to determine the service life of pavement. Hence,
building the relationship between these four factors and the length
of transverse cracks is crucial.
ll rights reserved.
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Previous researchers built a model for pavement cracks using
the Artificial Neural Network (ANN) (Lou, Gunaratne, Lu, & Die-
trich, 2001). However, the ANN has been criticized for incapable
of providing clear relationships and physical meanings, and is usu-
ally regarded as a black box (Baykasoglu, Oztas, & Ozbay, 2009;
Chang, Hung, & Chen, 2006; Lou et al., 2001; Yeh & Lien, 2009).

Non-linear regression can also build crack models (Chen &
Hong, 2010; Hong & Chen, 2009). For example, Hong and Chen
(2009) used non-linear regression to find the coefficients of a pre-
conceived sigmoid function to match the SPS-5 experimental data.
In their formulas, the dependent variable Y is the total length of the
transverse crack, and the independent variables xi represent time
served, surface preparation, material used, and thickness of over-
lay. Eq. (1) shows their formula, which has 7 coefficients
(b1 � b7) and is quite complicated.

Y ¼ b1

1þ e½b2þðb3þb4�MLþexpðb5�RAPÞ�ðb6�THBþb7�THC ÞÞ�T� ð1Þ

where

Y: transverse cracking length (ft or m);
ML: dummy variable for surface preparation, ML = 1 for mill,
and 0 for no mill;
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Fig. 1. An example operation tree.
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RAP: dummy variable for overlay material, RAP = 1 for reclaimed
asphalt pavement (RAP), and 0 for virgin;
THB: variable for Type B overlay thickness (inch or mm);
THC: variable for Type C overlay thickness (inch or mm);
T: time served after overlay construction (year);
b1 � b7: non-linear regression parameters to be estimated.

Because the architecture of this formula must be presumed in
advance, only the coefficients are searched based on the least mean
square error. However, two questions remain to be answered: (1)
Is the presumed formula structure correct? (2) What can we do if
the structure of the formula is totally unknown?

In summary, the ANN is only a black box, and non-linear regres-
sion requires a correct preconceived formula structure. To build a
model without knowing a clear formula structure, some research-
ers have used the genetic operation tree (GOT) to generate the
model structure, and iteratively find the formula that best fits
the experimental data (Koza, 1992; Sette & Boullart, 2001; Yeh &
Lien, 2009).

The GOT is widely used in the fields of engineering, medicine,
finance, and image recognition (Azamathulla, Ghani, Zakaria, & Gu-
ven, 2009; Baykasoglu et al., 2009; Chang, Chen, Chen, & Liu, 2008;
Chen, 2003; Etemadi, Rostamy, & Dehkordi, 2009; Fonlupt, 2001;
Potvina, Sorianoa, & Vallee, 2004; Worzel, Yu, Almal, & Chinnaiyan,
2009). For example, Baykasoglu et al. (2009) applied the GOT to
high performance concrete, and determined the relationship be-
tween the concrete compressive strength and the amount of ce-
ment, fly ash, blast furnace, slag, water, super-plasticizer, coarse
aggregate, and fine aggregate.

Based on the genetic algorithm (GA) approach, the GOT gener-
ates operation trees (OT) that represent the structures of the for-
mulas. In each generation, elite genes with less error are more
likely to reproduce the genes of the next generation. The tradi-
tional GOT evolution procedures also generate the coefficients
(continuous values) based on the concept of GA. Unfortunately,
the GOT usually has difficulty reaching convergence. This is pri-
marily because the GA is good at organizing the structure of the
formula, but is inept at searching the coefficients of continuous
values. The traditional GOT process discards many good OT struc-
tures simply because their coefficients are not properly decided,
which greatly increases inefficiency.

This study proposes an innovative approach, called ‘‘LMGOT,’’
that integrates the Levenberg–Marquardt optimization technique
with the GOT. The GA organizes structures of formulas represented
as OTs, while the Levenberg–Marquardt Method determines the
coefficients of the OTs. Results show that the LMGOT can efficiently
build an accurate crack model. This study uses the LMGOT to inves-
tigate the data sets of pavement cracks from a 15-year experiment
conducted by the Texas Departments of Transportation (TXDOT).
The proposed approach produces a very concise formula for pre-
dicting the length of pavement transverse cracking.
2. Levenberg–Marquardt genetic operation tree

The LMGOT includes three parts: operation tree (OT), genetic
algorithm (GA), and Levenberg–Marquardt optimization (LM).
2.1. Operation trees

The OT is a binary tree describing the architecture of an explicit
formula. Each node on the OT has either zero or two children. A
node with no children is a leaf, and must be a variable or a con-
stant; if a node has two children, it is a mathematical operation
(+,�,�,�,power, log(natural logarithm), etc.). For example, Fig. 1
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shows an OT that represents the following formula (Sette & Boull-
art, 2001; Yeh & Lien, 2009): x1 � ðx2 � 2:1Þ þ x3 � x1:5

4

� �� �
.

Given a set of values for the variables on the OT, the operation
tree (formula) can deduce a function value. With a set of data on
pavement crack length, producing an OT whose formula best fits
the data is an optimization problem. Determining the structures
of OT is a discrete problem, while determining the coefficients of
OT is a continuous problem. These are discrete and continuous hy-
brid optimization problems, and are therefore very difficult to
solve. The GA (Davis, 1991; Goldberg, 1989) is a new optimization
paradigm that mimics the natural evolution mechanism. The
framework of the GA naturally corresponds to discrete optimiza-
tion problems. On the other hand, Levenberg–Marquardt Method
(LM) is good at solving continuous optimization problems. There-
fore, this study integrates both methods to produce the OT (for-
mula) that best fits the pavement crack length data.

2.2. Genetic algorithms

The GA generally uses five components to solve a problem (Da-
vis, 1991; Goldberg, 1989):

(1) A genetic representation of solutions to the problem.
(2) A way to create an initial population of solutions.
(3) An evaluation function that provides their ‘‘fitness values’’.
(4) Genetic operations that effect the composition of children

during reproduction.
(5) Parameters that the GA uses (e.g., population size, crossover

rate, mutation rate).

Two basic concepts of GA are described as follows (Davis, 1991;
Goldberg, 1989):

2.2.1. Reproduction
During each generation, the fitness of each solution is evaluated,

and elite solutions are selected for reproduction based on their fit-
ness. Selection embodies the principle of ‘‘survival of the fittest.’’
Good solutions are more likely to reproduce, while bad solutions
are not: the probability of selection is directly proportional to fit-
ness. The selected solutions then undergo recombination under
the action of the crossover and mutation operators (Davis, 1991;
Goldberg, 1989). To improve the performance of the algorithm,
the best solution of the current generation passes directly to the
next generation. This strategy is also called an elitist strategy.

2.2.2. Recombination (crossover and mutation)
The crossover process combines the features of two parent

structures to form two or more similar offspring. It operates by
verlay transverse cracks using the genetic operation tree and Levenberg–
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swapping segments of a string corresponding to the elite parent
solutions. On the other hand, the mutation process randomly alters
one or more components of a selected structure; this increases the
variability of the population. Each part of each solution vector in
the population undergoes a random change with a probability
equal to the mutation rate.

Each execution cycle of the GA is usually called a generation.
This cycle consists of three steps (Davis, 1991; Goldberg, 1989):

(1) Reproduction: From the existing population of structures,
build a new mating pool of elite parents by selecting struc-
tures using the fitness evaluation function.

(2) Recombination: Apply crossover and mutation to pairs ran-
domly selected from the mating pool to create offspring
structures for the next population.

(3) Replacement: Replace the existing population with the new
population.

However, the OT coefficients of the traditional GOT are very dif-
ficult to determine using the genetic operators of crossover and
mutation. This is because the GA is an algorithm for solving dis-
crete optimization problems, and is therefore relatively inefficient
at optimizing continuous parameters. To overcome this drawback,
the proposed approach integrates the classical Levenberg–Marqu-
ardt Method into the traditional GOT.

2.3. Levenberg–Marquardt optimization

This study proposes the Levenberg–Marquardt optimization
technique to identify the coefficients of an OT, as the following
example describes:

Suppose the GOT generates Eq. (2), E(T,TH,RAP,p1,p2,p3,p4),
which contains 4 coefficients: (p1,p2,p3,p4). Given m experimental
data: {(y1,T1,TH1,RAP1), (y2,T2,TH2,RAP2), . . . ; (ym,Tm,THm,RAPm)},
try to find which of p1, p2, p3, p4 makes the E(T,TH,RAP,p1,p2,p3,p4)
best fit the dataset. The fi(p1,p2,p3,p4) in Eq. (3) represents the
errors between the function and the experimental data. The F in
Eq. (4) represents the summation of square errors. Trying to mini-
mize the objective function F by searching the independent vari-
ables (p1, p2, p3, and p4) is an optimization problem.

EðT; TH;RAP;p1;p2;p3;p4Þ ¼ p1 � log
ðT � p2Þ

THðp3�RAPÞ�p4

� �
ð2Þ

fiðp1;p2;p3;p4Þ ¼ yi�EðTi;THi;RAPi;p1;p2;p3;p4Þ; i2 f1;2;3; . . . ;mg
ð3Þ

Fðp1; p2; p3; p4Þ ¼
Xm

i¼0

ðfiðp1; p2;p3;p4ÞÞ
2 ð4Þ

This study uses an iteration approach to identify the optimal
solution P� ¼ p�1; p

�
2; p

�
3; p

�
4

� �� �
starting from P0 = [0,0,0,0] until a

termination criterion is met (Madsen, Nielsen, & Tingleff, 2004).

FðPKþ1Þ ¼ FðPK þ hÞ ¼ FðPKÞ þ hT � F 0ðPKÞ þ Okhk2 ð5Þ
h ¼ PKþ1 � PK ð6Þ

Note that h is a vector representing the length of step to the
next iteration. Eq. (5) is the Taylor expansion of F, and Okhk2 is
the tail of the Taylor expansion, which is negligible here. The calcu-
lation of h could involve numerical approaches, such as: (1) Steep-
est Descent method, (2) Newton method, (3) Gauss–Newton
method, and (4) Levenberg–Marquardt Method.

The Steepest Descent method appears in Eq. (7). The major
drawback of this method is that the results often fluctuate near
the optimal solution (Madsen et al., 2004).
Please cite this article in press as: Hsie, M., et al. Modeling asphalt pavement o
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h ¼ �F 0ðPKÞ: ð7Þ

Eqs. (8) and (9) show the Newton method, which takes the
derivative of Eq. (5), and omits its higher order tail. If (Pk + h) = P⁄,
then F0(PK + h) = 0.

0 ¼ F 0ðPKÞ þ hT � F 00ðPKÞ ð8Þ

h ¼ �F 0ðPKÞ
F 00ðPKÞ

ð9Þ

The Gauss–Newton method improves the efficiency of the
Newton method by Eq. (10). However, the drawback of this meth-
od is slower convergence when it is far from the optimal solution.

h ¼ �f 0ðPKÞT � f ðPKÞ
f 0ðPKÞT � f 0ðPKÞ

ð10Þ

To avoid the drawbacks of the Steepest Descent method and the
Gauss–Newton method, this study uses an improved method
called the Levenberg–Marquardt Method. The Levenberg–Marqu-
ardt Method works more like the Steepest Descent method when
the parameters are far from their optimal values, yet works more
like the Gauss–Newton method when the parameters are near
their optimal values. This study applies damping parameters a
damping parameters l, shown in Eq. (11), where ‘‘I’’ is a unit ma-
trix. When l > 0, the coefficient matrix will be positive definite,
ensuring the h always points to a decreasing direction. When l
is relatively large, Eq. (12) is close to Eq. (7). Yet, when l is small,
Eq. (12) is close to Eq. (10) (Bazaraa, Sherali, & Shetty, 2006; Mad-
sen et al., 2004).

h ¼ �f 0ðPKÞT � f ðPKÞ
f 0ðPKÞT � f 0ðPKÞ þ lI

ð11Þ

h ffi � 1
l

� 	
� F 0ðPKÞ ð12Þ

Proper adjustments of l will make h converge to the objective
function faster. Let S = F(Pk+1) � F(Pk). When S P 0, l increases in
ten-fold; when S < 0, l decreases in ten-fold. In this study, l has
an initial value of 0.001.

3. Procedures of Levenberg–Marquardt genetic operation tree

Fig. 2 shows the procedures of the Levenberg–Marquardt genet-
ic operation tree (LMGOT). The LMGOT is an innovative approach
that integrates OT, GA, and Levenberg–Marquardt optimization.
The major breakthrough of this approach is that the searching of
coefficients no longer uses GA, but instead uses Levenberg–Marqu-
ardt optimization, which makes the LMGOT very efficient.

This procedure includes the following steps:

(1) Setup the parameters, such as population size, crossover and
mutation rate, and operation tree depth.

(2) Initialization: Randomly generate the initial population of
OTs.

(3) Optimization: Apply the Levenberg–Marquardt Method to
optimize the coefficients of each OT in the generation.

(4) Evaluation: Evaluate the fitness of each OT. The better the
predicted values of OT fit the actual values in the training
dataset, the higher the fitness.

(5) Reproduction: Reproduce OTs based on their fitness.
(6) Recombination: Apply genetic operations (crossover and

mutation) to generate the next generation of OTs.
(7) Replacement: Replace the existing population with the new

population.
(8) Repeat Steps 3–7 until a stop criterion is met.
(9) Output the optimum OT with the highest fitness.
verlay transverse cracks using the genetic operation tree and Levenberg–
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Fig. 2. The LMGOT framework.

Fig. 3. Existing pavement structure before and after rehabilitation (Hong & Chen,
2009).
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4. Model and data analysis

This study develops a model of transverse cracks for overlay
pavements using the proposed LMGOT. Data was collected from
a long term experiment conducted by the Texas DOT. The following
section describes this procedure:

4.1. Data collecting

In an effort to determine the performance of pavement after
long-term service (the Long-Term Pavement Performance; LTPP),
the United States of America (USA) began the Strategic Highway
Research Program (SHRP) in 1987 to conduct ongoing experiments.
The LTPP program conducts two types of pavement performance
experiments: the General Pavement Study (GPS), and the Specific
Pavement Study (SPS). The GPS includes 9 experimental categories
(GPS-1 to GPS-9) to develop a comprehensive national database of
pavement performance. The SPS includes 9 experimental catego-
ries (SPS-1 to SPS-9), but focuses on specially constructed, main-
tained, or rehabilitated pavement sections. This study focuses on
data of the SPS-5, entitled ‘‘Rehabilitation of AC Pavements’’ (Hong
& Chen, 2009).

This study uses crack data from asphalt overlay pavement
experiments conducted by the USA Texas DOT SPS-5 A502-509
on experimental road sections. Eighty-eight sets of data were re-
corded, and one dataset was discarded as an outlier, leaving 87
datasets in the final sample. The data was shuffled using a random
sampling, and divided into 70 training sets and 17 testing sets.
Both groups were used to evaluate the fitness of each individual
(OT) in the population. Specifically, the fitness of training data
was used in the reproduction process, while the fitness of testing
data was used to evaluate the generalization of LMGOT.

The Texas SPS-5 experiment was conducted on US highway 175
to determine the length of cracks in Asphalt Concrete (AC) overlay
pavement. This experiment began in 1992 on 8 road sections. Each
Please cite this article in press as: Hsie, M., et al. Modeling asphalt pavement o
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section consisted of AC overlay pavement measuring 500 feet
(152.4 m) long and 12 feet (4 m) wide, with a 100-foot (30.3 m)
transitional area. Fig. 3 shows the existing pavement structure (be-
fore overlay) and the new structure after overlay. The experiment
examined three major factors, mill, material, and thickness (Hong
& Chen, 2009), which are described as follows.
4.1.1. Surface preparation (Mill)
Some researchers believe that overlay performance is related to

the surface preparation of the overlay. For example, removing
existing distress likely contributes to better overlay performance.
In this study, surface preparation means milling the existing pave-
ment before placing the overlay. To compare the effect of milling
on overlay performance, the experimental design included both
milled and non-milled sections. On four of the eight sections,
2 inches (50.8 mm) of the existing surface AC was milled. Before
the overlay placement, the milled thickness was replaced by the
same material used in the overlay (a mill-and-fill operation).
Fig. 3 shows that for the milled sections, the design thickness did
not include the replaced asphalt mixture. For the non-milled sec-
tions, the overlay material was placed directly on the existing
pavement.
4.1.2. Overlay thickness
As Table 1 shows, the SHRP SPS-5 experimental plan involved

several overlay thicknesses, ranging between 2.2 inches and
7.1 inches, on eight road sections.
verlay transverse cracks using the genetic operation tree and Levenberg–
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Table 1
Experimental design factors at Texas SPS-5 sections.

Section ID Construction
preparation

Observation
time (years)

Overlay thickness
(inches)

AC material

A502 No mill (0) 15 2.2 35% RAP (1)
A503 No mill (0) 15 5.1 35% RAP (1)
A504 No mill (0) 15 5.2 Virgin (0)
A505 No mill (0) 15 2.0 Virgin (0)
A506 Mill (1) 15 4.3 Virgin (0)
A507 Mill (1) 15 7.0 Virgin (0)
A508 Mill (1) 15 7.1 35% RAP (1)
A509 Mill (1) 15 4.2 35% RAP (1)

Table 2
Genetic codes of mathematical operators.

Code 1 2 3 4 5 6
Operator + � � � xy ln

Table 3
Genetic codes of variable and particular coefficients.

Code 7 8 9 10 11
Variable T ML RAP TH p
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4.1.3. Overlay material (RAP)
Environmental concerns and the rising cost of asphaltic materi-

als have emphasized the necessity of exploring the use of re-
claimed asphalt pavement (RAP). Foreseeing this trend, the SHRP
incorporated RAP as one of the major experimental factors in the
SPS-5 study. In engineering practices involving RAP, new and used
asphalt concrete are mixed, in certain percentages, to produce a
‘‘combined’’ mixture for pavement construction. Four of the eight
sections included RAP. Based on current pavement construction
practice, this study adopts the maximum RAP content of 35% recy-
cled AC. The overlay AC material in the other four sections not con-
taining RAP is referred to as ‘‘virgin’’ material.

Table 1 shows the relevant data, designating the surface prepa-
ration ML as 0 or 1: ML = 0 (no mill) means directly overlaying the
AC on the original pavement, while ML = 1 (mill) means removing
the original pavement and then overlaying pavement. There are
two types of material: virgin AC or recycled AC (RAP): RAP = 0
means virgin AC, while RAP = 1 means reclaimed AC.
Fig. 4. A seven-laye
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4.2. Gene coding and operation tree rules

The OT nodes include mathematical operations, variables, and
constants. Mathematical operations include +, �, �, �, xy (power),
and log (natural logarithm), designated as codes 1–6 in Table 2.

This study examines the following variables and constant coef-
ficients: time (T), mill/non-mill (ML), RAP/virgin (RAP), thickness
(TH), and particular coefficients (p), which are coded as 7–11 and
listed in Table 3.

The OT in Fig. 4 consists of 7 layers, and contains up to 127
codes. The following rules are used:

(1) The gene N1 on the top layer is restricted to be mathematical
operations. Therefore, it can be integers 1 through 6 to rep-
resent the different mathematical operations shown in Table
2.

(2) The middle layers, from 2 to 6 layer (N2 � N63), could be any
mathematical operations or variables, using integers 1
through 11 to represent the different mathematical opera-
tions in Table 2 and the different variables or particular coef-
ficients in Table 3.

(3) The genes N64 to N127 in the bottom layer are restricted to be
variables or constants, using integers 7 through 11 to repre-
sent the different variables or particular coefficients in Table
3.

(4) When the node is a mathematical operator: log (natural log-
arithm), only the left sub-node is operated.

(5) When the nodes are variables or constants, their sub-nodes
are all discarded.

5. Results

5.1. LMGOT results

The proposed LMGOT method sets the GA population size:
N = 100, crossover rate = 0.9, mutation rate = 0.001, and the evolu-
tion generation = 1000. Using the root of mean squared error
(RMSE) as the fitness values, the LMGOT iteratively searches for
the OT that best fits the data. The LMGOT effectively builds a con-
cise OT (formula) shown in Fig. 5 for the crack length of the in-ser-
vice overlay pavement. Four parameters p1 to p4 shown in Fig. 5
are determined with Levenberg–Marquardt Method. Fig. 6 shows
the final model for asphalt pavement overlay transverse cracks
which also can be represented as a formula in Eq. (13). Eq. (13)
red OT model.

verlay transverse cracks using the genetic operation tree and Levenberg–
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Fig. 5. The OT before applying the Levenberg–Marquardt optimization technique.

Fig. 6. The final model for asphalt pavement overlay transverse cracks.

Fig. 7. Scatter chart of training data from LMGOT.

Fig. 8. Scatter chart of testing data from LMGOT.
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is relatively concise compared with Eq. (1) as developed by Hong
and Chen (2009). Figs. 7 and 8 show the scatter charts for training
sets and testing sets, respectively.

Y ¼ 69� log
T � 1:9

THð1:68�0:8�RAPÞ

� �
: ð13Þ

Let

f ¼ T � 1:9
THð1:68�0:8�RAPÞ : ð14Þ

If

f > 1; then Y ¼ 69� logðf Þ: ð15Þ

Else Y = 0, where
Please cite this article in press as: Hsie, M., et al. Modeling asphalt pavement o
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Y: transverse cracking length (m);
RAP: dummy variable for overlay material, RAP = 1 for reclaimed
asphalt pavement (RAP), and 0 for virgin;
TH: overlay thickness (inch);
T: time served after overlay construction (year).

Since the length of cracks must be non-negative, the f value in
Eq. (14) must be no less than 1. Thus, the formula was trimmed
by adding the following condition: if f 6 1, then set log (f) = 0 to en-
sure that the length of cracks is non-negative.

When RAP = 0 indicates virgin AC, the formula can be further
simplified to Eqs. (16) and (17). Meanwhile, when the RAP = 1 for
Reclaimed AC, the formula can be simplified to Eqs. (18) and (19).
verlay transverse cracks using the genetic operation tree and Levenberg–
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Case 1. RAP = 0

f ¼ T � 1:9
TH1:68 ð16Þ

If
Fig. 9.
overlay

Please
Marqu
f > 1; then Y ¼ 69� logðf Þ ð17Þ
Else Y = 0
Case 2. RAP = 1
f ¼ T � 1:9
TH0:88 ð18Þ
If
f > 1; then Y ¼ 69� logðf Þ ð19Þ
Fig. 10. The predicted pavement overlay performance focused on the required
service life of 8 years.
Else Y = 0

Since the LMGOT automatically screens out the mill/non-mill
factor, the crack length is not related to surface preparation. This
formula derives the following points:

(1) The crack length is directly proportional to the time in ser-
vice (T), and is inversely proportional to thickness of the
overlay.

(2) The virgin AC (RAP = 0) in Eq. (16) provides the resistance to
cracking with TH1.68, while the recycled AC (RAP = 1) in Eq.
(18) provides the resistance to cracking with only TH0.88.
The recycled AC significantly reduces the effectiveness of
thickness.

(3) The scatter chart illustrates that the coefficient of determi-
nation R2 is 0.938, showing that this formula has high con-
firming with the training set. The scatter chart for the
testing data, with an R2 value of 0.85, shows that the formula
still has a certain level of generalization.

5.2. Surface preparation variables comparison based on the model

Many researchers have discussed the effect of milling on AC
overlay performance in terms of cracking. The proposed model
The predicted pavement overlay performance focused on 2 inch thick
.
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automatically screens out the factor of surface preparation, imply-
ing that the 2 inch (50.8 mm) milling contributes little to resisting
the transverse cracking. These results are consistent with new re-
search results, which suggest that existing cracking can occur not
only in asphalt layer, but also in base layers, sub-base layers, and
sub-grades. In this experiment, the ML = 1 (mill) surface treatment
did not completely remove the underlying cracks. Thus, transverse
cracking still existed after milling, and propagated upward into the
AC overlay (Hong & Chen, 2009).

5.3. Material variables comparison based on the model

Based on the overlay pavement design specification, the re-
quired service life is 8 years. The formula shows that the material
Fig. 11. The 3D mesh-plot for the length of transverse crack in RAP type and virgin
type.
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variable is an important factor. Fig. 9 shows that if the overlay is
2 inches thick, using Eqs. (16) and (17) for Virgin AC and Eqs. (18)
and (19) for Reclaimed AC, the Virgin/ RAP tended to cause crack
lengths of 44.4 and 82.7 m, respectively, at the end of required
service life 8-year. The reclaimed AC accelerated the aging the
pavement and caused cracks approximately twice as long as those
in virgin AC. This can be explained from an asphalt material
property viewpoint. The asphalt binder in RAP usually demon-
strates higher viscosity due to the aging effect. Thus, the overlay
with RAP is less resistant to cracking than that consisting of
virgin AC.

5.4. Thickness variables comparison based on the model

Eq. (15) shows that the crack length is inversely proportional to
the overlay thickness. To ensure that the overlay pavement has no
significant cracks (set crack length Y = 0) in 8 years. Fig. 10 shows
that the required thickness of pavement is 2.9 inches for Virgin
AC and 7.8 inches for Reclaimed AC, respectively.

The 3D plot in Fig. 11 illustrates the inter-relations between the
crack length and three factors: time, thickness, and RAP. The lower
solid surface is for RAP = 0 and the upper hollow mesh is for
RAP = 1. These results clearly illustrate that the RAP = 0 (virgin
AC) has better resistance to cracking than the reclaimed AC.
6. Conclusions

This paper proposes an innovative approach, LMGOT that inte-
grates the OT, GA, and Levenberg–Marquardt Method. This study
applies the LMGOT to Texas DOT, SPS-5 data on transverse cracks
of overlay pavements, and produces a concise and convincing for-
mula. The following conclusions are derived:

(1) Even without predefined structures of the formulas, the
LMGOT can still build a concise model for the crack length
of overlay pavement.

(2) The proposed model automatically eliminates the surface
preparation factor of 2 inches of milling, indicating that the
LMGOT is superior at self-organizing the OT and screening
out unrelated factors.

(3) The crack length formula is a log (natural logarithm) func-
tion, showing that cracks are proportional to the log of time
and inversely proportional to the log of thickness. This con-
firms the relationship with clear physical meaning between
these factors.

(4) With the same 2 inch overlay, the crack lengths of virgin AC
and reclaimed AC at the end of the required service-life of
8 years predicted to be 44.4 and 82.7 m, respectively. This
implies that the cost-effectiveness of reclaimed AC requires
further investigation.
Please cite this article in press as: Hsie, M., et al. Modeling asphalt pavement o
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In summary, the LMGOT can produce a self-organized formula
structure and optimize the coefficients in the formula without pre-
conceived formula architectures. This feature is very useful when
the formula structure is unknown. Because the structures of for-
mula of many material behaviors are unknown, the LMGOT may
be a better choice than the non-linear regression in modeling
material behaviors. Thus, the LMGOT can help researchers develop
a compact formula with physical meaning.
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