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ABSTRACT: This numerical study investigates the behaviour of geosynthetic-encased sand columns.

Based on an elastic-plastic constitutive model used with the non-associated flow rule, the prominent

expansive behaviour of medium to dense sands is characterised. Numerical analysis results are

verified via laboratory triaxial tests on encased sand columns, where the sand mechanical

properties are extracted from simple experimental tests. The tested sand columns in the experiments

consist of two sands, encased by sleeves fabricated from two geotextiles. This verification

demonstrates that the sand volumetric strain profoundly affects the induced confining pressure of

an encased column. Exactly how the encasement stiffness, strength and diameter of the granular

column influence encased column response is also studied using numerical analyses. Numerical

results indicate that the encasement induces additional confining pressure, subsequently preventing

strength yield in the encased columns before the encasement reaches its yield strength. These

results further demonstrate that the ratio of encasement stiffness to column diameter significantly

affects the response of a granular column. Moreover, it may be unnecessary to encase a small-

diameter column with a stiff encasement, whereas encasing a large diameter column with a low-

stiffness encasement may produce a limited reinforcing effect.
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1. INTRODUCTION

Including granular material in soft soil increases the

bearing capacity of a native soil. However, insufficient

lateral support at a shallow column depth (i.e. in the top

portion) often causes bulging failure in the top portion of

the column (Hughes and Withers 1974; Hughes et al.

1975; Madhav and Miura 1994; Gniel and Bouazza 2009).

There is a practice to increase the bearing capacity of a

granular column by reinforcing the column with a tensile

resistant material. Previous studies have demonstrated the

feasibility of encapsulating all or a portion of the column

with geosynthetics as an adaptable reinforcement practice

(Kempfert et al. 1997; Raithel and Kempfert 2000;

Alexiew et al. 2005; Raithel et al. 2005; Madhavi and

Murthy 2007; de Mello et al. 2008; Sivakumar Babu et al.

2008; Araujo et al. 2009; Yoo 2010).

The many elements affecting the bearing capacity of a

reinforced column embedded in soft soil include the

granular and reinforcing materials, the surrounding soft

soil, the interfacial characteristics of the various materials

and the geometric and mechanical boundary conditions.

The load–settlement behaviour of reinforced columns in

single or grouped formation has received considerable

attention. These studies include theoretical and numerical

analyses, laboratory experimental investigations and field

applications. Additionally, on the basis of results of

triaxial tests (e.g. axial stress–strain–volumetric strain),

the effectiveness of a reinforced column has been analysed

(e.g., increases in strength and stiffness and expansion

restraint) or the feasibility of numerical or theoretical

methods has been validated (Broms 1977; Gray and Al-

Refai 1986; Chandrasekaran et al. 1989; Rajagopal et al.

1999; Raithel and Kempfert 2000; Kempfert 2003; Mur-

ugesan and Rajagopal 2006; Malarvizhi and Ilamparuthi

2007; Wu and Hong 2009; Wu et al. 2009; Yoo and Kim

2009; Khabbazian et al. 2010; Yoo 2010; Zhang et al.

2011). Moreover, single or grouped column behaviour

embedded in soft soil was studied using model tests

(Ayadat and Hanna 2005; Murugesan and Rajagopal 2007,

2010; Gniel and Bouazza 2009; Ali et al. 2012). The

effectiveness of reinforced column practices in the field

was also described (Broms 1995; Alamgir et al. 1996;
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Nods 2002; Raithel et al. 2002; Araujo et al. 2009). These

studies found that encasement significantly improves the

bearing capability and lateral constraint of a granular

column.

The increase in axial strain causes lateral column

expansion and compression of the surrounding soft soil,

subsequently causing circumferential stress from the en-

casement; meanwhile, compression of the surrounding soil

induces additional earth pressure to act on the column.

The reinforced column in the field is thus subjected to

increasing axial stress while, coincidentally, the confining

pressure is increased. These problems can be solved in

theoretical and numerical analyses by modelling the mech-

anical properties of the material as a function of the

monotonically increasing confining pressure.

The numerical method has advantages over the theor-

etical method in analysing structures with complex geo-

metric and load conditions such as columns embedded in

limited radial spacing with non-uniform pressure distrib-

uted along the column length. By using a representative

single column and its influential boundary, a ‘unit cell’

concept is introduced to the numerical method for group

column analysis (Shahu et al. 2000; Han and Gabr 2002;

Ambily and Gandhi 2007; Yoo and Kim 2009; Lo et al.

2010; Pulko et al. 2011). A stone-column reinforced

foundation was also analysed using a homogenisation

technique (Canetta and Nova 1989; Lee and Pande 1998).

Variations in the confining pressure during column axial

loading should be expressed explicitly since confining

pressure significantly affects the mechanical properties of

a granular material. The confining pressure of an encased

column depends strongly on the volumetric behaviour of a

column because volumetric strain induces column expan-

sion and radial strain, subsequently increasing the circum-

ferential stress in the encapsulating reinforcement and

cavity pressure offered by the surrounding soft soil. A

numerical model capable of accurately evaluating volu-

metric strain is thus essential to analyse the bahaviour of

reinforced granular columns, single or grouped, while

embedded in soft soil.

This study elucidates the behaviour of an encased

granular column using a numerical method. The proposed

method incorporates the elastic-plastic constitutive law

with the non-associated flow rule for filled material and

the elastic-perfectly plastic relationship for encasement. In

a numerical analysis the prediction accuracy and target

system parameter availability are important concerns

(Huang et al. 2009). The proposed model is based on the

above concerns and the fact that the material mechanical

parameters are extracted from simple tests, e.g., triaxial

compression test for pure sand and load–elongation tests

for reinforcement. The proposed method is validated

through laboratory experimental triaxial tests on un-re-

inforced and encased sand columns. With its easily

accessed parameters, the proposed method provides a

highly effective means of analysing reinforced columns

embedded in the field, which may encounter complex

circumstances. In addition, a series of parametric studies

thoroughly elucidates the influential factors for an encased

column.

2. NUMERICAL MODELING

2.1. Soil elastic-plastic model

This study develops a model based on the theory of non-

associated plasticity flow rules to elucidate the constitutive

behaviour of the sand filled in the column. The required

parameters in the analyses include the elastic modulus,

bulk modulus, yield function and plastic potential func-

tion, as derived from triaxial compression tests for a

cylindrical sand column specimen. The following subsec-

tions describe the mobilised friction angle and mobilised

dilatancy angle concepts used in this analysis.

2.1.1. Mobilised friction angle

To more accurately represent the continuous strain-hard-

ening behaviour of sand, a yield function f controlled by

the mobilised friction angle can be expressed as

f ¼ � 1 � � 3N�� � 2c
ffiffiffiffiffiffiffiffi
N��

p
(1)

where N�� ¼ (1þ sin��)=(1� sin��); �� ¼ mobilised

friction angle of the soil; c ¼ cohesion of the soil; and � 1,

� 3 ¼ major and minor principal stresses.

For a cohesionless soil (c ¼ 0), the mobilised friction

angle is defined by the principal stresses as

�� ¼ sin�1 � 1 � � 3

� 1 þ � 3

� �
(2)

The mobilised friction angle generally varies with the

principal stress values � 1 and � 3 (Equation 2). If stresses

� 1 and � 3 produce the yield state of a material, the yield

stresses also induce accumulated shear plastic strain �p
s in

a material. Therefore, the mobilised friction angle �� can

be correlated with the accumulated shear plastic strain �p
s :

For a cylindrical specimen subjected to triaxial com-

pression stresses, the accumulated shear plastic strain is

defined as (Miura and Toki 1982)

�p
s ¼

2

3
(�p

a � �p
r ) ¼ �p

a �
1

3
�p

v (3)

where �p
a ¼ accumulated axial plastic strain; �p

r ¼ accumu-

lated radial plastic strain; and �p
v ¼ accumulated volu-

metric plastic strain.

In the elastic-plastic model, the accumulated shear

plastic strain can be expressed as

�p
s ¼ �a � �e

a �
1

3
�v � �e

v

� �

¼ �a �
1

3
�v

� �
� ˜�

1

E
� 1

9B

� � (4)

where �a ¼ axial strain; �e
a ¼ axial elastic strain;

�v ¼ volumetric strain; �e
v ¼ volumetric elastic strain;

˜� ¼ deviatoric stress ¼ � 1 � � 3; E ¼ elastic modulus;

and B ¼ bulk modulus.

Equation 4 reveals that the accumulated shear plastic

strain can be obtained from the known deviatoric stress

and the measured axial and volumetric strains. Corre-

spondingly, the relationship between the accumulated
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shear plastic strain and mobilised friction angle can be

established using values obtained from Equations 2 and 4.

2.1.2. Mobilised dilatancy angle

The direction of plastic strain increment is not perpendi-

cular to the yield surface since some energy loss occurs

during shearing. Therefore, a plastic potential function g

is necessary to describe the plastic strain increment

(referred to as the non-associated flow rule). The plastic

potential function g for a non-associated flow rule can be

expressed as

g ¼ � 1 � � 3Nł� � 2c
ffiffiffiffiffiffiffiffi
Nł�

p
(5)

where g ¼ plastic potential function; Nł� ¼
(1þ sinł�)=(1� sinł�); and ł� ¼ mobilised dilatancy

angle.

According to the flow rule, the plastic strain increment

d�p
ij is defined as

d�p
ij ¼ º

@g

@�ij

(6)

where d�p
ij ¼ plastic strain increment; º ¼ a positive scale

value; and �ij ¼ stress tensor.

The volumetric plastic strain increment d�p
v denotes the

summation of plastic strain increments in three principal

directions, which can be written as

d�p
v ¼ d�p

1 þ 2d�p
3 ¼ º(1� Nł�) (7)

where d�p
1 ¼ plastic strain increment in the axial di-

rection ¼ º; and d�p
3 ¼ plastic strain increment in the

radial directions.

By substituting Nł� ¼ (1þ sinł�)=(1� sinł�) into

Equation 7 and rearranging the terms, the mobilised

dilatancy angle ł� can be written as

d�p
v

d�p
1

¼ 1� 1þ sinł�

1� sinł�

� �
¼ �2 sinł�

1� sinł�

� �
(8)

or

ł� ¼ sin�1 d�p
v

d�p
v � 2d�p

1

� �
(9)

The measured volumetric and axial strains and the

deviatoric stress accomplish the calculation of Equation 9.

2.2. Sand properties and parameters for numerical

modelling

This study also develops numerical expressions specifying

the constitutive behaviour of the test sands as a function

of monotonically increased confining pressure. The strain

hardening constitutive model following the non-associated

flow rule characterises the prominent expansive behaviour

of the medium to dense sands. Next, the mechanical

properties for numerical analysis are extracted based on

the experimental results obtained from cylindrical sand

specimens subjected to triaxial compression conditions.

Because no significant residual strength is observed, the

sand specimen is assumed to have no softening behaviour.

This section introduces the acquisition procedures in

determining the material parameters for the numerical

formations.

2.2.1. Modulus of elasticity of the test sands

One of the two sands, sub-angular and round-grained

shapes (designated as S1 and S2), and one of two

geotextile sleeves (designated as GT1 and GT2) consti-

tute the encased sand column. The sub-angular sand S1

has a specific gravity of Gs ¼ 2.63, maximum dry unit

weight of ªd max ¼ 16.48 kN/m3, and minimum dry unit

weight of ªd min ¼ 13.73 kN/m3: The round-shaped sand

S2 has a specific gravity of Gs ¼ 2.65, maximum dry

unit weight of ªd max ¼ 17.56 kN/m3, and minimum dry

unit weight of ªd min ¼ 14.62 kN/m3: Gradations of the

sands are as follows. S1: D10 ¼ 0.70 mm, D30 ¼ 0.76 mm,

D50 ¼ 0.84 mm, D60 ¼ 0.92 mm; coefficient of unifor-

mity equal to 1.31; coefficient of gradation equal to 0.90.

S2: D10 ¼ 0.24 mm, D30 ¼ 0.37 mm, D50 ¼ 0.40 mm,

D60 ¼ 0.41 mm; coefficient of uniformity equal to 1.71;

coefficient of gradation equal to 1.39. Both sands are

classified as poorly graded sand (SP) according to the

Unified Soil Classification System. Triaxial compression

tests are conducted on each type of dry sand compacted

to 60% relative density. Wu and Hong (2009) describe in

detail triaxial compression tests on unreinforced and

encased columns.

Figure 1 displays the axial stress–strain–volumetric

strain relation for cylindrical sand specimens subjected to

various chamber pressures. Notably, the initial tangential

modulus of the deviatoric stress–strain curve is taken as

the elastic modulus of the sand since sand behaves

elastically only in the minimal axial strain range. The

solid lines in Figure 1 denote the numerical analysis

results using the current model parameters. Figure 2

shows the relationship between the elastic modulus and

chamber pressure for the test sands. Regression expres-

sions for parameter E are developed from test results and

expressed as

E (kPa) ¼ 4:702 log
� 3

Pa

� �
þ 4:533

� �
3 104

for � 3 > 20 kPa and sand S1

(10)

and

E (kPa) ¼ 261:683� 3 þ 24330:2

for � 3 > 20 kPa and sand S2
(11)

where Pa ¼ 1 kg/cm2 ¼ 101.4 kPa.

The two regression functions are formulated using

triaxial compression test results conducted over the con-

fining pressure ranges of 20–500 kPa, and 20–200 kPa

for soils S1 and S2, respectively. The Poisson ratio of the

sands is taken as 0.35, and the bulk moduli are calculated

accordingly.

2.2.2. Mobilised friction angles of the test sands

In the continuous strain-hardening model, subjection of

the soil specimen to principal yield stresses � 1 and � 3

induces mobilised friction angle �� (Equation 2) and
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accumulated shear plastic strain �p
s (Equation 4). Figure 3

plots the relations between these two parameters for the

two test sands. This figure reveals that mobilised friction

angle increases with increasing accumulated shear plastic

strain and reaches a peak and persistent value. The peak

accumulated shear plastic strain and the peak deviatoric

stress occur simultaneously. The accumulated shear plastic

strain at the peak deviatoric stress depends on the confin-

ing pressure. Figure 4 shows the relationship between the

accumulated shear plastic strain at the peak deviatoric

stress �p
s,peak and the confining pressure. The relation can

be expressed as
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�p
s,peak ¼ 0:047 ln(� 3)� 0:094 for sand S1 (12)

and

�p
s,peak ¼ 0:016 ln(� 3)þ 0:013 for sand S2 (13)

where �p
s,peak ¼ accumulated shear plastic strain at peak

deviatoric stress.

For easy numerical expressions, each curve in Figure 3

is divided into two segments, pre-peak and post-peak

segments. In the pre-peak stress segment, the relationship

between the mobilised friction angle �� and the accumu-

lated shear plastic strain �p
s is delineated using a parabolic

function. The mobilised friction angle in the post-peak

stress segment has a constant value and depends only on

the confining pressure. The relationships between the

mobilised friction angle and the accumulated shear plastic

strain for the test sands (Figure 3) are regressed and

expressed as

��¼ [1�u(�p
s��

p
s,peak)�

3
10000�p

s

[0:248ln(� 3)�0:557]þ[5:805ln(� 3)þ238]�p
s

	 


þu(�p
s��

p
s,peak)[(�0:735)ln(� 3)þ40:695�

(14)

for sand S1, and

��¼ [1�u(�p
s��

p
s,peak)�

3
10000 �p

s

[0:198ln(� 3)�0:262]þ[1:878ln(� 3)þ268]�p
s

	 


þu(�p
s��

p
s,peak)[(�0:368)ln(� 3)þ36:797�

(15)

for sand S2, where u ¼ the unit step function.

Figure 3 summarises the results of these two regression

functions (Equations 14 and 15), which correlate well with

the experimental results.

2.2.3. Mobilised dilatancy angles of the test sands

Triaxial compression test results indicate that a sand

column specimen contracts and then expands with an

increasing axial strain. The axial compression and volu-

metric contraction or expansion cumulatively induce lat-

eral expansion in the column. This lateral deformation

stretches the sleeve, subsequently leading to circumferen-

tial tensile stress (i.e. hoop stress) in an encased column.

A numerical scheme must be developed, capable of

modelling the volumetric behaviour of the constituent sand

in a column to vary the confining pressure acting on the

encased column during axial compression.

Most numerical analyses on encased column behaviour

model sand as an elastic-perfectly plastic model with

Mohr–Coulomb yield criteria due to its simplicity. How-

ever, this model deduces that soil contracts until stress

yield occurs, thus contradicting the nature of medium to

dense sand and ultimately underestimating both the vo-

lume expansion of medium to dense sand and the reinfor-
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cing effect of an encasing sleeve. Therefore, this study

more thoroughly elucidates the soil behaviour by devising

more complex procedures than the elastic-perfectly plastic

model with a simple yield criterion.

The expansive behaviour of a granular material can be

delineated through the change in dilatancy angle. Accord-

ing to subsection 2.1.2. the dilatancy angle of a granular

material is expressed as a function of the volumetric and

axial strain increments (Equation 9), whereas these two

strain increments are related to the accumulated shear

plastic strain. Based on the experimental results, Figure 5

shows the relation between the mobilised dilatancy angle

and the accumulated shear plastic strain for the test sands.

The data in Figure 5 are grouped into three segments

for ease of numerical expression. The two neighbouring

segments are divided on the basis of the stages of

volumetric strain: contraction, expansion and residual

stages. Exactly how the mobilised dilatancy angle and the

accumulated shear plastic strain are related is described

using a function. The three stages are as follows.

(a) Contraction stage, in which no dilatancy angle

occurs (ł� ¼ 0) in the sand behaviour (i.e.

�p
s < �p

s,exp) (Figure 5). Therefore, the mobilised

dilatancy angle in this stage is assumed to be zero.

Figure 1 reveals that the axial strains corresponding

to the initiation of expansive and residual stages in

the test sands depend on the confining pressure. A

higher confining pressure extends both the contrac-

tion and expansion behaviours of a column to greater

axial strains. Figure 6 illustrates that the accumulated

shear plastic strain at initial dilation and the

confining pressure are related. These two variables

are regressed using Equations 16–19.

For sand S1,

�p
s,exp ¼ 0 for � 3 , 39 kPa (16)

and

�p
s,exp ¼

(0:329� 3 � 12:578)

10 000
for � 3 > 39 kPa

(17)

and for sand S2,

�p
s,exp ¼ 0 for � 3 , 11 kPa (18)

and

�p
s,exp ¼ 0:005 ln(� 3)� 0:012 for � 3 > 11 kPa

(19)

where �p
s,exp ¼ accumulated shear plastic strain at

initial dilation.

(b) Expansion stage, in which the dilatancy angle is

developed and increased with the increase in axial

strain up to a peak value (i.e. �p
s,exp , �p

s < �p
s,res).

The mobilised dilatancy angle and the accumulated
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shear plastic strain are related using a hyperbolic

function.

Figure 7 shows how the accumulated shear plastic

strain at the initial residual stage and the confining

pressure are related. These two variables are

regressed using Equations 20 and 21.

For sand S1,

�p
s,res ¼ 0:017 ln(� 3)� 0:018 (20)

and for sand S2,

�p
s,res ¼ 0:004 ln(� 3)þ 0:051 (21)

where �p
s,res ¼ accumulated shear plastic strain at the

peak mobilised dilatancy angle, or the initial residual

stage.

(c) Residual stage, in which the post peak value in the

mobilised dilatancy angle decreases with an increas-

ing accumulated shear plastic strain (i.e. �p
s . �p

s,res).

The decreasing rate is irrelevant to the confining

pressure value. Exactly how these two parameters are

related is modelled as a decreasing linear function.

The data shown in Figure 5 are regressed using

Equations 22 and 23.

For sand S1,

ł� ¼ u(�p
s � �p

s,exp)u(�p
s,res � �p

s ) f �(�p
s )

� �

þ u(�p
s � �p

s,res) f �(�p
s,res)� 38(�p

s � �p
s,res)

� �
(22)

where

f �(�p
s ) ¼ �p

s

e 0:008� 3�9:546ð Þ þ 0:007 ln(� 3)þ 0:046½ ��p
s

and for sand S2,

ł� ¼ u(�p
s � �p

s,exp)u(�p
s,res � �p

s ) f �(�p
s )

� �
þ u(�p

s � �p
s,res) f �(�p

s,res)� 33(�p
s � �p

s,res)
� �

(23)

where

f �(�p
s ) ¼ 10 000 �p

s

[5:525 ln(� 3)� 12:948]
þ [23:469 ln(� 3)þ 1239:466]�p

s

Figure 5 reveals that a sand specimen subjected to a

higher confining pressure reaches its peak dilatancy angle

at a greater plastic shear strain. The regression equations

(Equations 22 and 23) produce the solid lines in Figure 5,

where the mobilised dilatancy angle varies with the

accumulated shear plastic strain in three fractions. The

results evaluated using the numerical functions (Equations

22 and 23) correlate well with those from the experimental

tests, especially for sand S2, whereas the round shaped

sand dilates less and the specimens are tested under a

narrower chamber pressure range (20–200 kPa).

2.3. Encasement property parameters for numerical

modelling

2.3.1. Constitutive properties of the encasement

By using the tensile load–strain relation obtained from the

wide-width test, the reinforcement properties are derived

on the basis of the results depicted in Figure 8. To

incorporate the effect of sewing on the extension behav-

iour of the sleeve in the triaxial compression test, two

pieces of geotextile were sewn into a 200 mm 3 100 mm

test specimen. The tensile test was performed using a

strain rate of 0.24 mm/min. This rate is markedly slower

than that used in the ASTM specification (10 mm/min)

but approximates the circumferential strain rate of the

geotextile sleeves in the triaxial tests.

In the experimental tests for encased columns, the

maximum circumferential strain of the reinforcement is

approximately 13–15% corresponding to 20% axial col-

umn strain, depending on the filled sand and chamber

pressure. In this strain range, the test geotextiles (GT1 and

GT2) exhibit a nearly linear tensile load–strain relation-

ship. The reinforcement is thus modelled as a linear

elastic-perfectly plastic material. One third of the peak

strength secant modulus is assumed here to represent the

elastic modulus. Given that this experimental test does not

address a situation in which the encased column encoun-

ters encasement failure, the high rupture strain of the

geotextiles used can avoid tensile failure of the encase-

ment. In the real-case problem, the use of high-tensile

rupture encasement may be unnecessary.

2.3.2. Poisson ratio of the encasement

For an encased column with initial and deformed radii of

r0 and r1, the encasement circumferential strain equals the

radial strain of a column as

�Ł ¼
2�(r1 � r0)

2 � r0

¼ r1 � r0

r0

¼ �rad (24)
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where �Ł, �rad ¼ the encasement circumferential strain and

radial strain of column.

If a flexible material such as a geosynthetic is used to

encase the granular column, the encased column axial

compression does not induce circumferential tensile strain

in the encasement through Poisson’s effect because the

encasement only resists tension. The sleeve wrinkles when

the axial load is applied to the encased column. Addition-

ally, the circumferential tensile strain (as derived in Equa-

tion 24) is smaller than the axial compressive strain,

explaining why circumferential tensile strain caused by

column expansion does not induce axial strain through

Poisson’s effect. Therefore, the Poisson ratio of the

encasement is taken as zero in the analysis.

2.4. Outline of the analysis

The behaviour of the encased sand columns is analysed

using the constitutive properties of the constituents de-

scribed in subsections 2.2. and 2.3. Figure 9 displays a

symmetrical model of a 70 mm 3 140 mm (diameter 3

length) cylindrical sand column specimen encased in a

geotextile sleeve. The numerical analysis is performed

using the commercial code FLAC. The encased column,

subjected to a constant chamber pressure, is compressed

in the axial direction by applying a 10�9 m/step rate on

the upper boundary. Because the encasement and the soil

deform simultaneously in the axial direction, no interfacial

element is applied to the interface of these materials.

3. NUMERICAL RESULTS

3.1. Validation of the proposed model

The triaxial compression test results calculated using the

proposed method for pure sands are presented as solid

lines in Figure 1. At a certain axial strain, the maximum

discrepancy in deviatoric stresses between the measured

and numerically calculated values is less than 3%. How-

ever, the measured and numerically calculated volumetric

strains have a greater discrepancy between each other. The

sub-angular sand S1 produces a higher volumetric strain
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than the round-shaped sand S2; in addition, the maximum

discrepancy between the calculated and measured volu-

metric strain at 20% axial strain for the sand S1 is 7%.

Figure 10 shows numerical calculations using an elas-

tic-perfectly plastic model with Mohr–Coulomb yield

criteria. This figure reveals that this model with a hyper-

bolic stress–strain function can accurately predict the

deviatoric stress–strain relation. Nevertheless, large dis-

crepancies arise between the calculated and measured

volumetric strains because the model infers contractive

behaviour in the material until yielding.

Comparing the experimental and numerical results for

an encased sand column demonstrates the advantages of

mobilised friction and dilatancy angle modelling in this

study. Figure 11 displays the deviatoric stress and volu-

metric strain against axial strain for a 70 mm diameter S2

sand column encased in a GT2 geotextile under 50 kPa

chamber pressure. The proposed model accurately predicts

both deviatoric stress and volumetric strain, whereas

predictions using an elastic-perfectly plastic model deviate

strongly from the measured values owing to improper

volumetric predictions. The simple model underestimates

the deviatoric stress owing to its inability to elucidate the

expansive behaviour of a granular material in the early

strained stage.

The solid lines in Figure 12 show the numerically

calculated deviatoric stresses and volumetric strains for

encased sand columns in laboratory tests. This figure

reveals very good agreements in both deviatoric stress and

volumetric strain between the experimental and calculated

values for an S2 sand column encased with GT2 geotex-

tile. The calculated deviatoric stress agrees well with the

experimental results for the S1 sand column encased in

GT1 geotextile. However, most of the calculated volu-

metric strain values are higher than the measurement

results.

The circumferential tensile stress of the encasement due

to column expansion increases the confining pressure. The

increase in confining pressure due to encasement stretch-

ing is referred to herein as ‘induced confining pressure,

� f ’. Figure 13 shows the calculated induced confining

pressure for the S1-GT1 and S2-GT2 soil-encasement

columns. This figure reveals that geotextiles with rel-

atively low stiffness (30.51 kN/m and 35.30 kN/m for GT1

and GT2) significantly increase the confining pressure on

a small-diameter sand column (70 mm). The variation in

volumetric strain against chamber pressure for the S1 sand

disperses to a greater range (Figure 1), subsequently

leading to the S1-GT1 soil-encasement columns spreading

their induced confining pressures to a greater range
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(Figure 13a). Conversely, chamber pressure affects, to a

lesser extent, the induced confining pressure for the S2-

GT2 soil-encasement column (Figure 13b). Analysis re-

sults indicate that the volumetric strain of pure sand

profoundly affects the induced confining pressure of an

encased column. These results also demonstrate the

importance of accurate volumetric strain evaluation for

pure sand.
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3.2. Parametric studies

This section examines the column diameter, and encase-

ment stiffness and strength effects on the encased column

performance. This study numerically investigates the be-

haviour of the encased column using the proposed model.

3.2.1. Effect of column diameter on encased column

response

Encasement with three elastic moduli (35.3 kN/m,

100 kN/m, 1000 kN/m) is used to encase a column con-

sisting of S2 sand. The columns for each of the three

encasement elastic moduli have diameters 70 mm,

200 mm, 500 mm, 750 mm and 1000 mm. In the analyses,

the encasement is assumed here to extend without yielding

in strength.

Figure 14 displays the variations in deviatoric stress

and volumetric strain against axial strain for columns of

various diameters. Figure 14a indicates that an encase-

ment with low stiffness can significantly affect the

deviatoric stress for a small (70 mm) diameter column.

However, the reinforcing effect decreases with increasing

column diameter. Also, a low-stiffness encasement

slightly affects the deviatoric stress for a large-diameter

column (1000 mm). Obviously, an encasement with high

stiffness markedly affects columns of all sizes. However,

using a high-stiffness encasement to reinforce a small-

diameter column dramatically increases the column

strength (Figure 14c).

3.2.2. Effect of encasement stiffness on encased column

response

The extent to which encasement stiffness affects a 0.5 m

diameter column composed of S2 sand is examined using

the proposed numerical model. The encased column

sustains a chamber pressure of 50 kPa. The encasement

stiffness J ranges from 35.3 kN/m to 5000 kN/m, which

includes various encasement materials. Figure 15 sum-

marises the numerical results. Again, the encasement is

assumed here to extend without yielding in strength.

Figure 15 displays the values of deviatoric stress and

induced confining pressure at 20% axial strain corre-

sponding to different stiffnesses of encasement. As is

expected, the higher the encasement stiffness the higher

the deviatoric stress and induced confining pressure, and

the lower the volumetric strain. From this, a high-stiffness

encasement restrains the development of volumetric strain

more (Figure 15a); a column encased with a higher-

stiffness encasement generates a lower efficiency in con-

fining pressure increment. The ratio � f=J (unit: 1/m) of

an encased column at 20% axial strain decreases from

0.482 to 0.415 for encasement stiffness ranging from

35.3 kN/m to 5000 kN/m.

Figure 15 reveals that different encasement stiffnesses

and column diameters comprise encased columns with

the same stiffness/diameter ratio and produce the same

results (J ¼ 500 kN/m, D ¼ 0.5 m; and J ¼ 1000 kN/m,

D ¼ 1.0 m).

The circumferential (ring) tensile strain of the encase-

ment can be calculated using Equation 25 (Wu and Hong

2009).

�Ł ¼
r1 � r0

r0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �v

1� �1

r
� 1 (25)

Additionally, the reinforcing effect of an encasement

can be represented in terms of induced confining pressure.

By assuming a constant encasement stiffness, the encase-

ment-induced confining pressure � f can be expressed as
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� f ¼
J�Ł
r1

¼ J

r0

1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �v

1� �1

r
2
64

3
75 (26)

Figure 15b plots the encasement-induced confining

pressures evaluated using Equation 26. The agreement

between numerical analysed and closed form solutions

was satisfactory.

3.2.3. Effect of encasement strength on encased column

response

For an encased column, the increased confining pressure

mobilises the compressive strength and resistance to

further deformation of the column in an interactive

manner. Therefore, no distinct sign of strength yield can

be found in the encased columns, especially for a small-

diameter column or a column encased with a high-

stiffness encasement material (Figures 14 and 15a).

The above inference can be drawn only on the basis of

no yield in the encasement strength assumption. Next,

exactly how the encasement strength affects the perform-

ance of an encased column is illustrated using a 0.5 m

diameter column. The column sustained 50 kPa chamber

pressure and was encased with encasements of two

stiffness (100 kN/m and 1000 kN/m). Figure 16 describes

the deviatoric stress and volumetric strain for column

encased with encasements of various strengths. A distinct

encased-column yield due to encasement yielding is ob-

served.

If the encasement yield strain �y ¼ T fy=J , where T fy

denotes the tensile strength of the encasement, exceeds the

circumferential strain �Ł calculated using Equation 25 (i.e.

�y > �Ł), the encased column does not yield prior to the

axial strain �1:
For a column wrapped with encasement of

J ¼ 1000 kN/m and T fy ¼ 10 kN/m, 50 kN/m and

100 kN/m, the axial strains corresponding to the yield of

the encased columns are 2.1%, 9.2% and 18.1%, respec-

tively (Figure 16a). The yield of an encased column with

J ¼ 100 kN/m and T fy ¼ 10 kN/m occurs at an axial strain

of 17.1% (Figure 16b).

4. CONCLUSIONS

This study presented a numerical analysis method to

elucidate the behaviour of geosynthetic-encased sand

columns. An important characteristic, the dilative behav-

iour, of the medium to dense sand was also examined.

This study investigated the behaviour of a single rein-

forced column subjected to constant external confining

pressure. Although the studied column and columns

embedded in the field differ somewhat in load and

boundary conditions, understanding the reinforcing me-

chanism and the factors essential to the column behaviour

contributes significantly to advancement of embedded

column studies. The following conclusions can be drawn

from the results of this study.

• The simple elastic-plastic model with Mohr–

Coulomb yield criterion accurately predicts deviato-

ric stress for pure soil. However, the simple model

underestimates the deviatoric stress for the encased

column due to the inability to evaluate the

volumetric strain of sand in the pre-yield state.

Generally, the simple model predicts volume

contraction until the yield state, which contradicts

the volumetric expansion behaviour for most medium

to dense sands and ultimately underestimates the

induced confining pressure.
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• Results obtained from the proposed numerical model

correspond closely to the laboratory-observed results

for un-reinforced and encased columns, both in

deviatoric stress and volumetric strain. Thorough

elucidation of the volumetric strain behaviour of the

filled material is essential for accurately predicting

encased column performance.

• For a sand column encased by a tensile resistant

sleeve, the chamber pressure only slightly affects the

magnitude of the induced confining pressure if the

volumetric strain with chamber pressure for the pure

sand varies only slightly. The two encased sand

columns tested have a small range in induced

confining pressure for chamber pressure ranging

from 20 kPa to 200 kPa.

• The encasement stiffness and column diameter

significantly affect the induced confining pressure of

an encased column. Numerical results indicate that

using a low-stiffness encasement to reinforce a large-

diameter column produces a limited reinforcement

effect. However, using a high-stiffness encasement to

reinforce a small-diameter column results in an

excessively high confining pressure.

• The sleeve hoop stress exerts an additional confining

pressure on the encased column, subsequently

mobilising its compressive strength and resistance to

further deformation in an interactive manner. There-

fore, no distinct sign of strength yield can be found

in the encased columns before the encasement

reaches its yield strength.
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NOTATION

Basic SI units are given in parentheses.

B bulk modulus (Pa)

c cohesion (Pa)

d�p
ij plastic strain increment (dimensionless)

d�p
v volumetric plastic strain increment

(dimensionless)

d�p
1 plastic strain increment in the axial direction

(dimensionless)

d�p
3 plastic strain increment in the radial

directions (dimensionless)

D diameter of column (m)

10 kN/m
50 kN/m
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E elastic modulus (Pa)

f yield function (Pa)

g plastic potential function (Pa)

Gs specific gravity of soil solids (dimensionless)

J stiffness of encasement (N/m)

N�� mobilised friction angle function

(dimensionless)

Nł� mobilised dilatancy angle function

(dimensionless)

Pa atmospheric pressure (Pa)

r0 initial radii of column (m)

r1 deformed radii of column (m)

T fy tensile strength of the encasement (N/m)

u unit step function (dimensionless)

�� mobilised friction angle (degrees)

ªd max maximum dry unit weight (N/m3)

ªd min minimum dry unit weight (N/m3)

�a axial strain (dimensionless)

�e
a axial elastic strain (dimensionless)

�p
a accumulated axial plastic strain

(dimensionless)

�p
r accumulated radial plastic strain

(dimensionless)

�rad radial strain of column (dimensionless)

�p
s accumulated shear plastic strain

(dimensionless)

�p
s,exp accumulated shear plastic strain at initial

dilation (dimensionless)

�p
s,peak accumulated shear plastic strain at the peak

deviatoric stress (dimensionless)

�p
s,res accumulated shear plastic strain at the peak

mobilised dilatancy angle, or the initial

residual stage (dimensionless)

�v volumetric strain (dimensionless)

�p
v accumulated volumetric plastic strain

(dimensionless)

�e
v volumetric elastic strain (dimensionless)

�y encasement yield strain (dimensionless)

�1 axial strain (dimensionless)

�Ł encasement circumferential strain

(dimensionless)

º positive scale value (dimensionless)

� f induced confining pressure (Pa)

�ij stress tensor (Pa)

� 1 major principal stress (Pa)

� 3 minor principal stress (Pa)

ł� mobilised dilatancy angle (degrees)

˜� deviatoric stress (Pa)
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