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Abstract 
Reconfiguring meshes in a faulty Supercube is investigated in the paper. The result can readily be 

used in the optimal embedding of a mesh (or a torus) of processors in a faulty Supercube with 

unbounded expansion. There are embedding algorithms proposed in this paper. These embedding 

algorithms show a mesh with any number of nodes can be embedded into a faulty Supercube with load 

1, congestion 1, and dilation 3 such that O(n
2
-w

2
) faults can be tolerated, where n is the dimension of 

the Supercube and 2
w
 is the number of nodes of the mesh. The meshes and hypercubes are widely used 

interconnection architectures in parallel computing, grid computing, sensor network, and cloud 

computing. In addition, the Supercubes are superior to hypercube in terms of embedding a mesh and 

torus under faults. Therefore, we can easily port the parallel or distributed algorithms developed for 

these structuring of mesh and torus to the Supercube. 
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1. Introduction 

 
From the computational perspective, hypercube [3] multiprocessors have recently offered a cost 

effective and feasible approach to supercomputing through parallelism at the processor level by 

directly connection a large number of low-cost processors with local memories which communicate by 

message-passing instead of shared variables. Therefore, hypercubes are widely used interconnection 

architectures in parallel computing, grid computing, and cloud computing [5, 18, 20].  

The hypercube topology has been used as the basis of several parallel computers since it offers a 

rich interconnection structure, high data bandwidth, low message latency, and small diameter. Some 

examples include the Connection Machine from Thinking Machines, Intel iPSC, NCUBE/10, 

Caltech/JPL, and the Cosmic Cube developed at California Institute of Technology [13]. A hypercube 

or a binary n-cube computer is a multiprocessor characterized by the presence of N=2
n
 processors 

interconnected as an n-dimensional binary cube. Each processor Pi forms a node (vertex) of the cube 

and is a self-contained computer with its own CPU and local main memory. Pi has edges 

(communication links) to n other processors (its neighbors), which correspond to the edges of the cube 

that are connected directly to Pi. 2
n
 distinct n-bit binary addresses or labels may be assigned to the 

processors so that each processor's address differs from that of each of its neighbors in exactly one bit 

position. Figure 1 illustrates the hypercube topology for n<3; note that a zero-dimensional hypercube is 

a conventional SISD computer [8]. 

 

 
Figure 1. The hypercube topology for n<3 

 

A number of two-dimensional mesh-based networks have been proposed, owing to their advantages 

of scalability, modularity, expandability, and degree boundedness. Commercial multiprocessor 

products based on the mesh and torus has been announced from Ametek and Intel Scientific Computers. 

Mesh-based designs have been used in the ILLIAC IV computer, Intel Paragon, Cray T3D, and the 
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Goodyear MPP massively parallel computer. A mesh connected computer [8] is easy to construct 

because it is regular, it has short connections, it requires only four connections per node, and it is 

possible to build in two dimensions without having any connections cross. Each node that is not on an 

edge of the array has a direct connection with its four nearest neighbors. At the same time, the top row 

is connected to the bottom row and leftmost column is connected to the rightmost column, so the 

interconnections logically form a torus. The construction of such a machine in two dimensions requires 

that some connections cross. The mesh and torus are two of the most important networks for parallel 

computers. A great deal of research has focused on the mesh and torus networks and several parallel 

computers have been built with 2- or 3-dimensional mesh or torus topologies. Examples include the 

CLIP4, the GAPP (NCR Microelectronic Products Division), the MPP (of Goodyear Aerospace), the 

MP-1 (sold by MASPAR Corporation), and the J-machine is a project at MIT in a 3-dimensional mesh 

topology. Mesh connected computers were shown to be efficient in performing many image and matrix 

operations. If a mesh connected computer can be simulated with a hypercube or a hypercube-derived 

computer, those same algorithms can be used on these other topologies. In the paper, one of the most 

important issues in the design of a system which contains many components is the system’s 

performance in the presence faults. Among the static interconnection networks used for SIMD 

computers with an array of processors, one of the oldest and very popular architectures is a two-

dimensional-mesh. Many important algorithms for solving various problems, e.g., matrix operations, 

simultaneous linear equations, graph-theoretic and image processing problems, etc., have been 

efficiently embedded in this mesh architecture. The mapping of a task graph or an algorithm to a 

parallel architecture is a fundamental problem in parallel computation. It arises in the context of 

efficiently implementing an algorithm developed for a particular architecture onto another architecture 

of different topology and size, as well as in the context of allocating processes with dependencies to 

processors. The objective of a mapping is to minimize execution time. A general approach is to 

distribute work evenly among the processors and to minimize interprocessor communication. Graph 

embeddings have been used successfully as models for developing efficient mappings and for 

understanding the computational equivalence between parallel architectures. 

This attention is mainly due to the hypercube advantages of rich interconnection, routing simplicity, 

and embedding capabilities. However, due to the power-of-2 size and logarithmic degree, hypercubes 

suffer two major disadvantages, namely, high cost extensibility and large internal fragmentation in 

partitioning. In order to conquer the difficulties associated with hypercubes and these generalizations of 

the hypercubes, the Supercube [14] has been proposed during past years. The Supercube may be 

expanded (or designed) in a number of possible configurations while guaranteeing the same basic fault-

tolerant properties and without a change in the communication. The existence of hypercube subgraphs 

in the Supercube ensures that hypercube embedding algorithms developed for the hypercube may also 

be utilized in the Supercube. The flexibility in node placement may possibly be utilized to aid in 

supporting a specific embedding. The Supercube, while maintaining the fault- tolerance of the other 

topologies and the ease of communication, allows the placement of new nodes at any currently unused 

addresses in the system. An effective means of achieving faulty-tolerance in hypercubes is to introduce 

spare nodes or links [6]. In doing so, the hypercube structure can still be maintained when nodes fail. In 

addition to that this approach can be expensive; hardware modifications on machines already in the 

market place are extremely difficult. Using the unused nodes as spares (instead of adding extra nodes 

or links to alter the structure of a hypercube) is another approach to exploit the inherent redundant 

nodes or links in a hypercube. In this study, we consider this second type of fault-tolerance design only 

in a faulty Supercube. Load Balancing, communication locality, communication congestion, and node 

utility in process graphs can be abstractly studies as the problem of embedding. In a process graph, the 

nodes represent processes comprising a parallel program and the edges represent communications 

between processes. The quality of an embedding of a guest graph G in a host graph H is measured by 

the maximum number of processes of G placed on any processes of H, the maximum distance between 

any pair of processes of H corresponding to a pair of neighbor processes of G, the maximum number of 

edges of G placed on any edge of H, and the ratio of the order of H to the order of G. These factors are 

called load, dilation, congestion, and expansion, respectively [1, 6, 19].  

The embedding problem is to find embeddings with balanced loads, small dilations, and small 

congestions. The efficiency of a reconfiguration scheme is strongly affected by how tasks are initially 

mapped to a parallel computer. If a task graph (representing the task) is embedded in a proper way, the 

reconfiguration scheme can be simple and involve only local movements. Such initial embeddings, 
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called fault-tolerant embedding, however, require more nodes than embeddings with no fault tolerance. 

Thus, the idea of fault-tolerant embedding is to leave some spare nodes intentionally in the initial 

embedding such that, when faults occur, the faulty nodes can be quickly replaced by nearby spare 

nodes. The main design issue of fault-tolerant embedding is how to distribute the spare nodes and 

minimize their number such that more faults can be tolerated. In a multiprocessor system, two faulty 

models defined in are adopted herein. The first model assumes that in a faulty node, the computational 

function of the node is lost while the communication function remains intact; this is the partial faulty 

model. The second model assumes that in a faulty node, the communication function is lost as well; 

this is the total faulty model. This study proposes the partial faulty model, in which the communication 

links are well when the computation nodes are faulty. In addition, only the faulty node is remapped. 

Hypercube multiprocessor systems usually have a large number of processors, so the probability that 

some processor fails cam be high. Fault tolerance in hypercubes has been studied by several 

researchers, and several interesting techniques have been proposed [2, 3]. The technique discussed in 

[6] employs hardware redundancy and uses reconfiguration to tolerate faults. Using this approach, the 

researchers obtain either an n-dimensional hypercube or a smaller subcube through reconfiguration. 

Adding redundant hardware components requites hardware modifications which can be difficult and 

expensive. 

Alternatively, there are some techniques that exploit the inherent redundant nodes and links in 

hypercube to achieve fault tolerance. The emulation approach is used to simulate the entire hypercube 

by the residual hypercube. The emulation approach can tolerate multiple faults, however, with constant 

slowdown (2 or more) for both computation and communication performance. Another approach to 

achieve fault tolerance with no extra nodes and/or links is to embed a smaller cube in the faulty 

hypercube, as in [17]; techniques for embedding task graphs to embed a larger size task graph if the 

embedding us attempted in the entire faulty hypercube. The motivation for this is to continue execution 

of tasks on faulty hypercubes, possibly with some performance degradation. 

The faulty model proposed herein is a partial model. That is, the communication links are well when 

the computation nodes are faulty. Only the faulty node is remapped. This study largely focuses on a 

theoretical question associated with the simulation of mesh or torus in a faulty Supercube. Efficiently 

simulating one network on another one requires that these four costs be as minimum as possible. 

However, for most embedding problems, an embedding can not be obtained that minimizes these costs 

simultaneously. Therefore, some tradeoffs among these costs must be made. In this investigation, we 

discuss our embedding function with expansion 2, congestion 1, dilation 3, load 1. Also, we developed 

the methods for finding meshes or tori in a Supercube. As the result, we can transit the parallel 

algorithms developed under the structure of meshes or tori to the Supercube. This embedding approach 

enables extremely high-speed parallel computation in Supercubes. Although Supercubes are not 

absolutely asymmetric, it has the same power as the hypercube in terms of meshes and tori. The 

embedding of one interconnection network in another is a very important issue in the design and 

analysis of parallel algorithms.  

The rest of this paper is organized as follows. Section 2 introduces the necessary notations and 

definitions. In Section 3, the paper presents how to map a mesh in a Supercube. Section 4 presents the 

embedding of a mesh in a faulty Supercube with unbounded expansion. Conclusions are finally made 

in section 5. 

 

2. Preliminaries 

 
We briefly describe these definitions of these topologies of the hypercube, the mesh network, and 

the supercube. For the formal description of an n-dimensional hypercube, it is necessary to define the 

Cartesian product of graphs as follows. 

Definition 1 [1] A graph Gp=(Vp, Ep) is called the Cartesian product of two graphs G1=(V1, E1) and 

G2=(V2, E2) if two nodes u=(u1, u2) and v=(v1, v2) are adjacent in Gp if and only if one of the following 

conditions are true. 

(1) u1=v1 and u2 adjacent to v2,  

(2) u2=v2 and u1 adjacent to v1.  

The Cartesian product of G1 and G2 is denoted by G1G2. 
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Definition 2 [11] An n-dimensional hypercube Hn for n  2 can be defined recursively in terms of the 

graph product operations  as follows, where H2 is the complete 2-nodes graph: 

Hn=H2Hn-1. 

Gray code with the prefix 0, followed by the d-bit Gray code in reverse order with the prefix 1. 

Using this technique, we build the following 2-bit code C2={00, 01, 11, 10}. From this 2-bit Gray code 

we generate the following 3-bit Gray code C3=0C21(C2)
R
={000, 001, 011, 010, 110, 111, 101, 100}. 

There are many topologies can be mapped in hypercubes or hypercube-like computers. One of these is 

mesh network. It is very popular network interconnection. One of the most attractive properties of the 

binary n-cube topology is that meshes of arbitrary dimensions can be mapped in it. This is one of the 

main reasons for the success of hypercube architectures. The paper considers mapping a 2
3
*2

2
 mesh in 

a 32-node hypercube. Two bit positions are reserved for the row and three bit positions are set aside for 

the column. Let us assume that the first two bit positions are used for the row. The 2-bit Gray code {00, 

01, 11, 10} corresponds to a traversal through columns 0, 1, 2, 3, and 4. The 3-bit Gray code {000, 001, 

011, 010, 110, 111, 101, 100} corresponds to a traversal through rows 0, 1, 2, 3, 4, 5, 6, and 7. Hence 

we have the following mapping of a 2
3
*2

2
 mesh. 

Definition 4[9] The Hamming distance between two nodes with labels x=xn-1xn-2...x0 and y= yn-

1yn-2...y0 is defined as  

HD(x , y)=




1

0

),(
n

i

ii yxhd , where  

hd(xi , yi)=









.yxif 1,

,yxif 0,

ii

ii

 

Definition 5[9] Let x=xn-1…x0, y=yn-1…y0, then Dim(x, y)={i in (0…n-1)∣ xi ≠ yi} 

The following formal definition of the supercube graph is from [14]. A supercube is constructed by 

any number of nodes and based on hypercube. A supercube, denoted by SN, is defined as an undirected 

graph SN=(V, E), where V is the set of processors (called nodes in our discussion) and E is the set of 

bidirectional communication links between the processors (called edges). Assume that V contains N 

nodes and each node can be numbered by an identical number in the range over (0, N-1), in an (n-1)-

dimensional supercube, each node can be expressed by an n-bit binary string because 2
n-1

  N < 2
n
, 

where n is a positive integer.  

Definition 6[14] Suppose SN = (V, E) is an n-dimensional supercube, then the node set V can be 

divided into three subsets V1, V2, V3, where 

1. V3 = {x | xV, x = 1u, where u is n-bit sequences}.  

2. V2 = {x | xV, x = 0u, 1u does not exist in V, where u is n-bit sequences},and 

V1 = {x | xV, x =0u, 1uV, where u is n-bit sequences}. 

Definition 7[14] Suppose SN = (V, E) is an n-dimensional supercube, then the edge set E is the union of 

E1, E2, E3 and E4, where 

1. E1 ={(x, y)| x, yV, x = 0u, y = 0v, where u, v are n-bit sequences and HD(x, y)= 1}, 

2. E2 ={(x, y)| x, y in V3, x = 1u, y = 1v, where u, v are n-bit sequences and HD(x, y)= 1}, 

3. E3 ={(x, y)| x in V3, y in V2, x = 1u, y = 0v, where u, v are n-bit sequences and HD(x, y)= 2}, and 

E4 ={(x, y)| x in V3, y in V1, x = 1u, y = 0u, where u is (n-1)-bit sequences }. 

The supercube with 12-node is shown in figure 2. Notably, hypercubes are special cases of a 

Supercube; it can also be expanded flexibly with respect to the placement of new nodes in the 

system while maintaining fault-tolerant. When a new node is added to a Supercube system, 

(n+1) new connections should be added and at most n existing edges must be removed. An 

inevitable consequence of the flexible of construction and the fault -tolerant of a Supercube is an 

uneven distribution of the utilized communication ports over system nodes. Although the 

Supercube loses its property of regularity,  more links help obtain the replacement nodes of the 

faulty nodes of the Supercube. The Supercube with 12-node is shown in the figure 2. In the 

figure 2, V1 = {0000, 0001, 0010, 0011}, V2 = {0100, 0101, 0110, 0111}, and V3 = {1000, 1001, 

1010, 1011}, E1 = {(0000, 0001), (0000, 0010), (0000, 0100), (0001, 0011), (0001, 0101), (0010, 

0011), (0010, 0110), (0011, 0111), (0100, 0101), (0100, 0110), (0101, 0111), (0110, 0111}, E2 

= {(1000, 1001), (1000, 1010), (1001, 1011), (1010, 1011)}, E3={(0100, 1000), (0101, 1001), 

(0110, 1010), (0111, 1011)}, E4={(0000, 10000), (0001, 1001), (0010, 1010), (0011, 1011)}. 
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Figure 2. The Supercube contains 12 nodes 

 
Definition 8[1] If G is a graph, the vertex set of G is denoted by V and the edge set of G is 

denoted by E. A graph G’ is said to be a subgraph of G if V’ V and E’ E. 

Definition 9[9] Any 21 mm   mesh or torus, denoted by 
1 2m mM  , is a 2-dimensional mesh or 

torus, where 
sr mm 2,2 21  . 

Definition 10[9] Any dmmm  21  mesh or torus, denoted by 
1 2 dm m mM    , in the d-

dimensional space Rd, where mi = ip
2  

 

3. Mesh and Torus Embedding 

 
In this section, the paper describes how to embed a mesh and torus in a SN. 

Lemma 1 Any 21 mm   mesh or torus, denoted by 
1 2m mM  , is a 2-dimensional mesh or torus, 

where 
sr mm 2,2 21   can be embedded in an n-dimensional hypercube where n = r+ s. 

Lemma 2 Any dmmm  21  mesh or torus, denoted by 
1 2 dm m mM    , in the d-

dimensional space Rd, where mi = ip
2 can be embedded in an n-dimensional hypercube where n 

= p1 + p2+…+ pd. The numbering of the mesh or torus nodes is any numbering such that its 

restriction to each ith variable is a Gray code. Note that the assumption that all mi’s be power of 

2. 

Consider a 2-dimensional 2
12

2
 mesh i.e., d = 2, p1 = 1, p2 = 2, n = p1 + p2 = 3. A binary number M 

of any node of the 3-dimensional hypercube can be regarded as consisting of two parts: its first 1 bit 

and its last 2 bits, which we write in the form M = 211  , where i  and i  are bits 0 or 1. It is clear 

from the definition of n-dimensional hypercube that when the last 2 bits are fixed, then the resulting 

12
p

 nodes form a p1-dimensional hypercube ( with p1 = 1 ). Whenever we fix the first 1 bit we obtain a 

p2-dimensional hypercube. The embedding then becomes clear. Choosing a 1-bit BRGC for the x 

direction and 2-bit BRGC for the y direction, the point ( ii yx , ) of the mesh is assigned to the node 

211   where 1  is the 1-bit BRGC for dimension of p1 while 1 2   is the 2-bit BRGC for 

dimension of p2. 

The binary node number of any mesh node is obtained by concatenation its binary x coordinate and 

its binary y coordinate. Therefore, if we call the Gray code any subcode of a BRGC, we observe that 

any column of mesh nodes forms a Gray code and any row of mesh nodes forms a Gray code. Thus, we 

will refer to the codes defined above as 2-D Gray codes. Generalizations to higher dimensions are 

straightforward and one can state the above lemma 2. 
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The figure 3 shows a 2-dimensional 2
12

2
 torus (d = 2, p1 = 1, p2 = 2, n = p1 + p2 = 3) which are bi-

directional connection between nodes. 

 

 
Figure 3. A 2

12
2
 torus 

 
Lemma 3 For any given N, a Hypercube Hn must be a subgraph of a Supercube SN, where 

12 2n nN   .  

Proof. A SN must contain a hypercube Hn. That is trivially by the generation schema of a SN graph. It 

must contain the maximum hypercube Hn. 

The embedding approach that a 
1 2 dm m mM     mesh or torus can be embedded in a SN is as 

follows. 

 

Embedding approach: 

1 2 dm m mM    ( mi = ip
2 ),  

SN (
12 2n nN   ),  

1,,,

,,

21

21





d

d

ppp

nwwppp




 

SN ),( EVG  

1 2

' '( , )
dm m mM G V E    ,  

V   ' 'V  (Denoted by unique binary string) 

0121 XXXXXv wwn    

0121' XXXXv ww    

'V   can be embedded in V  denote as 012100 XXXXv ww    

Theorem 1 Any 
2 2r sM


2-dimensional mesh or torus can be embedded in a SN where 

2logr s N      with load 1, dilation 1, congestion 1, and expansion 2. 

Proof. This is trivial by lemma 1 and the above embedding approach. 

Theorem 2 Any
1 2 dm m mM    d-dimensional mesh or torus, where mi = ip

2  can be embedded in a SN, 

where  Nwppp d 221 log   with load 1, dilation 1, congestion 1 and expansion 2. 

Proof. It is trivial by lemma 2 and the above embedding approach. 

This is the best illustrated by an example in figure 4. That is a 2
12

2
 mesh (with 4 nodes) can 

be embedded in a S12 
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Figure 4. A 2
1
×2

2
 mesh can be embedded in S12 

 

Lemma 4 Any mesh or tori contains any number of nodes can be embedded in a SN graph with load 1, 

congestion 1, and dilation 1. 

 

4. Fault-Tolerant Embedding with Unbounded Expansion 

 
In the previous section, we have constructed a mesh and a torus in a SN graph. In the section, we 

propose a new scheme for a faulty SN with unbounded expansion embedding. 

Theorem 3 Any mesh or tori can be embedded in a SN graph with unbounded expansion. 

Proof. It is trivial by the embedding approach. 

 

Algorithm Fault-Tolerance_Embedding(x): 

Input:  x  /*the faulty node*/,  

1 2 dm m mM    ( mi = ip
2 ), Gn(N) (

12 2n nN   ),  

1,,,

,,

21

21





d

d

ppp

nwwppp




 

SN ),( EVG , 
1 2

' '( , )
dm m mM G V E    ,  

Output: y /*the replaceable node*/ 

1.  i=0; j=0; k=0 

2.  Create a Queue Q; Q= 

3.  if a node x is faulty 

4.  then 

5.   { 

6.  while i < (n+1-w) do  

7.   { 

8.   search the node y  

/* HD(x, y )=1, Dim(x, y)=w+i*/ 

9.   if y is not a virtual node and it is free 

/* If the node is an inexistent node, we called a virtual node. */ 

10.  then 

11.  return(y) /*replace x with y*/ 

12.  remove all nodes in Q  

13.  exit() 

14.  else 

15.  enqueue(y,w+i) 

16.  i=i+1 
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17.    } 

18.   } 

19.  while Q is not empty do  

20.  { 

21.   dequeue(a,b) 

22.   while j < b do  

23.   { 

24.   search the node z 

 /* HD(a, z )=1, Dim(a, z)=j*/ 

25.   if z is not a virtual node and it is free 

26.   then 

27.   return(z)  

/*replace x with y*/ 

28.   remove all nodes in Q  

29.   exit() 

30.   j=j+1 

31.   } 

32.  } 

33.  return(“Failure”) 

34.  end 

Finding the replaceable node as follows: 

node 0 = 0Xn-1Xn-2XwX1X0 

node 1 = 0Xn-1Xn-2X’wX1X0 

node 2= 0Xn-1Xn-2X’w+1 Xw X1X0 

    

node (n-w ) = 0X’n-1Xn-2Xw X1 X0  

node (n-w +1) = 1Xn-1Xn-2Xw X1 X0  

node (n-w +2) = 0Xn-1Xn-2X’w X1X’0 

node (n-w +3) = 0Xn-1Xn-2X’w X’1X0  

    

node (n-w +1+w) = 0Xn-1Xn-2X’w X’w -1X1X0 

node (n-w+1+w+1) = 0Xn-1Xn-2X’w+1X1X’0 

node (n-w+1+w+2) = 0Xn-1Xn-2X’w+1X’1X0 

    

node (n-w+1+2*w) = 0Xn-1Xn-2X’w+1 XwX’w-1X1X0 

node(n-w+1+2*w+1)=0Xn-1Xn-2X’w+1 X’wXw-1X1X0 

       

node ((n-w+1)*(w +1))+(1+2+…+n-w) = 1X’n-1Xn-2Xw-1X1X0 

We illustrate an example to explain the operations of the Fault-Tolerance_Embedding 

algorithm when the faulty nodes exist. For the S12 as figure 5, the 11 22
M


 has been embedded in 

it. 

1. If the node 2 is faulty, it visits or signals the node 6, to check whether it is free or not. If it is, it 

terminates.  

2. If not, insert the node 6 to the queue, and search the node 10, to check whether it is free or not. If it 

is, it terminates. 

3. If not, insert the node 10 to the queue, and delete the node 6 from the queue, search the node 7, to 

check whether it is free or not. If it is, it terminates. 

4. If not, search the node 4, to check whether it is free or not. If it is, it terminates. 

5. If not, delete the node 10 from the queue; search the node 11, to check whether it is free or not. If 

it is, it terminates. 

6. If not, search the node 8, to check whether it is free or not. If it is, it terminates. 

7. If not, search the node 14, to check whether it is free or not. If it is, it terminates. 

8. If not, return (“Failure”).  
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Therefore, the whole searching path is listed as {6(0110), 10(1010), 7(0111), 4(0100), 11(1011), 

8(1000), 14(1110)}. 

The node 14(1110) is a virtual node, we show the node with deleted line. 

 

 
Figure 5. Embedding of a 22M   mesh in a S12 

 

We illustrate the searching path of finding a replaceable node in a S12 as shown figure 6 by figure 5.  

 

 
Figure 6. The searching path of finding a replaceable node of the 22M   in a faulty S12 

 

Theorem 4 Any mesh or torus 
1 2 dm m mM     can be embedded in a faulty SN with dilation 3, 

congestion 1, load 1, and unbounded expansion. 

Proof. Every searching path is only one path according to the algorithm Fault-Tolerance_Embedding, 

allowing us to obtain congestion 1 and load 1. Herein, we allow unbounded expansion to obtain the 

replaceable node of the faulty node. When a node is faulty, it is a worse case in which the 

dilation=1+2=3 at most by algorithm Fault-Tolerance_Embedding. Because these nodes and links of 

searching paths are not replicated from algorithm Fault-Tolerance_Embedding, These costs associated 

with graph embedding are dilation 3, congestion 1, load 1, and unbounded expansion. 

Theorem 5 A searching path of algorithm Fault-Tolerance_Embedding is including 1/2*n
2 

+ 3/2*n-

1/2* w) – 1/2*w 
2
+1   nodes. 

Proof. We can embed 
1 2 dm m mM     in a SN by theorem 6. If a node is faulty, we can change a 

bit in the binary string sequence from bit w to bit n and insert its corresponding node in the 

queue. In the worst case, we can get (n-w+1) different nodes. Then we delete the node from the 

queue. From the first node we can change a bit in the sequence from bit 0 to bit (w-1), and we 
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can get w different nodes. We can also change a bit in the sequence from bit 0 to bit w from the 

second node of the queue, and we can also get (w+1) different nodes. Until the queue is empty, 

the sum of all searched nodes is (n-w+1)*(w+1))+(1+2+…+n-w). The search path includes (n-

w+1)*(w+1))+(1+2+…+n-w) nodes. That is, the whole searching path includes (n-

w+1)*(w+1))+(1+2+…+n-w)= 1/2*n
2 

+ 3/2*n -1/2* w ) – 1/2*w 
2
+1 nodes. 

Theorem 6 There are O(n
2
-w 

2
) faults, which can be tolerated. 

Proof. By theorem 5, the whole searching path includes 1/2*n
2 

+ 3/2*n -1/2*w  – 1/2*w 
2
+1 

nodes. That is, O(n
2
-w 

2
) faults can be tolerated. 

 

5. Conclusions 

 
Hypercubes, meshes, and tori are well known interconnection networks for parallel 

computing, grid computing, and cloud computing. The Supercubes are superior to hypercube in 

terms of embedding a mesh and torus under faults. In this paper, we try to find the replaceable 

node of the faulty node. This paper proposes novel algorithms of fault-tolerant meshes and tori 

embedded in the Supercube with node failures. The main results obtained (1) these existent 

parallel algorithms on mesh or torus architectures to be easily transformed to or implemented on 

the Supercube architectures with load 1, congestion 1, dilation 3, and unbounded expansion. (2) 

The useful properties revealed and the algorithm proposed in this paper can find their way when 

the system designers evaluate a candidate network’s competence and suitability, balancing 

regularity and other performance criteria, in choosing an interconnection network. (3) T here are 

O(n
2
-w

2
) faults, which can be tolerated. Therefore, we can easily port the parallel or distributed 

algorithms developed for these structuring of mesh and torus to the Supercube. According to the 

result, we can easily port the parallel or distributed algorithms developed for these structures to 

the Supercube. Therefore, these methods of reconfiguring enable extremely high -speed parallel 

computing, grid computing, and cloud computing. 
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