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a b s t r a c t

The advantage of using cerebellar model articulation control (CMAC) network has been well

documented in many applications. However, the structure of a CMAC network which will influence

the learning performance is difficult to select. This paper proposes a dynamic structure CMAC network

(DSCN) which the network structure can grow or prune systematically and their parameters can be

adjusted automatically. Then, an adaptive dynamic CMAC neural control (ADCNC) system which is

composed of a computation controller and a robust compensator is proposed via second-order sliding-

mode approach. The computation controller containing a DSCN identifier is the principal controller and

the robust compensator is designed to achieve L2 tracking performance with a desired attenuation level.

Moreover, a proportional–integral (PI)-type adaptation learning algorithm is derived to speed up the

convergence of the tracking error in the sense of Lyapunov function and Barbalat’s lemma, thus the

system stability can be guaranteed. Finally, the proposed ADCNC system is applied to control a chaotic

system. The simulation results are demonstrated that the proposed ADCNC scheme can achieve a

favorable control performance even under the variations of system parameters and initial point.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the major advantage of a sliding-mode
control (SMC) system is its insensitivity to parameter variations
and external disturbance once the system trajectory reaches and
stays on a sliding surface (Slotine and Li, 1991; Utkin, 1978).
However, the SMC strategy produces a drawback associated with
a large control chattering. It may wear coupled mechanisms and
excite unstable system dynamics. To tackle this problem, a
second-order sliding-mode control (SSC) system which is an
effective control scheme for chattering eliminating is proposed
(Koshkouei et al., 2005; Levant, 1993; Levant et al., 2000; Lin
et al., 2009; Parra-Vega et al., 2003). The additional dynamics can
be considered as compensators that are designed for improving
sliding-mode stability. Due to the SSC approach using integration
method to obtain a practical control input, the chattering phe-
nomenon can be improved effectively. However, since the precise
models of control plants are difficult to obtain, both of the SMC
and SSC systems are difficult to be implemented in real-time
applications.

During the past two decades, several adaptive neural control-
lers have been developed to compensate for the effects of
nonlinearities and system uncertainties (Chen and Tian, 2009;

Czarnigowski, 2010; Hsu, 2011; Miguel and Yu, 2009; Zhao and
Yu, 2009). The basic issue of the adaptive neural control provides
online learning algorithm that does not require preliminary off-
line tuning. Some are based on the Lyapunov stability theorem
and some are based on the gradient decent method; thus the
stability, convergence and robustness of the closed-loop system
can be guaranteed. Recently, a cerebellar model articulation
control (CMAC) network was widely used due to its fast learning
property and good generalization capability (Ananthraman and
Gar, 1993; Hsu et al., 2009; Lin et al., 2007; Lin and Peng, 2005;
Wu et al., 2011; Wu et al., 2006; Yeh, 2007). Though the control
performances in the above CMAC network literatures are accep-
table, the network structure of a CMAC network cannot be
obtained automatically. If the amount of memory space is chosen
too large, the computation loading is heavy so it is not suitable for
real-time practical applications. If the amount of memory space is
chosen too small, the learning performance may be not good
enough to achieve a desired performance.

To tackle this problem, a dynamic structure CMAC network
(DSCN) is proposed for the structure adaptation of a CMAC
network (Lee et al., 2007; Lin and Chen, 2009; Yeh and Chang,
2006; Yen et al., 2012). However, some cannot avoid the CMAC
network structure growing unboundedly and some requires
overly complex design procedures. In this paper, a novel DSCN
with online adjusting suitable memory space of a CMAC network
structure is studied. The proposed self-constructing approach
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demonstrates the properties of generating and pruning the input
layers automatically. Then, the proposed DSCN is utilized to
estimate the change of the system dynamics online owing to its
good generalization capability, structure adaptation and simple
computation.

In this paper, an adaptive dynamic CMAC neural control
(ADCNC) system which is composed of a computation controller
and a robust compensator is developed. The computation con-
troller containing a DSCN identifier is the main controller and the
robust compensator is designed to achieve L2 tracking perfor-
mance by attenuating the effect of the uncertain term caused by
the DSCN identifier. The DSCN identifier does not require prior
knowledge of a certain amount of memory space and the self-
constructing approach demonstrates the properties of generating
or pruning the layers automatically. The adaptive laws of the
proposed ADCNC system are derived in the sense of Lyapunov
function and Barbalat’s lemma; thus the system can be guaran-
teed to be stable. It should be emphasized that the proposed
ADCNC system requires no prior knowledge about the system
dynamic and no offline learning phases. Finally, a chaotic system
is provided as a simulation example. The simulation results
verify that the system stabilization, favorable tracking perfor-
mance and no chattering phenomena can be achieved by the
proposed ADCNC system.

This paper is organized as follows. Problem formulation is
described in Section 2. Section 3 expresses the design of the
proposed ADCNC system. Simulation results are provided to
validate the effectiveness of the proposed ADCNC system in
Section 4. Finally, Section 5 concludes the paper.

2. Problem formulation

Chaotic systems have been studied and known to exhibit
complex dynamical behavior (Hsu et al., 2009). The interest in
chaotic systems lies mostly upon their complex, unpredictable
behavior, and extreme sensitivity to initial conditions as well as
parameter variations. Consider a second-order chaotic system, the
well known Duffing’s equation, which describes a special non-
linear circuit or a pendulum moving in a viscous medium under
control. The dynamics of Duffing’s equation is described as Hsu
et al. (2009), Jiang (2002), Peng (2009)

€xðtÞ ¼�p _xðtÞ�p1xðtÞ�p2x3ðtÞþqcosðwtÞþuðtÞ ¼ f ðx,tÞþuðtÞ ð1Þ

where t is the time variable, x¼ ½xðtÞ, _xðtÞ�T is the state vector, w is
the frequency, f ðx,tÞ ¼ �p _x�p1x�p2x3þqcosðwtÞ is the system
dynamic, u(t) is the control input, and p , p1, p2 and q are real
constants. Depending on the choices of these constants, the solu-
tions of system (1) may display complex phenomena, including
various periodic orbits behaviors and some chaotic behaviors
(Hsu et al., 2009). To observe the complex phenomena, the open-
loop system behavior for u(t)¼0 was simulated as shown in Fig. 1
with p ¼0.4, p1¼�1.1, p2¼1.0 and w¼1.8. The time responses of
the uncontrolled chaotic system with initial point (0,0) for q¼2.1
and q¼7.0 are shown in Fig. 1(a) and (b), respectively. For the time
responses with q¼2.1, an uncontrolled chaotic trajectory can be
found, but a period motion chaotic trajectory happens with q¼7.0. It
is shown that the uncontrolled chaotic system has different trajec-
tories for different system parameters. Further, the time responses
of the uncontrolled chaotic system with initial point (1,1) for q¼2.1
and q¼7.0 are shown in Fig. 1(c) and (d), respectively. An uncon-
trolled chaotic trajectory can be found in Fig. 1(c) and a period
motion chaotic trajectory can be found in Fig. 1(d). In summary, the
uncontrolled chaotic system sometimes has a chaotic trajectory but
sometimes it does not. The uncontrolled chaotic system has extreme
sensitivity to parameters change and initial points.

Rewriting (1), the nominal model of the chaotic system can be
represented as follows

€xðtÞ ¼ f nðx,tÞþuðtÞ ð2Þ

where fn(x,t) is a mapping that represents the nominal behavior of
f(x,t). If uncertainties occur, i.e., the parameters of the system
deviate from the nominal value and a external disturbance is
added into the system, the chaotic system can be modified as

€xðtÞ ¼ f nðx,tÞþDf ðx,tÞþuðtÞþdðtÞ ¼ f nðx,tÞþuðtÞþzðx,tÞ ð3Þ

where Df(x,t) denotes the system uncertainties, d(t) is the exter-
nal disturbance, and z(x,t) is called the lumped uncertainty which
is defined as z(x,t)¼Df(x,t)þd(t). The control objective is to find a
control law so that the state trajectory x(t) can track a trajectory
command xc(t) closely. Define a tracking error and a sliding

Fig. 1. Uncontrolled chaotic system.
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surface as Lin et al. (2009)

eðtÞ ¼ xðtÞ�xcðtÞ ð4Þ

sðtÞ ¼ _eðtÞþa1eðtÞþa2

Z t

0
eðtÞdt ð5Þ

where a1 and a2 are positive constants. Properly choosing the
values of a1 and a2, the desired system dynamics such as rise time,
overshoot, and settling time can be easily designed by the second-
order system. Differentiating (5) with respect to time and using
(3) and (4) obtain

_sðtÞ ¼ €eðtÞþa1 _eðtÞþa2eðtÞ

¼ f nðx,tÞþuðtÞþzðx,tÞ� €xcðtÞþa1 _eðtÞþa2eðtÞ

¼ cðx,tÞþuðtÞþzðx,tÞþa1 _eðtÞþa2eðtÞ ð6Þ

where cðx,tÞ ¼ f nðx,tÞ� €xcðtÞ. In order to reduce the chattering
phenomenon, a SSC system is considered with a second-order
sliding surface defined as Lin et al. (2009)

sðtÞ ¼ _sðtÞþb1sðtÞþb2

Z t

0
sðtÞdt ð7Þ

where b1 and b2 are positive constants. Differentiating (7) with
respect to time and using (3) and (6) obtain

_sðtÞ ¼ €sðtÞþb1 _sðtÞþb2sðtÞ

¼ _cðx,tÞþ _uðtÞþ _zðx,tÞþa1 €eðtÞþa2 _eðtÞ

þb1½ €eðtÞþa1 _eðtÞþa2eðtÞ�

þb2½ _eðtÞþa1eðtÞþa2

Z t

0
eðtÞdt�

¼ _cðx,tÞþ _uðtÞþ _zðx,tÞþða1þb1Þ €eðtÞþða2þa1b1þb2Þ _eðtÞ

þða2b1þa1b2ÞeðtÞþa2b2

Z t

0
eðtÞdt

¼ _cðx,tÞþ _uðtÞþ _zðx,tÞþc1 €eðtÞþc2 _eðtÞþc3eðtÞþc4

Z t

0
eðtÞdt

ð8Þ

where c1¼a1þb1, c2¼a2þa1b1þb2, c3¼a2b1þa1b2 and c4¼a2b2.
The control law of the SSC system is given as Koshkouei et al.
(2005), Lin et al. (2009)

usscðtÞ ¼

Z t

0

_usscðtÞdt ð9Þ

_usscðtÞ ¼�_cðx,tÞ�c1 €eðtÞ�c2 _eðtÞ�c3eðtÞ�c4

Z t

0
eðtÞdt�Zsscsgn½sðtÞ�

ð10Þ

where Zssc is a given positive constant with the assumption
_zðx,tÞ
�� ��rZssc. Imposing the control law _uðtÞ ¼ _usscðtÞ in (8) with
(10) yields

_sðtÞ ¼ _zðx,tÞ�Zsscsgn½sðtÞ�: ð11Þ

Consider the candidate Lyapunov function in the following
form as

V1ðtÞ ¼
1

2
s2ðtÞ: ð12Þ

Differentiating (12) with respect to time and using (11) obtain

_V 1ðtÞ ¼ sðtÞ _sðtÞ ¼ _zðx,tÞsðtÞ�Zssc9sðtÞ9
r9_zðx,tÞ99sðtÞ9�Zssc9sðtÞ9
¼�ðZssc�9_zðx,tÞ9Þ9sðtÞ9r0: ð13Þ

If the second-order sliding surface _sðtÞ ¼ €sðtÞþb1 _sðtÞþb2sðtÞ ¼ 0,
then the sliding surface s(t)¼0 for all time. Moreover, if
_sðtÞ ¼ €eðtÞþa1 _eðtÞþa2eðtÞ ¼ 0, the desired system dynamics such as
rise time, overshoot and setting time can easily designed by a second-
order system. The control law of the SSC system in (10) can guarantee
the system stability in the sense of the Lyapunov theorem (Levant

et al., 2000; Slotine and Li, 1991). However, in the most practical
systems, the system dynamics c(x,t) may be unknown or the bound of
the lumped uncertainty Zssc is difficult to obtain, so the SSC system
cannot be implemented in real-time applications.

3. Design of the ADCNC system

The proposed ADCNC system is composed of a computation
controller and a robust compensator. The computation controller
containing a DSCN identifier is the principal controller and the
robust compensator is designed to achieve L2 tracking perfor-
mance with a desired attenuation level.

3.1. Network structure of DSCN

The architecture of DSCN is composed of input space, associa-
tion memory space, receptive-field space, weight memory space
and output space. The Gaussian function in association memory
space is represented as Lin and Chen (2009)

fijðzi,mij,vijÞ ¼ exp½�v2
ijðzi�mijÞ

2
�, for i¼ 1, 2 ð14Þ

where z¼ ½z1,z2�
T ¼ ½sðtÞ, _sðtÞ�T is the input vector and fij(zi,mij,vij)

presents the jth block of the ith input with two adjustable
parameters mij and vij. The mij is the argument on which the
Gaussian function has its maximum value, i.e., fij(zi,mij,vij)¼1 and
the vij influences the Gaussian function profile. Assume that N(k)
is the number of the existing receptive-field functions at the kth
sample interval, the multidimensional receptive-field function is
defined as

Yjðz,mj,vjÞ ¼
Y2

i ¼ 1

fijðzi,mij,vijÞ, for j¼ 1,2,. . .,NðkÞ ð15Þ

where Yj is associated with the jth receptive-field function,
mj¼[m1j,m2j]

T, and vj¼[v1j,v2j]
T. The output of DSCN at the kth

sample interval is given by

y¼
XNðkÞ
j ¼ 1

ajYjðz,mj,vjÞ ð16Þ

where aj is the connecting weight value of the output associated
with the jth receptive-field function and it is initialized from zero
and is automatically adjusted during online operation. Then, the
output represents in a vector form as

y¼ aTHðz,m,vÞ ð17Þ

where a¼[a1, a2, y, aN(k)]
T and H(z,m,v)¼[Y1, Y2, y, YN(k)]

T

with m¼ ½mT
1,mT

2,. . .,mT
NðkÞ�

T, v¼ ½vT
1,vT

2,. . .,vT
NðkÞ�

T.

A trade-off problem between the computation loading and
learning performance arises. To tackle this problem, this paper
proposes a structure learning algorithm including how to grow
and prune the association memory space of DSCN is introduced.
The first process of the structure learning is to determine whether
to add a new Gaussian function in association memory and to
create its hypercube and weight memory, simultaneously. In the
generating process, the mathematical description of the existing
Gaussian function can be expressed as clusters (Lin and Lee,
1996). The firing strength of a rule for each incoming data z can be
represented as the degree to which the incoming data belong to
the cluster. If a new input data falls z within the boundary of
clusters, DSCN will not generate a new Gaussian function but
update parameters of the existing rules. The distance between
incoming data z and mj as Lin and Chen (2009)

dj ¼ :z�mj:: ð18Þ

C.-F. Hsu / Engineering Applications of Artificial Intelligence 25 (2012) 997–1008 999
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Find a minimum distance which is defined as

dmin ¼ min
1r jrNðkÞ

dj: ð19Þ

If the distance is too large for the existing clusters, this means
a new cluster should be generated a new input data. It implies
that if dminZdth is satisfied, where dth a pre-given threshold, a
new Gaussian function should be generated. Then, the number of
receptive-field functions is increased at the next sample interval
as follows

Nðkþ1Þ ¼NðkÞþ1: ð20Þ

The initial parameters of the new Gaussian function will be
defined as

aNðkþ1Þ ¼ 0 ð21Þ

miNðkþ1Þ ¼ zi ð22Þ

viNðkþ1Þ ¼ v ð23Þ

where zi is the input data and v is a pre-specified constant. To
avoid the endless growing of DSCN structure and the overload
computation loading, another self-constructing algorithm is con-
sidered to determine whether to delete the existing association
memory space but is inappropriate. When the jth firing strength
Yj is smaller than a elimination threshold r, it means that the
relationship becomes weak between the input and the jth
Gaussian function. This association memory may be less or never
used. Then, it will gradually reduce the value of the jth signifi-
cance index. A significance index for the importance of the jth
receptive-field function at the kth sample interval is determined
as Hsu (2007)

IjðkÞ ¼
Ikðk�1Þexpð�tÞ, if Ykor
Ikðk�1Þ, if YkZr

(
ð24Þ

where Ij(k) is the significance index of the jth receptive-field basis
function whose initial value is 1 and t is the elimination speed
constant. If Ij(k)r Ith is satisfied, where Ith a pre-given threshold,
then the jth receptive-field basis function will be deleted. The
computation loading should be decreased. In summary, the flow
chart of the structure learning algorithm is shown in Fig. 2. The
major contribution is DSCN can be operated directly without
spending much time on pre-determining the receptive-field basis
function.

3.2. Approximation of DSCN

Since the system dynamics f(x,t) may be unknown in the
most practical systems, the control law of the SSC system in (10)
cannot be implemented. In this paper, a DSCN is utilized to
estimate the change of the control system dynamics as Lin and
Chen (2009)

_f ðx,tÞ ¼ anTHðz,mn,vnÞþD¼ anTHn
þD ð25Þ

where D is the approximation error, an and Hn are the optimal
parameter vectors of a and H, respectively, and mn and vn are the
optimal parameter vectors of m and v, respectively. There exists
Dn which is a finite positive constant such the inequality 9D9rDn

can be held. Moreover, the optimal vectors can be further defined
as Wang (1994)

ðan,mn,vnÞ ¼ argmin
aAXa , mAXm , vAXv

sup
zAXz

9_f�aTHðz,m,vÞ9

" #
ð26Þ

where Xa ¼ fa : :a:rDag, Xm ¼ fm : :m:rDmg, and Xv ¼

fv : :v:rDvg, respectively. The Da, Dm, and Dv are positive
constants specified by designers. In fact, the optimal parameter
vectors that are needed to best approximation cannot be

determined. An estimation DSCN identifier is defined as

_̂
f ¼ âTHðz,m̂,v̂Þ ¼ âTĤ ð27Þ

where â and Ĥ are the estimated parameter vectors of a and H,
respectively; and m̂ and v̂ are the estimated parameter vectors of
m and v, respectively. Then, the estimation error is obtained as

_~f ¼ _f�
_̂
f ¼ ~aT ~Hþ ~aTĤþâT ~HþD ð28Þ

where ~a ¼ an�â and ~H ¼Hn
�Ĥ. To speed up the convergence of

SOCM, the optimal parameter vector an is decomposed into two
parts as Golea et al. (2002), Hsu et al. (2009)

an ¼ ZPa
n

PþZIa
n

I ð29Þ

where an
P and an

I are the proportional and integral terms of an,
respectively, ZP and ZI are positive coefficients, and an

I ¼
R t

0 an
Pdt.

The proportional term of the optimal parameter vector satisfies
:an

P:rDaP
, where DaP

is a positive constant specified by designers.
Similarly, the estimation parameter vector â is decomposed into
two parts as Golea et al. (2002), Hsu et al. (2009)

â¼ ZPâPþZIâI ð30Þ

where âP and âI are the proportional and integral terms of â,
respectively, and âI ¼

R t
0 âP dt. The integral term of the estimation

parameter vector satisfies :âI:rDaI , where DaI is a positive

Fig. 2. Flow chart of the structure learning scheme.
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constant specified by designers. Thus, ~a can be expressed as

~a ¼ ZI
~aI�ZPâPþZPa

n

P ð31Þ

where ~aI ¼ an
I�âI. Substituting (31) into (28), it is obtained that

_~f ¼ ~aT ~HþðZI
~aI�ZPâPþZPa

n

PÞ
TĤþ âT ~HþD

¼ ZI
~aT

I Ĥ�ZPâ
T
PĤþ âT ~Hþ ~aT ~HþZPa

nT
P ĤþD: ð32Þ

Then, the Taylor expansion linearization technique is
employed to transform the nonlinear function ~H into a partially
linear form (Peng and Lin, 2007), i.e.,

~H ¼AT ~mþBT ~vþh ð33Þ

where ~m ¼mn�m̂, ~v ¼ vn�v̂, h is a vector of high order terms,
A¼ ½ð@Y1=@mÞð@Y2=@mÞ � � � ð@YN=@mÞ�9m ¼ m̂, and B¼ ½ð@Y1=@vÞ
ð@Y2=@vÞ � � � ð@YN=@vÞ�9v ¼ v̂. Substitute (33) into (32) yields

_~f ¼ ZI
~aT

I Ĥ�ZPâ
T
PĤþ âT

ðAT ~mþBT ~vþhÞþ ~aT ~HþZPa
nT
P ĤþD

¼ ZI
~aT

I Ĥ�ZPâ
T
PĤþ ~mTAâþ ~vTBâþe ð34Þ

where âTAT ~m ¼ ~mTAâ and âTBT ~v ¼ ~vTBâ are used since they are
scalars, and e¼ âThþ ~aT ~HþZPanT

P ĤþD denotes the uncertain
term. It is an algebraic manipulation of the approximation via
the Taylor expansion linearization technique. The higher-order
term h is bounded by

:h:¼ : ~H�AT ~m�BT ~v:

r: ~H:þ:AT:: ~m:þ:BT:: ~v:

rc0þc1: ~m:þc2: ~v: ð35Þ

where c0, c1 and c2 are bounded positive constants satisfying
: ~H:rc0, :AT:rc1, and :BT:rc2, respectively. The existence of
c0, c1 and c2 is assured due to the fact the Gaussian function and
its derivative are always bounded by constants. Moreover, ~a, ~m,
and ~v satisfy

: ~a:¼ :an�â:r:an:þ:â:rDaþ:â: ð36Þ

: ~m:¼ :mn�m̂:r:mn:þ:m̂:rDmþ:m̂: ð37Þ

: ~v ¼ :vn�v̂:r:vn:þ:v̂:rDvþ:v̂:: ð38Þ

Next, the uncertain term e is bounded by

9e9¼ :âThþ ~aT ~HþZPa
nT
P ĤþD:

¼ :âThþ ~aT
ðAT ~mþBT ~vþhÞþZPa

nT
P ĤþD:

¼ : ~aTAT ~mþ ~aTBT ~vþanT hþZPa
nT
P ĤþD:

rc1ðDaþ:â:ÞðDmþ:m̂:Þþc2ðDaþ:â:ÞðDvþ:v̂:Þ

þDa½c0þc1ðDmþ:m̂:Þþc2ðDvþ:v̂:Þ�þZP

ffiffiffiffi
N
p

DaPþD
n

¼ ½x1,x2,x3,x4,x5,x6�½1,:â:,:m̂:,:v̂:,:â::m̂:,:â::v̂:�T

¼ nTC ð39Þ

where n¼[x1,x2,x3,x4,x5,x6]T, C¼ ½1,:â:,:m̂:, :v̂:,:â::m̂:,
:â::v̂:�T, x1 ¼ ðc0þ2c1Dmþ2c2DvÞDaþZP

ffiffiffiffi
N
p

DaP
þDn, x2¼c1Dm

þc2Dv, x3¼2c1Da, x4¼2c2Da, x5¼c1, and x6¼c2. Since n is a
bounded vector, if C can be guaranteed to be bounded, the
uncertain term e is bounded.

3.3. ADCNC system design

The proposed ADCNC system is shown in Fig. 3, where the
controller output is defined as

uadcðtÞ ¼

Z t

0

_uadcðtÞdt ð40Þ

_uadc ¼ _uccþ _urc ð41Þ

where the computation controller is chosen as

_ucc ¼�
_̂
f þ&xcðtÞ�c1 €eðtÞ�c2 _eðtÞ�c3eðtÞ�c4

Z t

0
eðtÞdt: ð42Þ

The computation controller _ucc containing a DSCN identifier
_̂
f

is the principal controller and the robust compensator _urc is
designed to achieve L2 tracking performance with a desired
attenuation level. Differentiating (7) with respect to time and
using (1) and (5) obtain

_sðtÞ ¼ €sðtÞþb1 _sðtÞþb2sðtÞ

¼ _f ðx,tÞþ _uðtÞ�&xcðtÞþa1 €eðtÞþa2 _eðtÞþb1½ €eðtÞþa1 _eðtÞþa2eðtÞ�

þb2½_eðtÞþa1eðtÞþa2

Z i

0
eðtÞdt�

¼ _f ðx,tÞþ _uðtÞ�&xcðtÞþða1þb1Þ €eðtÞþða2þa1b1þb2Þ_eðtÞ

Fig. 3. Block diagram of the ADCNC system.

C.-F. Hsu / Engineering Applications of Artificial Intelligence 25 (2012) 997–1008 1001



Author's personal copy

þða2b1þa1b2ÞeðtÞþa2b2

Z t

0
eðtÞdt

¼ _f ðx,tÞþ _uðtÞ�&xcðtÞþc1 €eðtÞþc2 _eðtÞþc3eðtÞþc4

Z t

0
eðtÞdt

ð43Þ

where c1¼a1þb1, c2¼a2þa1b1þb2, c3¼a2b1þa1b2 and c4¼a2b2.
Imposing the control law _uðtÞ ¼ _uadcðtÞ in (43) with (41) yields

_sðtÞ ¼ _f� _̂f þ _urc: ð44Þ

By the approximation property (34), (44) can be rewritten as

_sðtÞ ¼ ZI
~aT

I Ĥ�ZPâ
T
PĤþ ~mTAâþ ~vTBâþeþ _urc: ð45Þ

In case of the existence of e, consider a specified L2 tracking
performance (Lin, 2009; Peng and Lin, 2007; Tseng, 2008; Wang
et al., 2002)Z T

0
s2dtrs2ð0ÞþZI

~aT
I ð0Þ ~aIð0Þþ

~mT
ð0Þ ~mð0Þ

Zm

þ
~vT
ð0Þ ~vð0Þ

Zv

þd2
Z T

0
e2dt

ð46Þ

where ZI, Zm and Zv are positive learning rates and d is a
prescribed attenuation constant. If the system starts with initial
conditions s(0)¼0, ~aIð0Þ ¼ 0, ~mð0Þ ¼ 0 and ~vð0Þ ¼ 0, the L2 track-
ing performance in (46) can be rewritten asR T

0 s
2dtR T

0 e2dt
rd2: ð47Þ

The physical meaning of (47) is the effect of any uncertain
term e(t)AL2 on the second-order sliding surface s(t) must be
attenuated below a desired level d2 from the viewpoint of energy.
So the L2 gain from e(t) to s(t) must be less than or equal to a
prescribed value d2 (Peng and Lin, 2007; Tseng, 2008). If d¼N,
this is the case of minimum error tracking control without
disturbance attenuation. To proof the stability of the ADCNC
system, define a Lyapunov function candidate in the following
form

V2 ¼
1

2
s2þ

ZI

2
~aT

I
~aIþ

1

2Zm

~mT ~mþ
1

2Zv

~vT ~v: ð48Þ

Differentiating (48) with respect to time and using (45), it is
obtained

_V 2 ¼s _sþZI
~aT

I
_~aIþ

~mT _~m

Zm

þ
~vT _~v

Zv

¼ sðZI
~aT

I Ĥ�ZPâ
T
PĤþ ~mTAâþ ~vTBâþeþ _urcÞþZI

~aT
I
_~aIþ

~mT _~m

Zm

þ
~vT _~v

Zv

¼ ZI
~aT

I ðsĤþ _~aIÞþ ~mTðsAâþ
_~m

Zm

Þþ ~vT sBâþ
_~v

Zv

 !

�sZPâ
T
pĤþsðeþ _urcÞ: ð49Þ

If the parameter adaptive laws are selected as

âP ¼ sĤ ð50Þ

_̂aI ¼�
_~aI ¼ sĤ ð51Þ

_̂m¼� _~m ¼ ZmsAâ ð52Þ

_̂v¼� _~v ¼ ZvsBâ ð53Þ

and design the robust compensator as

_urc ¼�
ðd2
þ1Þs

2d2
ð54Þ

then (49) becomes

_V 2 ¼�âT
pâPþse�

ðd2
þ1Þs2

2d2

r�
s2

2
�

1

2

s
d
�de

� �2
þ

1

2
d2e2

r�
s2

2
þ

1

2
d2e2: ð55Þ

Integrating both sides of the above equation from t¼0 to t¼T,
yields

V2ðTÞ�V2ð0Þr�
1

2

Z T

0
s2dtþ

1

2
d2
Z T

0
e2dt ð56Þ

Since V2(T)Z0, the above inequality implies the following
inequality

1

2

Z T

0
s2dtrV2ð0Þþ

1

2
d2
Z T

0
e2dt ð57Þ

Using (48), this inequality is equivalent to inequality (46).
Thus, the L2 tracking performance is achieved. Since V2(0) is finite
and the uncertain term eAL2, using the Barbalat’s lemma, it
implies that limt-1s¼ 0 (Slotine and Li, 1991).

3.4. Boundary analysis using projection algorithm

Though the stability of the ADCNC system can be guaranteed,
the parameters â, m̂, and v̂ cannot be guaranteed within a desired
bound value by using the adaptive laws (51)–(53). Specifying the
bounds DaI , Dm, and Dv, the adaptive laws can be modified by the
projection algorithm (Wang, 1994) as following:

_̂aI ¼
sĤ, if : _̂aI:oDaI

orð:âI:¼DaI
and sĤr0Þ

PrðsĤÞ, if ð:âI:¼DaI and sĤ40Þ

8<
: ð58Þ

Fig. 4. Simulation results of ADCNC with RBF network for q¼2.1.
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_̂m¼
ZmsAâ , if :m̂:oDm or ð:m̂:¼Dm and sm̂

T
Aâr0Þ

PrðZmsAâÞ, if ð:m̂:¼Dm and sm̂
T
Aâ40Þ

8<
:

ð59Þ

_̂v¼
ZvsBâ,if :v̂:oDv or ð:v̂:¼Dv and sv̂

T
Bâr0Þ

PrðZvsBâÞif ð:v̂:¼Dv and sv̂
T
Bâ40Þ

8<
: ð60Þ

where the projection operators are given as

PrðsĤÞ ¼ sĤ�sâTĤ

:â:2âI

ð61Þ

PrðZmsAâÞ ¼ ZmsAâ�Zmsm̂
T
Aâ

:m̂:2
m̂

ð62Þ

PrðZvsBâÞ ¼ ZvsBâ�Zvsv̂
T
Bâ

:v̂:2
v̂:

ð63Þ

If the initial value of â is bounded (i.e., âð0ÞAXa), :â: is
bounded by the constraint set Xa for all tZ0. Similarly, the
results can also be derived :m̂: is bounded by the constraint set
Xm if m̂ð0ÞAXm and :v̂: is bounded by the constraint set Xv if
v̂ð0ÞAXv. Thus, the fact that the uncertain term e is bounded can
be guaranteed by the modified adaptive laws (58)–(60). Next,
define variables as

VaI ¼ ~aT
I ðsĤþ _~aIÞ ð64Þ

Vm ¼ ~mT sAâþ
_~m

Zm

 !
ð65Þ

and

Vv ¼ ~vT sBâþ
_~v

Zv

 !
: ð66Þ

If the projection algorithm is taken place, the property
~oTô¼ ð1=2Þð:on:2

�:ô:2
�: ~o:2

Þo0 (Lin and Peng, 2004) is
applied according to :ô:¼Xo4:on:, where ô¼ âI, m̂, and v̂.
Thus, the following equations can be obtained

VaI
¼
s
2

ð:an
I :

2
�:âI:

2
�: ~aI:

2
Þ

:â:2
âTĤr0, for ð:âI:¼DaI

and sĤ40Þ

ð67Þ

Vm ¼
s
2

ð:mn:2
�:m̂:2

�: ~m:2
Þ

:m̂:2
m̂

T
Aâr0,

for ð:m̂:¼Dm and sm̂
T
Aâ40Þ ð68Þ

Fig. 6. Simulation results of ADCNC with I-type learning algorithm for q¼2.1.Fig. 5. Simulation results of ADCNC with RBF network for q¼7.0.
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and

Vv ¼
s
2

ð:vn:2
�:v̂:2

�: ~v:2
Þ

:v̂:2
v̂

TBâr0, for ð:v̂:¼Dvandsv̂TBâ40Þ:

ð69Þ

Then, the derivative of Lyapunov function (49) can be rewrit-
ten as

_V 2 ¼ ZIVaIþVmþVv�sZPâ
T
pĤþsðeþ _urcÞ

rsðeþ _urcÞ: ð70Þ

By substituting the robust controller (54), (70) can be rewrit-
ten as

_V 2rse�ðd
2
þ1Þs2

2d2
r�

s2

2
�

1

2

s
d
�de

� �2
þ

1

2
d2e2

r�
s2

2
þ

1

2
d2e2: ð71Þ

Using the same discussion in Section 3.3, the stability of the
proposed ADCNC system with the projection algorithm can be
guaranteed.

4. Simulation results

In this section, the proposed ADCNC system is applied to control
a chaotic system to verify its effectiveness. It should be emphasized
that the development of the ADCNC system does not need to know
the system dynamics of the controlled system. In the following, the
design steps of the ADCNC system are summarized as follows

Step 1: Initialize the pre-defined parameters of the ADCNC
system.
Step 2: The tracking error e, sliding surface s and second-order
sliding surface s are given in (4), (5) and (7), respectively.
Step 3: Calculate the distance between incoming data z and
mj. If dminZdth is satisfied, a new Gaussian function is
generated with initial parameters are give in (21)–(23). If
condition is not satisfied, go to next step.

Fig. 8. Simulation results of ADCNC with PI-type learning algorithm for q¼2.1.Fig. 7. Simulation results of ADCNC with I-type learning algorithm for q¼7.0.
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Step 4: Update the significance index by (24). If Ijr Ith is
satisfied, the jth receptive-field basis function is removed. If
condition is not satisfied, go to Step 5.
Step 5: The output of DSCN identifier is given as âTĤ, where â,
m̂ and v̂ are estimated by (50), (58), (59) and (60), respectively.
Step 6: The control law is given in (40), where the computation
controller _ucc is given in (42) and the robust compensator is
given in (54).
Step 7: If end learning is false, return to Step 2, but if end
learning is true, go to STOP.

To show the effectiveness of the proposed DSCN which the
network structure can grow or prune systematically and their
parameters can be adjusted automatically, a fixing–structuring
RBF network is applied to estimate the change of the control
system dynamics. The simulation interval time is 0.001 s.The
simulation results of the ADCNC system with RBF network are
shown in Figs. 4 and 5 for q¼2.1 and q¼7.0, respectively. The
tracking responses of state x are shown in Fig. 4(a) and Fig. 5(a),

the tracking responses of state _x are shown in Fig. 4(b) and
Fig. 5(b), and the control inputs are shown in Fig. 4(c) and
Fig. 5(c). From these simulation results, it can be seen that a
favorable tracking performance can be achieved for q¼2.1 but
q¼7.0 cannot. It implies that the RBF network cannot estimate
the change of the control system dynamics well for q¼7.0.

The simulation interval time is 0.001 s. The control parameters
are selected as a1¼b1¼2, a2¼b2¼1, ZP¼20, ZI¼20,
Zm¼Zs¼Zr¼1, d¼1.0, dth¼0.3, t¼0.01, r¼0.2, Ith¼0.01, and
v¼ 1:0. These parameters are selected through trails. The para-
meters ZP, ZI, Zm, Zs and Zr are the leaning rates. For small
learning rates, convergence of tracking error can be easily
guaranteed but with slow convergence speed. If the learning rates
are too large, the parameter adaptation laws may lead to
instability of the control systems. The parameters dth and Ith
are the structure learning thresholds. If dth is smaller, more new
layer can be easily generated to achieve a better approximation
accuracy. If the computation loading is an important issue, Ith
should be chosen larger, so that more existing receptive-field
basis function can be canceled. To compare the tracking effi-
ciency, the ADCNC with an integral (I)-type learning algorithm is

Fig. 10. Simulation results of ADCNC with difference initial point for q¼2.1.Fig. 9. Simulation results of ADCNC with PI-type learning algorithm for q¼7.0.
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applied first. This is a special case of the developed ADCNC design
method for ZP¼0. The I-type learning algorithm can be found in
previous research works (Lin and Chen, 2009; Yeh, 2007). The
simulation results of the ADCNC system with I-type learning
algorithm are shown in Figs. 6 and 7 for q¼2.1 and q¼7.0,
respectively. The tracking responses of state x are shown in
Fig. 6(a) and Fig. 7(a), the tracking responses of state _x are shown
in Fig. 6(b) and Fig. 7(b), the control inputs are shown in
Fig. 6(c) and Fig. 7(c), and the number of the receptive-field basis
function are shown in Fig. 6(d) and Fig. 7(d). From these simula-
tion results, it can be seen that robust tracking performance can
be achieved without any knowledge of system dynamic functions.
However, the convergence of the controller parameter and track-
ing error is slow.

To speed up the convergence, the proposed PI-type learning
algorithm is applied with ZP¼10. The simulation results of the
ADCNC system with PI-type learning algorithm are shown in
Figs. 8 and 9 for q¼2.1 and q¼7.0, respectively. The tracking
responses of state x are shown in Fig. 8(a) and Fig. 9(a), the
tracking responses of state _x are shown in Fig. 8(b) and Fig. 9(b),
the control inputs are shown in Fig. 8(c) and Fig. 9(c), and the

number of the receptive-field basis function are shown in
Fig. 8(d) and Fig. 9(d). It is shown that the convergences of the
tracking error and control parameter are accelerated by the
PI-type learning algorithm. So the number of DSCN layer can be
reduced comparing with Fig. 6(d) and Fig. 7(d). To demonstrate
the robust performance of the proposed ADCNC system, a initial
point changes to (1,1). The simulation results with initial point
(1,1) are shown in Figs. 10 and 11 for q¼2.1 and q¼7.0,
respectively. The tracking responses of state x are shown in
Fig. 10(a) and Fig. 11(a), the tracking responses of state _x are
shown in Fig. 10(b) and Fig. 11(b), the control inputs are shown in
Fig. 10(c) and Fig. 11(c), and the number of the receptive-field
basis function are shown in Fig. 10(d) and Fig. 11(d). The
simulation results show that not only the perfect tracking can
be achieved but also the PI-type learning algorithm can speed up
the convergence of the tracking error.

Finally, to achieve smaller attenuation level, the case for d¼0.1
is reconsidered. The simulation results of the ADCNC system with
smaller attenuation level are shown in Figs. 12 and 13 for q¼2.1

Fig. 12. Simulation results of ADCNC with smaller attenuation level for q¼2.1.Fig. 11. Simulation results of ADCNC with difference initial point for q¼7.0.
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and q¼7.0, respectively. The tracking responses of state x are
shown in Fig. 12(a) and Fig. 13(a), the tracking responses of state
_x are shown in Fig. 12(b) and Fig. 13(b), the control inputs are
shown in Fig. 12(c) and Fig. 13(c), and the number of the
receptive-field basis function are shown in Fig. 12(d) and
Fig. 13(d). It is shown that the better tracking performance can
be achieved as specified attenuation level d is chosen smaller.

5. Conclusions

This paper has successfully developed a dynamic structure
CMAC network (DSCN) with online adjusting suitable memory
space of the CMAC network. In the memory reinforcement
process, new associative memories will be generated when the
current architecture is insufficient. On the other hand, the
inefficient memories will be detected and reorganized in the
memory reorganization process. Then, an adaptive dynamic
CMAC neural control (ADCNC) system with a proportional–
integral (PI)-type adaptation learning algorithm is proposed. The
proposed ADCNC system is composed of computation controller

and a robust compensator. The computation controller containing
a DSCN identifier is the principal controller and the robust
compensator is designed to achieve a L2 tracking performance
with desired attenuation level. The proposed adaptation laws are
derived in the sense of Lyapunov function and Barbalat’s lemma,
thus the system can be guaranteed to be stable. Finally, some
simulation results show the effectiveness of the proposed ADCNC
system. The simulation results verify the proposed PI-type learn-
ing algorithm can achieve a faster convergence of the tracking
error and controller parameters. And, the self-constructing
approach demonstrates the properties of generating or pruning
the layers in CMAC network automatically.
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