Amperometric determination of NADH with Co$_3$O$_4$ nanosheet modified electrode

Chi-Hao Chen, Ying-Cih Chen, Meng-Shan Lin*

Department of Chemistry, Tamkang University, Tamsui 25137, Taiwan

**A R T I C L E   I N F O**

Article history:
Received 17 July 2012
Received in revised form 20 October 2012
Accepted 22 October 2012
Available online 10 November 2012

Keywords:
NADH
Metal oxide
Cobalt oxide
Amperometry

**A B S T R A C T**

In this work, we have developed a simple and reliable cobalt oxide (Co$_3$O$_4$) based amperometric sensor for the determination of NADH. A sheet shape Co$_3$O$_4$ nanooxide was synthesized by the CTAB assisted hydrothermal technique and was characterized by SEM and XPS. Owing to the redox property of Co$_3$O$_4$, the operating potential of NADH can be significantly reduced from 0.7 down to 0.1 V. Compared to a commercial Co$_3$O$_4$ nanoparticle modified electrode, this nanosheet form cobalt oxide possesses a rapid background subsiding characteristic and a low residual current. This scheme was conducted on a flow injection system with a constant operating potential of 0.1 V (vs. Ag/AgCl, 3 M) in a 0.2 M phosphate buffer at pH 6.0. A suitable linear range from 10 to 100 µM ($R=0.999$) with a detection limit of 4.25 µM ($S/N=3$) was obtained. The RSD for 20 successive measurements of 75 µM NADH is only 1.4%, which indicates a high stability and no contamination during NADH oxidation. This scheme did not suffer from conventional antioxidants, including dopamine, uric acid, epinephrine, serotonin, histamine, and 4-acetaminophen, except ascorbic acid. Thus, an ascorbate oxidase was introduced to remove the ascorbic acid before the sample was injected into the flow injection analysis system. After this simple pretreatment, the influence of ascorbic acid was eliminated, successfully.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

NAD$^+$ and its reduced form, NADH, are important cofactors in the electron transport chain. More than 300 biological enzymatic reactions require NAD$^+$ as a cofactor to receive the electron after a particular dehydrogenated reaction. Thus, the merits of a NAD$^+$ / NADH sensor are critical due to its possible application in the development of dehydrogenase based biosensors as well as their applications in food processing, environmental analysis, and clinical diagnosis. Several optical approaches have been reported in the determination of the NADH; generally, measuring the absorption of NADH at 340 nm is widely used in identification of enzymatic activity (McComb et al., 1976). Subsequently, because the excited NADH is a suitable fluorophore which has a strong emission at 450 nm, a further fluorescence method provides a high sensitivity in the NADH determination (Podrazyk and Kuncova, 2005). In addition, NADH is a suitable co-reactant for the Ru (bpy)$_2$$^+$ that enhances the electrochemical luminescence (ECL); several ECL based approaches have been reported to provide a highly sensitive scheme to monitor the NADH at nanomolar level (Martin and Nieman, 1997; Deng et al., 2009).

Actually, NADH is a famous reductant in biological systems with a formal reduction potential of −0.32 V vs. NHE (Nelson and Cox, 2005), and electrochemical determination of NADH is a critical issue. However, direct oxidation of NADH required a relatively high overpotential at bare electrodes (Eisenberg and Cundy, 1991; Wang et al., 2001) and usually causes a passive layer to pollute the surface of the electrode (Radoi et al., 2008). Keita and Sampath indicated that this problem is attributed to its electrochemical product which would adsorb onto the surface after self dimerization (Keita et al., 1996; Sampath and Lev, 1998). Besides, the crucial overpotential limits its application in real biological samples from most co-existed antioxidants. In order to overcome this problem, several carbon based materials such as carbon nanotube (Pumera et al., 2006), carbon fiber (Zhao et al., 2010), pyrolytic glassy carbon (Banks and Compton, 2005), and graphene (Keeley et al., 2011) have been proposed to show its facilitation in electrochemical oxidation of NADH; however, the catalytic potential of these carbon based sensors can be shifted down to only around 0.4 V, and analytical result would be still affected by most biological antioxidants.

To solve these dilemmas, several redox mediators were employed to provide another pathway in the catalytic oxidation of NADH. The most popular organic modifiers can be roughly divided into fluorenone (Mano and Kuhn, 1999), phenothiazine (Boguslavsky et al., 1995), phenoxazine (Kubota et al., 1996), and quinone (Jaegfeldt et al., 1981) based modifiers according to their...
basic chemical structure. These mediators could be easily adsorbed on the electrode surface through physical or electrostatic interaction. Generally, the operating potential used in a physically adsorbed modified sensor could be down to less than 0 V; however, these sensors can be operated only in a static condition due to the weak interaction between the surface and the modifier. Electrochemical polymerization provides a more secure scheme to immobilize these mediators on the electrode surface which can be easily held on high convective situation such as a flow injection system and a rotating analysis; however, the catalytic potential of the most polymerized electrode shows a positive shift compared to that of a free molecule. For example, the catalytic potential of a methylene blue modified electrode is −0.036 V (Borgo et al., 2002), but a polymeric electrode required 0.15 V to achieve this approach (Diligina et al., 2011). Toluidine blue/CNT electrode possesses a catalytic potential at −0.2 V (Lawrence and Wang, 2006), but shifted toward 0.2 V after polymerization (Hasebe et al., 2011).

The application of nanometal or metal oxide particles has emerged as an attractive investigation in recent years. Since the chemical and physical properties of nanomaterials are different from bulk ones, a number of research fields are successful in obtaining a remarkable progress after working with nano materials. Several fabricated techniques, including sol–gel (Laberty-Robert et al., 2006), co-precipitation (Quin and Shi, 1998), and hydrothermal method (Hagman et al., 2001), have been widely demonstrated. Among these schemes, the hydrothermal method is considered as an attractive method to fabricate nanometal oxides. By controlling the temperature and pressure, a metastable material has been produced (Zhang et al., 2003). In addition, the morphology of the nanostructure is varied according to the material has been produced (Zhang et al., 2003). Generally, ethylene diamine tetraacetic acid, sodium dodecyl sulfate, polyethylene glycol and hexadecyltrimethylammonium bromide (CTAB) have been frequently used as templates in hydrothermal techniques.

Recently, metal oxide based modified electrodes have intensively investigated in the electrochemical determination of several clinical markers due to their interesting catalytic properties (Chen and Lin, 2012; Shih et al., 2009; Zen et al., 2002). However, their application in NADH is still rare. To the best of our knowledge, only Fe3O4/CNT modified electrode has been reported to show its catalytic oxidation of NADH at 0 V (Teymouri and Salimi, 2012); however, that report used an acid pre-treated carbon nanotube as its basic matrix, and this matrix has been proven to possess a similar catalytic behavior to that of the NADH at 0 V (Wooten and Gorski, 2010); hence, the role of Fe3O4 in the catalytic determination of NADH still needs to be investigated. In this work, the feasibility of catalytic oxidation of NADH by using the redox property of Co3O4 is reported. In order to overcome the drawbacks of highly residual current and sluggish response of Co3O4 modified electrode, a nanosheet Co3O4 synthesized by the CTAB assisted hydrothermal technique was used in this study, which provides a simple and sensitive method with limited interference. The possible mechanism and the analytical performance are also described in this report.

2. Material and methods

2.1. Apparatus

A CHI 832B electrochemical workstation (CH Instruments Austin, TX, USA) was used in the whole electrochemical studies. The flow rate of the FIA system was controlled with a syringe pump (74900 series, Cole-Parmer Instrument Company, Illinois, USA). A steel reactor containing a Teflon vessel was used to synthesize the Co3O4 nanosheet. The surface morphology of nanosheet was taken by FE-SEM (LEO1530, Germany) and X-ray Photoelectron Spectroscopy (XPS) was performed by ESCALAB 250 (Thermal VG science, UK). A Ag/AgCl (3 M NaCl) electrode was used as the reference electrode in this scheme.

2.2. Reagents

Cobalt (II) nitrate hexahydrate, and NADH (98%) were purchased from Acros Organics. Urea (99.5%) was obtained from Riedel-dehaën (Seelze, Germany). Serotonin hydrochloride (99%) was purchased from Alfa-Aesar. Hexadecyltrimethylammonium bromide (CTAB, 99%), L (+) -ascorbic acid (99.7%), uric acid, dopamine, histamine (99%), (±)-epinephrine (95%), 4-acetaminophenol, Co3O4 nano particle, and CoO were obtained from Sigma-Aldrich (St. Louis, USA). All other chemicals and solvents were of analytical grade and were used as received without further purification. A conductive carbon ink (C10903D14) obtained from Gwen Electronic Materials Ltd. (Pontypool, UK) was used for immobilization of CoO, and Co3O4 on the electrode. Ascorbate oxidase (EC 1.10.3.3) was purchased from TOYOBIO (Osaka, Japan).

2.3. Fabrication of Co3O4 nanosheet

The Co3O4 nanosheet was fabricated according to the previous report with certain modification (Liu et al., 2007). Briefly, 6 mmole Co (NO3)2, 45 mmole urea, and 3 g CTAB were dissolved in a Teflon container containing 100 ml water. Subsequently the container was sealed in a stainless steel reactor. A purple-red cobalt complex would be obtained after sequentially heating at 70 °C and 120 °C for 24 h and 12 h, respectively. This complex was dried in an oven at 70 °C overnight and calcined in a tube furnace (F-21100, Thermolyne, USA) at 600 °C for 2 h to remove the organic template and convert their oxidation state into Co3O4.

2.4. Procedure of electrode modification and mechanism study

A homemade rotating disc carbon electrode with a diameter of 5 mm was used in the hydrodynamic voltammetry and potentiometric study. This Co3O4 modified electrode was constructed by weighting appropriate Co3O4 nanosheet, conducting ink and cyclohexanone. The final weight ratio of this suspension mixture is 7:3:20. Subsequently, 2.5 μL of above mixture was placed on the electrode surface and allowed to dry in an oven at 70 °C for 1 h. When not in use, it was kept in a dry container full of nitrogen at room temperature. A dual rotating ring–disk platinum electrode (BAS, IN, USA) immobilized with 70% CoO powder on the central disk electrode was used to investigate the final product of oxygen reduction. A simple potentiometric study by measuring the potential difference between modified electrodes and the reference electrode (Ag/AgCl, 3 M NaCl) was used to evaluate the oxidation state of cobalt oxide.

3. Results and discussion

3.1. Characterization of Co3O4 nanosheet

The morphology of the prepared cobalt oxide was characterized by scanning electron microscopy (SEM). Fig. 1A shows a typical SEM image of the Co3O4 nanosheet with magnification of 10,000 folds. This image shows that this microscale particle is constructed from several nano rectangular sheets. Further magnification with 100,000 folds as shown in Fig. 1B indicates that
this nanosheet was constructed from orderly cobalt oxide nanoparticles. Although a cobalt (II) ion was used as the precursor in the hydrothermal process, the oxidation state of cobalt oxide can be further regulated by the temperature. Here this cobalt oxide was calcined at 600 °C for 2 h to ensure that Co$_3$O$_4$ is the major state (Greenwood and Earnshaw, 1984). However, in order to clearly identify the oxidation state, the prepared cobalt oxide was characterized by XPS as shown in Fig. 1C. The peaks with a binding energies of 780.1 and 795.2 eV are assayed corresponding to 2p$_{3/2}$ and 2p$_{1/2}$, respectively. A typical energy difference of 15.1 eV and no significant shake-up satellite peaks indicate that the oxidation state of this cobalt oxide is Co$_3$O$_4$ (Barreca and Massignan, 2001). The oxidation state was further identified by using a potentiometric test. In an anaerobic phosphate buffer, pH 6, the open circuit potential (OCP) of 70% nanosheet cobalt modified electrode was measured at 0.374 V (vs. Ag/AgCl, 3 M NaCl), which is much higher than a 70% CoO modified one (around 0.04 V). These results indicate that this nanosheet is Co$_3$O$_4$ rather than CoO. In addition, Fig. 1D shows a clear spectrum of oxygen 1s without a significant branch peak, which indicates a limited impurity absorbed on the Co$_3$O$_4$ surface (Wang et al., 2010).

3.2. Promotion and catalytic mechanism of Co$_3$O$_4$ nanosheet modified electrode

It is known that a huge residual current is the major drawback that limits the analytical usage of a metal oxide based electrochemical sensor. Fig. S1 shows typical amperometric responses obtained from a 50% commercially available Co$_3$O$_4$ modified electrode (A) and a nanosheet one (B) when the operated potential stepped from 0 to 0.25 V. We found that the background current of the nanosheet modified one subsides rapidly to 10$^{-7}$ A level within 250 s; however, the commercially available one remains with a high residual current of around 5.0 × 10$^{-7}$ A. Furthermore, the stable residual current of nanosheet modified electrode can decrease down to 10$^{-8}$ A level; however, the commercial one is still as high as 3.0 × 10$^{-7}$ A with a sluggish decrement. These results indicate that this nanosheet possesses a smaller capacity current and reaches its steady state, rapidly. In addition, the lower background level also facilitated to acquiring an efficient LOQ and detection limit.

It is well known that electrochemical oxidation of NADH would cause a fouling problem in the electrode. In order to demonstrate the catalytic capability and reproducibility of this Co$_3$O$_4$ nanosheet modified electrode, a hydrodynamic voltammetry was conducted on a rotating electrode system to acquire the steady state responses. Fig. 2A shows the typical potential profile of 30 μM NADH on a 70% Co$_3$O$_4$ nanosheet modified electrode (a) and its matrix, and conductive ink electrode (b) from 0 to 0.6 V with an interval of 0.05 V. It is noticed that the minimum oxidation potential of the NADH on a bare carbon ink electrode should be beyond 0.4 V; however, the catalytic potential of the Co$_3$O$_4$ modified one can be reduced to 0.05 V. This catalytic behavior should be attributed to the alteration of the oxidation state of Co$_3$O$_4$ rather than any functional group that existed on the carbon surface. In order to confirm this assumption, a simple potentiometry was conducted again to trace the oxidative state of Co$_3$O$_4$ modified electrode as shown in Supplementary in Fig. S2. In an anaerobic phosphate buffer at pH 6.0, the OCP of 70% Co$_3$O$_4$ modified electrode is stable at around 0.37 V. However, this OCP decreased to 0.06 V after addition of a 0.5 mM NADH into the buffer. This result indicates that Co$_3$O$_4$ can be reduced chemically by NADH. Based on the previous discussions, a possible mechanism is shown in Scheme 1. Briefly, Co$_3$O$_4$ was reduced to CoO by NADH; in the meantime, an oxidation potential was applied to convert the CoO back to Co$_3$O$_4$, and this oxidative current was used to reflect the concentration of the NADH.

3.3. Effect of oxygen tension

In the previous section, we have shown that Co$_3$O$_4$ would be reduced to CoO after reaction with NADH, and the catalytic current of this scheme is attributed to the oxidation of CoO back to the Co$_3$O$_4$. However, because CoO has been also reported to
facilitate the oxygen reduction (Hamdani et al., 2010), the influence of the oxygen to this scheme is discussed in this work. Supplementary in Fig. S3 shows the current response of 25, 50 and 75 µM NADH at a potential of 0.25 V in various oxygen tensions. The sensitivities are 17.2, 10.7, and 7.3 nA/µM corresponding to anaerobic (A), ambient (B), and saturated (C) oxygen tensions, respectively. Besides, in the mass transfer independent situation, the limiting current of 25 µM NADH decreased significantly from 319.2 ± 1.5 nA to 226 ± 3.8 nA in the presence of oxygen (see the supplementary Fig. S4). According to the intensity of the limiting current, the rate constant of this scheme is calculated as 2.34 ± 0.01 × 10^{-3} cm/s in an anaerobic situation and 1.66 ± 0.03 × 10^{-3} cm/s in an ambient solution. These results imply that the reduced CoO would be directly oxidized by the oxygen, and a portion of the electron would be transferred from CoO oxygen.

The final product of oxygen after reaction with the CoO is another interesting issue. In general, hydrogen peroxide and water are two possible products after obtained reduction of oxygen. In order to define this final product, a generation–collection study was conducted by using a platinum rotating ring–disk electrode. Here, the central disk electrode was covered with 70% CoO as a generator to directly react with the oxygen; a constant potential of 0.7 V was applied on the ring electrode to detect the oxidation signal of hydrogen peroxide if it was really produced during oxygen reduction. However, no significant oxidation current could be found after spiking 5 mL ambient buffer solution into the original anaerobic buffer solution (data not shown). This result implies that hydrogen peroxide might not be the major product of this reaction. This inference was also proved by using the potentiometric test. Supplementary in Fig. S5 traced the OCP of 70% CoO modified electrode after addition of oxygen and hydrogen peroxide. In an anaerobic condition, the OCP of CoO modified electrode is stable around 0.06 V, which is much lower than that of the Co3O4 modified electrode (around 0.37 V). The OCP increased sluggishly to 0.12 V when oxygen tension recovered to the ambient situation. However, this OCP shows a sharp and rapid increment toward 0.25 V after addition of 0.5 mM hydrogen peroxide. This result implies that both oxygen and hydrogen peroxide can oxidize the CoO oxide, but the reaction rate of hydrogen peroxide might be much faster than that of oxygen. According to the prior discussions, hydrogen peroxide might be produced during this reaction; however, this intermediate would be further oxidized by the CoO layer, immediately. Thus, water might be more possible to be obtained as the final product.

3.4. Optimization of flow injection analysis

In order to develop a prompt and highly sensitive analytical method, this NADH sensor was evaluated in a flow injection system. The operating potential was optimized firstly due to the concern with the sensitivity and selectivity. Since the problem of surface contamination has been widely reported in the previous studies, here, this potential study was limited below 0.4 V to elude the direct oxidation of NADH on the carbon matrix. Fig. 2B shows the catalytic current of 25 µM NADH (a), and the major interference, uric acid (b) in various operating potentials. It is observed that the NADH can be catalytically oxidized at 0.05 V; however, the influence of uric acid can be ignored before 0.25 V. Thus, 0.25 V was chosen as the optimal potential for the subsequent study. The influence of buffer acidity that ranged from pH 5 to 8 was investigated as shown in supplementary Fig.S6. The current response decreases slightly with a slope of 7.1 nA/pH as pH increases. However, uric acid becomes a significant interference when pH is higher than 6.5, moreover, the interference of uric acid is even tripled than that of NADH at pH 8. Thus, pH 6 was chosen as the optimal buffer acidity for the subsequent analysis. Other conditions, including flow rate, sample volume, buffer concentration and composition, were optimized. After considering the current sensitivity and stability, 200 mM phosphate buffer solution, pH 6 with sample injected volume of 50 µL and the flow rate...
rate of 0.25 mL/min were chosen as the optimal conditions (data not shown).

3.5. Analytical performance and interference study

After optimization of the major operating conditions as discussed in the previous section, Fig. 3 shows a typical calibration plot of this proposed scheme at 0.25 V. A linear range starting from 1 μM to 30 μM ($R^2=0.999$) with a sensitivity of 2.76 nA/μM is obtained. The detection limit estimated from the slope of calibration plot and the standard deviation of 21 successive buffer injections as blank is 0.53 μM ($S/N=3$). Moreover, a transient sensitivity between 30 and 50 μM and a second linearity from 50 to 150 μM with a sensitivity of 1.43 nA/μM ($R^2=0.999$) are observed; this result implies that the reaction rate might change from a diffusion controlled behavior into a kinetically controlled one. Table 1 summarized the analytical performances of the present scheme and other NADH electrochemical sensors reported previously. The limit of quantification (LOQ) and operating potential of our scheme are better than in several previous sensors comparable with several successful NADH sensors such as poly(p-ABSA)/FAD modified electrode (Kumar and Chen, 2007a), graphene modified glassy electrode (Keeley et al., 2011), TiO$_2$/MCM-41 modified glassy carbon electrode (Dai et al., 2007), and poly(1,2-DAB) nanotube modified glassy carbon electrode (Valentini et al., 2004). Table 2 shows the interference study of several biological antioxidants. The influences of serotonin, histamine, acetalaminophen and uric acid are negligible; however, this scheme would be affected by dopamine, epinephrine and ascorbic acid. Here, we use the ascorbate oxidase to oxidize the ascorbic acid, previously. Supplementary Table S2 shows that the influence of ascorbic acid and the discrepancy of oxygen consumption during enzymatic reaction can be totally ignored after reaction with the AAO for 5 min. Subsequently, the analytical performance of the current scheme at a potential of 0.1 V is shown in Table 1. Although the sensitivity decreased from 2.76 to 0.36 nA/μM, this method can be carried out in an ambient condition and still yields sensors comparable with several successful NADH sensors such as poly(p-ABSA)/FAD modified electrode (Kumar and Chen, 2007a), medola blue/ZnO electrode (Kumar and Chen, 2007b) as well as the Nile Blue/ZrP/carbon paste electrode (Pessoa et al., 1997). Finally, the reproducibility is evaluated by calculating the variation of 20 successive injections of 75 μM NADH. We found the RSD of the signal is only 1.4%, which indicates a high stability and no contamination effect of the current scheme.

![Fig. 3. Typical calibration plot of NADH at constant potential of 0.25 V. The inset diagram is the actual responses of sequential injection of 10, 15, 20, and 25 μM NADH.](image)

**Table 1**
Comparison of the analytical performance of the NADH sensor based on the amperometric schemes. The abbreviations of GC, ABSA, MCM-41, and 1,2 DAB are glassy carbon, aminobenzene sulfonic acid, mobile crystalline material-41, and 1, 2 diaminobenzene, respectively. All the potentials refer to a Ag/AgCl electrode.

<table>
<thead>
<tr>
<th>Amperometric NADH sensing method: critical technique</th>
<th>Potential (V)</th>
<th>Linearity</th>
<th>Detection limit (μM)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Graphene/GC</td>
<td>0.4</td>
<td>Up to 360 μM</td>
<td>1.9 μM</td>
<td>Keeley et al. (2011)</td>
</tr>
<tr>
<td>Nano-Au/SiO$_2$/GC</td>
<td>0.4$^a$</td>
<td>1–100 μM</td>
<td>$-^a$</td>
<td>Liu et al. (2010)</td>
</tr>
<tr>
<td>Benzquinone/graphite</td>
<td>0.15</td>
<td>1–10 nM</td>
<td>$-^a$</td>
<td>Murthy and Sharma (1998)</td>
</tr>
<tr>
<td>Pyrolytic graphite/GC</td>
<td>0.45</td>
<td>2.25–36 μM</td>
<td>1</td>
<td>Banks and Compton (2005)</td>
</tr>
<tr>
<td>poly(p-ABSA)/FAD/GC</td>
<td>0.2</td>
<td>10–300 μM</td>
<td>1</td>
<td>Kumar and Chen (2007a)</td>
</tr>
<tr>
<td>Meldola blue/ZnO</td>
<td>0</td>
<td>50–300 μM</td>
<td>10</td>
<td>Kumar and Chen (2007b)</td>
</tr>
<tr>
<td>Nile blue/ZrP/carbon paste</td>
<td>0.095$^b$</td>
<td>0.01–1.2 nM</td>
<td>5</td>
<td>Pessoa et al. (1997)</td>
</tr>
<tr>
<td>TiO$_2$/MCM-41/GC</td>
<td>0.32$^b$</td>
<td>0.05–1 mM</td>
<td>$-^a$</td>
<td>Dai et al. (2007)</td>
</tr>
<tr>
<td>Poly(1,2-DAB) nanotube/GC</td>
<td>0.45</td>
<td>0.05–1 mM</td>
<td>$-^a$</td>
<td>Valentini et al. (2004)</td>
</tr>
<tr>
<td>Co$_x$O$_y$ nanoparticle/carbon ink</td>
<td>0.25</td>
<td>1–40 μM</td>
<td>0.61</td>
<td>This work</td>
</tr>
<tr>
<td>Co$_x$O$_y$ nanoparticle/carbon ink</td>
<td>0.1</td>
<td>15–125 μM</td>
<td>5.74</td>
<td>This work</td>
</tr>
<tr>
<td>Co$_x$O$_y$ nanosheet/carbon ink</td>
<td>0.25</td>
<td>1–30 μM</td>
<td>0.53</td>
<td>This work</td>
</tr>
<tr>
<td>Co$_x$O$_y$ nanosheet/carbon ink</td>
<td>0.1</td>
<td>10–100 μM</td>
<td>4.23</td>
<td>This work</td>
</tr>
</tbody>
</table>

$^a$ No data.

$^b$ Adjust the discrepancy of reference potential from a SCE to a Ag/AgCl electrode.

**Table 2**
The interference studies of Co$_x$O$_y$ modified electrode at potential of 0.25 V and 0.1 V.

<table>
<thead>
<tr>
<th>Test compound</th>
<th>Concentration (μM)</th>
<th>Interference ratio (%) $^a$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25 V</td>
<td>0.1 V</td>
</tr>
<tr>
<td>Dopamine</td>
<td>10</td>
<td>264.0</td>
</tr>
<tr>
<td>(±)-Epinephrine</td>
<td>10</td>
<td>282.4</td>
</tr>
<tr>
<td>Serotonin</td>
<td>10</td>
<td>3.8</td>
</tr>
<tr>
<td>Histamine</td>
<td>10</td>
<td>N.D.$^c$</td>
</tr>
<tr>
<td>4-Acetaminophenol</td>
<td>100</td>
<td>N.D.</td>
</tr>
<tr>
<td>Uric acid</td>
<td>25</td>
<td>N.D.</td>
</tr>
<tr>
<td>I$_{-}$-Ascorbic acid</td>
<td>40</td>
<td>460.2</td>
</tr>
</tbody>
</table>

$^a$ Interference=(I$_2$/I$_1$)$\times$100%, where I$_1$ is the response of the test compound and I$_2$ is the current response of 25 μM NADH.

$^b$ The sample was pretreated by ascorbic acid oxidase (2 units/mL) for 5 min.

$^c$ Not detected.
4. Conclusion

We have demonstrated the feasibility of oxidation determination of NADH catalytically by using a Co\textsubscript{3}O\textsubscript{4} modified electrode. This nanosheet based Co\textsubscript{3}O\textsubscript{4} shows a lower background level and prompt response during alteration of the applying potential. A simple OCP measurement gives straight-forward evidence to investigate the whole catalytic mechanism and the chemical product of oxygen. This method can provide a more stable, convenient, and rapid method for NADH determination. Moreover, the conducting carbon ink provides a convenient scheme to trap this Co\textsubscript{3}O\textsubscript{4} nanosheet by using a simple blending method; further applications, including its use in several dehydrogenase based biosensors and disposable strips, are investigated intensively in our laboratory.

Acknowledgment

We are grateful for the financial support from the National Science Council in Taiwan (Grant no. NSC 100-2113-M-032-001-MY3).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.bios.2012.10.086.

References

Lawrence, N.S., Wang, J., 2006. Electrochemistry Communications 8, 71–76.