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Abstract  

In practice, water pricing is the main economic instrument used to discourage the 

wasteful use of residential water. Owing to considerations of affordability, residential water is 

systematically underpriced because water is essential for life. Such a low price results in 

water being used inefficiently. This paper proposes a system that supplements the existing 

price system with a cap-and-trade measure to reconcile conflicts among the goals of 

residential water use. It forces all people (independent of income) to be faced with reasonable 

price signals and to use water efficiently. The poor could, however, gain from trade and afford 

water. By taking advantage of the agent-based model, a simulation of this system applied to 

Taipei, Taiwan shows that those with lower income per capita are better off under this system 

even though the equilibrium price of residential water is higher. The simulated price elasticity 

of market demand is -0.438. 
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1. Introduction 

Water is essential for life. The supply of water is, however, insufficient and it is 

becoming increasingly scarce in terms of meeting all of the demand for it (WWDR2, 2006). 

Economic and population growth, urbanization, and pollution intensify the demand pressure, 

while freshwater supplies remain constant and are distributed unevenly in terms of space and 

time. Climate change is also having a significant impact on the precipitation and hydrological 

cycles, which makes the availability of surface water even more uncertain. Under these 

conditions, it is essential for water to be used efficiently.  

Among all water uses, this paper will focus on the demand side in the case of residential 

water. Since the water supply for domestic use in general takes priority over other water 

usages, other water uses will be inefficient if residential water is not used efficiently. Around 

the world, water pricing is the main economic incentive instrument used to charge for 

residential water and to discourage its wasteful use.1 There is a large literature that has 

studied the estimation of residential water demand and has mainly focused on the estimation 

of price elasticity. Different issues regarding the estimation have been explored, including the 

                                                 
1 “Two scarcity-addressing strategies dear to water resource economists are water marketing and water pricing. 
Marketing is a management policy for natural water, whereas pricing pertains to partially- or fully-processed 
(retail) water.” (Griffin, 2006, p. 203). There are many existing rate systems for water utilities both in theory and 
practice such as flat pricing, marginal cost (MC) pricing, average cost (AC) pricing, the rate-of-return regulation, 
Ramsey pricing, peak-load pricing, block-rate pricing, price-cap regulation, spot market pricing, and effective 
water pricing (see Zarnikau, 1994 and Griffin, 2001). In general, if the pricing system has or tends to have the 
characteristic of MC pricing, it results in a higher economic efficiency. However, because the water utility is 
basically a natural monopoly, it will experience a loss under MC pricing and will exit the market in the long run. 
Instead, if the pricing system has or tends to have the characteristic of AC pricing, the natural monopoly will not 
experience a loss, but the economic efficiency of the society will be lower. In addition, the water utility might 
produce water inefficiently because its costs can be recovered anyway (see, e.g., Burgess, 1995 and Viscusi et al., 
2000). 
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following topics: whether the average or the marginal price combined with the difference 

variable should be used as the price variable in the demand equation (see, e.g., Taylor, 1975; 

Nordin, 1976; Foster and Beattie, 1979, 1981a, 1981b; Billings and Agthe, 1980; Billings, 

1982; Nieswiadomy and Molina, 1989; Nieswiadomy, 1992; Renwick and Archibald, 1998; 

Shin, 1985; Opaluch, 1982; 1984; Taylor et al., 2004), model specification and functional 

forms of the demand equation (linear, logarithmic, Stone-Geary, or discrete/continuous 

choice models among others) (see, e.g., Gaudin et al., 2001; Martínez-Espiñeira and Nauges, 

2004; Hewitt and Hanemann, 1995; Olmstead et al., 2007; Olmstead, 2009), the 

meta-analysis of various research estimates (see Espey et al., 1997; Dalhuisen et al., 2003), 

and country case studies (see, e.g., Martínez-Espiñeira, 2003; Reynaud et al., 2005; Schleich 

and Hillenbrand, 2009; Miyawaki et al., 2011; Rinaudo et al., 2012). In comparison with the 

above research, literature that studies institutional reforms of residential water management is 

relatively small and mainly focuses on the pricing system design (see e.g., Elnaboulsi, 2001; 

Hall, 2001; Boland and Whittington, 2001; Krause et al. 2003; García-Valiñas, 2005; 

Barberán and Arbués, 2009).  

Charging for water serves multiple purposes regarding water use, including the user 

pays principle, equity and efficiency in water use, an increase in quality, the financial 

soundness of the water utility, and affordability for the poor. However, these purposes are not 

reconciled. For example, a higher price may increase the efficiency of water use and utility 
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revenue, but it may also make water unaffordable to the poor. Owing to the consideration of 

affordability and the pressure from the demand side,2 water is “systematically underpriced by 

suppliers” (Griffin, 2006) and the price cannot reflect all the costs of producing it.3 The 

lower price causes water to be used inefficiently and renders its production costs 

irrecoverable. 

Differing from the above reforms in the use of pricing systems, this paper proposes a 

price-cum-trade incentive system (PTS hereafter) to reconcile the multiple purposes of 

residential water use (in particular efficiency and affordability). Nowadays, 

cross-subsidization is generally applied by the regulator to harmonize the dilemma. Under 

this measure, the water utility charges low income groups and most residences below-average 

rates, but charges industrial and commercial users above-average rates to make up the 

difference. There are, however, some problems which may arise from the cross-subsidization. 

First, a cross-subsidy policy sends wrong signals to both the utility and consumers. The 

over-consumption by subsidized customers and the loss of sales to the subsidizing customers 

are both inefficient and result in welfare losses to the society. Second, such a policy violates 

the principle of fairness. In addition, cross-subsidization frequently leads to serious financial 

losses for utility companies (Yepes, 1999). “Raising tariffs is an option, but it is difficult in 

practice to set cost recovery tariffs.” (Komives, 2004). 

                                                 
2 Consumers always hope to enjoy a higher consumer’s surplus regardless of whether they are poor or rich. 
3 In addition to the very high fixed costs of water utilities, the opportunity cost of using water instead of leaving 
it for environmental services should also be considered. 
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The PTS is based on the existing price-incentive system but also allows the water users 

to trade the water rights to which they are entitled. The PTS has the following positive 

characteristics. First, a cap design of residential water is used to take environmental 

sustainability into consideration.4 Second, the allocation of initial water rights to individuals 

can be used to take equity into account. Third, trading forces everyone, regardless of whether 

they are rich or poor, to face the market equilibrium price – the right price signal for water. 

However, the affordability problem disappears. This is because the one who uses less (more) 

water than he or she is entitled to use can earn (spend) money by selling (buying) extra water 

at the market price. Facing a higher price, a poor person can either save water to sell and 

make money, or he can pay the existing price to use the water to which he is entitled (he is no 

worse off than under a pure price system). In addition, because the poor and water-saving 

people can earn money, the problems of resistance to higher water price and systematic 

under-pricing are alleviated. Forth, under the PTS, the market equilibrium price can adjust on 

its own quickly and flexibly to reflect changes in the scarcity of water. However, under the 

price system the regulator needs to have perfect information in order to set the optimal price 

system and these prices are not easily adjustable. Fifth, the water utility could benefit by 

drawing a share of the trade balance as its revenue. 

In this paper, we also use a survey data set at the household level for Taipei, the capital 

                                                 
4 Regarding the discussion of environmental sustainability of residential water, see Krause et al. (2003). 
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of Taiwan, to specify an agent-based model in order to study the application of the PTS 

system.5 By using the agent-based model, we simulate the market equilibrium price of 

residential water and discuss the change of the income distribution of households. The 

simulated data for price and quantity are further used to estimate the price elasticity of market 

water demand. These research results are seldom studied in existing papers and can provide 

insights for residential water management. 

In the next section, we shall describe the design of the price-cum-trade incentive system 

and analyze its characteristics of efficiency, affordability as well as its practicality. In Section 

3, the agent-based PTS model is specified. The price elasticity of residential water demand is 

estimated and the post-trading income distribution of households is explored. Lastly, in 

Section 4 we provide the conclusion. 

 

2. The price-cum-trade incentive system 

We design the PTS as follows: 

1. Suppose that under the existing price system, the unit water price is 0P .6 

2. The minimal level of water supply for basic life support per capita, the basic water 

requirement, is q , which cannot be traded. 

                                                 
5 Agent-based modeling is a computational method for simulating the actions and interactions of autonomous 
agents. It is one of the complementary methods used to solve complex and un-computable problems. For more 
information, please visit this website (http://www.econ.iastate.edu/tesfatsi/). 
6 For simplification, we adopt a flat price case for ease of explanation. Different rate structures can be applied 
as well.  
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3. Suppose that the cap of residential water is Q , which is converted to a corresponding 

amount of water rights.7 

4. The regulator allocates Q  to individual water users, who are denoted by ni ,,1 . 

Suppose that each individual water user obtains iq  units of rights, 
1

n
i

i

q Q


 . It should 

be noted that iq  is a usufructuary right. By this we mean that iq  is not a property right. 

A water user should pay the unit price 0P  to enjoy the water to which he is entitled by 

the right. 

5. Individual water users can trade iq  with each other freely. When the market equilibrium 

price 0
* PP  , the user who sells his usufructuary rights can earn a profit from the price 

spread ( 0
* PP  ).  

6. The compliance condition for an individual water user at the end of each period is: 

owns. he rights water ofamount   theconsumed he water ofamount   the q  

Let us examine the PTS in detail. First, Q  is the cap for residential water which is 

usually determined by the total amount of water rights for residential use. Q  can be used to 

consider the environmental value and sustainable use of water as well. When water is scarcer, 

for example, the regulator could set a smaller amount of Q . The market equilibrium price 

will therefore be higher and reflect the scarcity of water. In general, the existing price systems 

could not reflect the actual value of water appropriately and flexibly. 

                                                 
7 Suppose that one unit of water rights deserves one unit of water. 
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The initial allocation of Q  is related to the income distribution but unrelated to 

efficiency. There are different users competing for water, such as families, businesses, 

organizations, schools, city-administrations, and others. If Q  is less than the existing total 

amount of water usage, how then could Q  be appropriately allocated among competing 

users? One of the feasible ways is to proportionately reduce the various water usages in the 

status quo. Then these initial water rights are further allocated to individuals. For family 

water consumption, the initial quantity might be allocated equally to every person. For 

business water consumption, the initial allocation might again be based on a proportionate 

reduction. Of course, every society could apply its own appropriate approach to allocate 

water. 

Second, water is systematically underpriced in practice regardless of the price systems 

adopted. The PTS can, however, help force everyone to face a higher market price while the 

poor are made better off. This is demonstrated in Figure 1, which is a simple example with 

two water users. In Figure 1, the demand curves for water for users 1 and 2 ( 1D  and 2D ) are 

drawn from the left-hand and right-hand axes, respectively. The cap of residential water is Q  

and the existing unit water price is 0P . At 0P , the water demanded by users 1 and 2 are 1
0q  

and 2
0q , respectively. It is easily seen that 1 2

0 0q q Q  . Supposing that Q  is an appropriate 

amount of water which takes into account the sustainable use, the above inequality then 

indicates that the price of residential water is not sufficiently high to allow the water to be 
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used efficiently.  

If the regulator somehow allocates Q  equally to users 1 and 2, i.e., 1 2 / 2q q Q  , at 

the quota 2/Q , the marginal willingness to pay of user 2 ( 2A ) is higher than that of user 1 

( 1A ). Both users therefore have an incentive to trade. The trading would take place until the 

marginal willingness to pay of each user is equal. At point *Q , the water market is in 

equilibrium. If user 1 is poor, we see that he could earn a profit of )2/(*)( 1
10

* qQPP   by 

saving and selling water.8 A very important part of the trade is that both the rich and the poor 

face the correct price signal and both gain from trade. A correct signal would force people to 

use water efficiently and save water. In addition, the regulator does not need any information 

to set the equilibrium price. This is, however, a difficult task under a pure price system.9  

In the long run, because people would improve their household appliances to save water 

(either to earn money or to reduce water expenditure), the total amount of water used by the 

society will decrease. Moreover, the water industry might possibly be further developed 

because of the commonly active water saving behavior of people.10 

 

                                                 
8 In a drought, if the regulator could further allow the domestic water users to trade with other water users 
(industrial users, for example), these other users might also be able to benefit from trade. Under this situation, 
the equilibrium price would be even higher because the demand for water would increase. The buyer, user 2 in 
the above example, might decide instead to become a seller.  
9 Existing rates are generally dependent on historical data and are very difficult to adjust to reflect the current 
situations because of the considerations of affordability for the poor, political commitments, and pressure from 
water users (the pressure is even higher when the overall economic situation is aggravated). 
10 Governments usually apply measures which encourage the renewal of water-saving facilities in government 
and schools to help save water and to promote the water industry. Such measures do not influence people’s 
customs when using water, however. People are only passive when saving water and the development of the 
water industry heavily depends on subsidy from the government. 
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3. The agent-based PTS model 

In this section, we will specify an agent-based PTS model based on a survey data set at 

the household level to study the practicability of the PTS and discuss the market equilibrium, 

income distribution, and price elasticity. We will first describe the data set and use the 

Stone-Geary utility function to take into account major demand variables including the 

subsistence level of water use, the water price, and the ratio of water expenditure to 

disposable income. The estimated water demand equation is then used to calibrate the water 

use behavior of the household which is defined as a household agent. The discussions of 

equilibrium, income distribution, and price elasticity follow thereafter.  

 

3.1 Data description 

The data used in this paper consist of the original sampling data from the “Report on the 

Family Income and Expenditure Survey” in Taipei, Taiwan.11 The survey is a nationwide 

questionnaire completed annually by Taiwan’s central and local governments and contains 

data on income, household characteristics, and water expenditure, etc., all at the household 

level. It is interesting to study the case of Taiwan because water is in fact a scarce resource in 

Taiwan and thus ought to be used very efficiently.12 The price system for residential water is, 

                                                 
11 Taiwan is a newly-industrialized Asian economy with a population of 22.77 million persons and a GDP per 
capita based on purchasing-power-parity (PPP) of US$ 27572.22 in 2005 (see the World Economic Outlook 
Database, International Monetary Fund). 
12 Taiwan is mountainous and the distributions of rainfall and runoff are very uneven. Rivers are also relatively 
short and steep so that the precipitation is very hard to store for subsequent utilization. The groundwater is 
overused which has resulted in the problem of land subsidence in some places. Since there is a large population, 



 11

however, one that is under-priced and has not been adjusted since 1994. The lower water 

price system not only results in inefficient water use, but the goals of financial soundness in 

terms of water utility, equity, and environmental sustainability can not as a result be 

attained.13  

In the whole original sample, we use the data of Taipei City for the year 2005. This is 

mainly because, unlike other cities, Taipei’s data on residential water expenditures can be 

distinguished from domestic waste treatment fees in this year. In addition, almost all people 

in Taipei are served by tap water (the percentage of population served was 99.5% in 2005). 

Based on this survey, after removing missing data and outliers we have data for 1,985 

households. Due to the fact that water billing accumulates bimonthly, we rescale our data into 

bimonthly form. Table 1 presents the bimonthly average statistics of disposable income, 

water consumption, and water expenditure per household by disposable income quintile.14 

Figures show that households with higher disposable income consume more water and pay 

more for water. The water expenditure share of disposable income, however, exhibits a 

reversed pattern in that the ratio is lower for higher-income households.  

                                                                                                                                                        
the annual available water per capita (TARWR per capita 2005) in Taiwan is only 2930 3m /year  (see Table 

4.3 in WWDR2, 2006). 
13 The amount of water used in Taipei is 352 liters per capita per day, which is the second highest amount 
among approximately 100 cities surveyed by IWA (2008). 
14 The figures for water consumption are calculated from the data on water expenditure and the rate structure 
for tap water in Taipei (see Appendix 1). There are two data adjustments that should be noted. First, in practice, 
a sewer fee of 5 NT$ is charged for each cubic meter of water consumption in addition to the unit fee of water. 
This sewer fee is considered in this paper. Second, the magnitude of fixed cost is related to the diameter of the 
water meter. Because we don’t have this data for each household, we assume that the diameter form of the meter 
applied by all households is 20mm, which is the most popular form (its share is 46.34%).  
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3.2 The Stone-Geary demand function 

In the following, we use the Stone-Geary utility function to derive and estimate the 

water demand function. The Stone-Geary utility function is  

   1)()( yyww qqU , 

where U denotes the level of utility, qw and qy are respectively the consumption of water and 

the composite good, α is the ratio of water expenditure to disposable income, and γw and γy 

represent the subsistence consumptions of water and the composite good, respectively. In 

considering the individual household disposable income I, water price pw, and the price of the 

composite good py, we derive the following optimal consumption bundle of water:  

)( 



k

kk
w

ww pI
p

q 
, 

in which k = {w, y}. By assuming the composite good is the numeraire (py = 1) and letting γy 

= 0 to focus on water consumption, we can simplify the above consumption bundle to 

( ) (1 )w w w w w
w w

I
q I p

p p

          . 

The main advantages of the Stone-Geary specification are that the estimated elasticities 

are non-constant and it uses only two parameters which have economic meaning:  , which 

is the marginal budget share of water, and  , which represents a threshold below which 

consumption may not be responsive to prices (see Gaudin et al., 2001; Martínez-Espiñeira 

and Nauges, 2004). 
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In this paper, average price is treated as the price variable and is obtained as a result of 

dividing water expenditure by water consumption. Average price, and not the marginal price 

combined with the difference variable, is used because the price system as applied in Taipei is 

complicated. This price system consists of a fixed fee and five increasing block rates. In 

addition, the cost of water is relatively low compared to disposable income.15 This paper also 

explicitly considers some water-use-related variables for household characteristics such as the 

number of household members (N), house size (H), and the education level of the 

householder (EDU). The data descriptions for variables at the household level are presented 

in Table 2. The estimate of the water demand equation yields (t-ratio in parentheses):  

(5.148) (10.291) (11.923) (3.567) (0.519)
13.722 0.00081 6.49 0.2 0.176w

w

I
q N H EDU

p
      , 

2
0.24R   

According to the estimates, the threshold (or subsistence level) of water is calculated as 

13.733 ( = 13.722/(1– 0.00081)) cubic meters per household bimonthly and the minimal daily 

water consumption per person is about 72.66 liters.16 The estimated price elasticity ( p ) and 

                                                 
15 “Conventional consumer theory assumes that users have perfect information about their preferences and 
constraints. They are assumed to react to changes in marginal prices and not to changes in intramarginal prices, 
because the former give rise to a substitution effect while the latter are assumed to create only an income effect. 
However, under high relative costs of information on the tariff, water users might respond more to average price 
changes than to marginal price changes (Foster & Beattie 1981a, 1981b; Nieswiadomy 1992) by obtaining 
information on the total bill and the total amount consumed and roughly calculating an average price. Extra 
effort would be needed to learn about the marginal price. Calculating the marginal price from a bill in the 
presence of pricing blocks is not easy, and calculating which block consumers are consuming in (and therefore 
which marginal price they are facing) is even more difficult. This might not be considered worthwhile, 
especially since the relative cost of water is low compared to income.” (p. 238 in Martínez-Espiñeira, 2003) 
16 The minimal daily water consumption per person of 72.66 liters is calculated by transferring 13.733 cubic 
meters to liters first and then dividing 13733 liters per household bimonthly by 60 (days) and 3.15 (average 
number of persons per household). There are different suggestions for the basic water requirement in the 
literature. For example, WELL (1998) and WHO and UNICEF (2000) suggested a reasonable minimum as 
being 20 liters per capita per day; Gleick (1996, 1998) recommended an overall basic water requirement of 50 
liters per capita per day. In Howard and Bartram (2003), 100 liters per capita per day and above is the optimal 
access. 
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income elasticity ( I ) at the sample mean are -0.22 and 0.22, respectively. They have the 

same magnitude and opposite signs and can be derived by ( / )p I w wI p q      . The 

price elasticity shows that the water demand is not very sensitive to the water price. This 

finding might be due to the relatively low water price and its small variation. It is consistent 

with the estimates suggested by existing empirical studies.17 

 

3.3 The agent-based water rights market and income distribution 

In this subsection, we simulate the scenario in which the PTS is applied in Taipei by 

using the agent-based PTS model. Here, a “household” is defined as an agent. The 

Stone-Geary water demand equation and bimonthly household data are used to calibrate 

individual household behavior. The market-clearing water price is determined when total 

water rights (Q ) equal total water demand, which can be formulated as the following 

equation:  

1 1

( )
n n

i i
w w

i i

Q q q p
 

   , 

where ( )i
w wq p  is the individual water demand function which is represented by the above 

estimated Stone-Geary water demand equation and iq  is the water right allocated to the ith 

                                                 
17 Based on a review of 24 journal articles published between 1967 and 1993, Espey et al. (1997) indicated that 
the price elasticity estimates range from -0.02 to -3.33 in the sample, with an average of -0.51. About 90% of the 
estimates are between 0 and -0.75. Dalhuisen et al. (2003) reviewed 64 studies that appeared between 1963 and 
2001. The distribution of price elasticities has a sample mean of -0.41, a median of -0.35, and a standard 
deviation of 0.86. The minimum and maximum values are -7.47 and 7.90, respectively. The distribution of 
income elasticities has a mean of 0.43, a median of 0.24, and a standard deviation of 0.79. Approximately 10% 
of the estimates are greater than 1. A more recent survey paper, Worthington and Hoffman (2008), indicates that 
price elasticity estimates are generally found in the range of zero to 0.5 in the short run and 0.5 to unity in the 
long run; income elasticity estimates are of a much smaller magnitude (usually) and positive. 
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individual household. For simplicity in analysis, we assume that the Q  are rationed equally 

among individuals (regardless of whether they are young or old, rich or poor persons). In the 

status quo of the data set, the total amount of water consumed is 107,808 cubic meters. Each 

person is allocated 17.241 cubic meters of water rights bimonthly.18 Households will 

purchase water rights when their respective water demand exceeds the allocated water rights 

at the equilibrium price and will sell their rights should there be any excess rations. However, 

the basic water requirement, 72.66 liters per capita per day as estimated above, cannot be 

traded. We use the Walrasian auctioneer to determine the equilibrium water price, which is 

determined at the market clearing condition. The simulated equilibrium price is 20.443 

NT$/ 3M . This price is notably higher than the current highest level of block rates in Taipei.  

The average statistics of water consumption, water expenditure and its change, and 

expenditure-income ratio per household after trading by quintile are shown in Table 3. In the 

columns of “Sorted by I”, i.e., the households are sorted by disposable income quintile, the 

net expenditures from trading WR (cost from buying water rights – revenue from selling 

water rights) show that the poorest two household groups are the buyers of water rights and 

their water expenditures increase after trading. This outcome might mainly be due to the fact 

that the household sizes of poorer groups are smaller than those of the richer groups (see 

Table 1). Therefore fewer initial water rights are allocated to these households. From this 

                                                 
18 There are 6,253 persons in the sample and 17.241=107,808/6253. 
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outcome, it seems that trading would worsen the income distribution. However, if we re-sort 

the quintile by disposable income per capita and water consumption per capita, respectively, 

the story changes. In the columns of “Sorted by PC I”, the net expenditures from trading WR 

for households with lower income per capita are negative. The poorer persons do gain from 

trade and the situation of income distribution is improved. The water share is around 20% for 

each quintile. Furthermore, in columns of “Sorted by PC WC”, households with lower water 

consumption per capita can earn more from selling water rights and households with higher 

water consumption per capita should pay more for buying water rights. This outcome is 

compatible with the user pays principle.  

 

3.4 The simulated market price elasticity  

 

One of the advantages of the agent-based model is that it can be used to simulate 

different scenarios but is based on the water-use behavior of households. In this subsection, 

we further discuss the price elasticity under the scenario of changing the total quantity of 

water supply.  

Suppose that there are 41 different cases where total water supply varies and water rights 

allocated for individual persons vary correspondingly from 7.241 to 27.241 cubic meters with 
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an increment of 0.5 cubic meters.19 The Walrasian auctioneer is used to determine the 

equilibrium water prices under these various levels of water supply cases. The simulation 

results of the market equilibrium are graphically displayed in Figure 2.  

The upper panel of Figure 2 shows the market-clearing price under different levels of 

total water supply. Since the equilibrium water prices are determined when water demand 

equals water supply, the curve in Figure 2 is in essence water demand curve. Furthermore, 

because the simulation has generated 41 data points, we then use these data to run a 

double-log regression. The estimates are presented as follows (t-ratio in parentheses): 

(216.15) ( 24.649)
ln 12.953 0.438 ln wQ p u


   , 

2
0.94R  . 

The coefficient of ln wp , -0.438, represents the market water demand elasticity, which is 

higher than that for households in absolute value. We would like to emphasize that the 

simulated demand represents market aggregate demand. Unlike the estimated demand curve 

in the previous subsection, the aggregate demand here can respond to the water price from the 

behavior of the individual households.  

The curve in the lower panel of Figure 2 is presented using a logarithmic scale so that 

the slope can be defined as the elasticity of water demand. It is observed that, the lower the 

total water supply, the smaller the water demand elasticity. When the total water supply 

approaches the minimum water requirement, the absolute value of elasticity will approach 
                                                 
19 As mentioned above, each person is allocated 17.241 cubic meters of water rights bimonthly. We take a range 
of 20 cubic meters around this number to specify the simulation scenario. The case number of 41 is got by the 
calculation: 41= (27.241-7.241)/0.5+1. Correspondingly, the total quantity of water supply varies from 45,278 to 
170,338 cubic meters. 



 18

zero. On the other hand, if abundant water is supplied, its elasticity will asymptotically go to 

-1. A rough estimate of the price elasticity for the status quo total water supply is -0.615.20 

 

4. Conclusion 

Because some of the goals of residential water use are mutually conflicting, existing 

pure price systems are, in practice, systematically underpriced. This paper supplements the 

existing price system with a cap-and-trade measure to reconcile these problems. One of the 

price-cum-trade incentive system’s (PTS’s) advantages is that it forces everyone to face the 

correct price signal. Under the existing pure price systems, the interests of all water users 

(regardless of whether they are rich or poor) are the same—they do not prefer a higher water 

price. Under the PTS, however, these common interests are broken. Because the poor could 

save water to sell it at a higher price and earn money, they do not need to protest against a 

higher price, while major water users are now forced to face higher prices.  

The cap on residential water use can be used in considering other values of water use, 

such as environmental and ecological values among others. The market then works by itself 

to reach the equilibrium. The government does not need to set the optimal price. Moreover, 

when people take active steps to save water, the government should educate people and 

publish information on how to save water. 

                                                 
20 It is estimated by using three data points: the status quo (ln pw, ln Q) and its two contiguous data points. 
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In this paper, using the agent-based PTS model, the trading of water rights is simulated. 

People with lower disposable income per capita and/or with lower water consumption per 

capita do earn from trade and equity is improved. In addition, the results of our simulated 

elasticity fall within the range suggested by empirical studies. Based on the behavior of the 

individual households, we have also explored the aggregate water demand responding to 

various water prices. The market demand elasticity is higher than that of household level and 

decreases as the total water supply is reduced. 

Some transaction costs would occur because of the trades. Experiments based on true 

trading therefore deserve further research to help explore the PTS and reduce the transaction 

costs. Transaction costs might also be reduced by measures such as an effective brokerage 

system, a transparent and real-time information system, and separating the trading procedure 

into trading and implementation periods. It should be noted that trades might not be popular 

at the beginning. However, the price information provided by the trades is very important 

because it would induce people to use and save water with a more conscious attitude. 

Finally, when the water market works well, some derivatives such as options and futures 

for water might be derived. These instruments could help reduce the uncertainty of water 

availability. Furthermore, the problems of stolen water and the overuse of ground water might 

become worse as water becomes more valuable. These topics, related with compliance and 

derivatives, should also be interesting for further study.  
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Appendix 1. Rate structure for tap water in Taipei (monthly per household) 

 Block 1 Block 2 Block 3 Block 4 Block 5 

Water consumption ( 3M ) 1-20 21-60 61-200 201-1000 1001+ 

Rate (NT$/ 3M ) 5.0 5.2 5.7 6.5 7.6 
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Figure 1. The equilibrium of the water market 
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Figure 2. The water demand curves 
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Table 1. Bimonthly average statistics of disposable income, water expenditure, and water consumption per household 

(by disposable income quintile) 

 Lowest 20 percent Fourth 20 percent Third 20 percent Second 20 percent Highest 20 percent 

Disposable income (NT$) 81,107 135,397  182,566 247,373 385,759 

Water consumption ( 3M ) 

(share of total water consumption) 

36.276 

(13.36%) 

51.596 

(19.00%) 

55.451 

(20.42%) 

62.117 

(22.87%) 

66.118 

(24.35%) 

Water expenditure (NT$) 500 656 695 763 804 

Expenditure-Income ratio 0.62% 0.48% 0.38% 0.31% 0.21% 

Household size (person) 1.95 2.88 3.29 3.66 3.97 

Note: 1. There are 397 households in each quintile. 

2. The exchange rate is 1 US$ = 32.167 NT$ in 2005. (Data source: Central Bank of the Republic of China) 
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Table 2. Descriptive statistics of variables 

Variable Description Unit Mean SD Median Max. Min. Skew. 

I Disposable income NT$ 206440  119086 180554 1386616 11762 2.01  

WE Water expenditure NT$ 683.57 325.02 600 4000 150 1.99  

  Expenditure-Income ratio (=WE/I) % 0.41  0.28  0.35  4.96  0.04 4.36  

wq  Water consumption 3M  54.31  31.68 46.30 367.50 1.40 1.87  

wp  Average price (=WE/ wq ) NT$ 13.76  3.92  12.96 107.14 10.88 9.72  

N Household size person 3.15 1.32 3 9 1 0.28  

H House size 2M  101.32  40.12 99.17 495.87 9.92 1.91  

EDU Education level of householder  6.18 1.97 6 10 1 -0.33  

Note: The education level of householder is labeled as 1 for illiteracy, 2 for self study, 3 for primary school, 4 for junior high school, 5 for senior high school, 6 for 

vocational high school, 7 for college, 8 for university, 9 for master, and 10 for Ph.D., respectively. 
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Table 3. Changes in water expenditure after trading 

 Lowest 20 percent Fourth 20 percent Third 20 percent Second 20 percent Highest 20 percent 

Average statistics 

per household 

Sorted 

by I 

Sorted 

by PC 

I 

Sorted 

by PC 

WC 

Sorted 

by I 

Sorted 

by PC 

I 

Sorted 

by PC 

WC 

Sorted 

by I 

Sorted 

by PC 

I 

Sorted 

by PC 

WC 

Sorted 

by I 

Sorted 

by PC 

I 

Sorted 

by PC 

WC 

Sorted 

by I 

Sorted 

by PC 

I 

Sorted 

by PC 

WC 

qw (M 
3) 

(water share) 

38.51 

(14%) 

55.612 

(20%) 

43.198 

(16%)

51.24

(19%)

53.790 

(20%)

49.912 

(18%)

55.50

(20%)

56.633 

(21%)

53.969 

(20%)

60.93

(22%)

54.940 

(20%)

60.235 

(22%)

65.38

(24%)

50.583 

(19%) 

64.244 

(24%) 

WE for initial WR(1) 473 770 768 635 720 739 708 712 700 772 655 671 826 555 535 

Net expenditure 

from trading WR(2) 
100 -151 -398 33 -86 -204 -27 -12 -42 -44 68 145 -62 181 499 

Post-trading WE(3) 573  619 370 668 634 535 681 700 658 728 723 816 764 736 1034 

Status quo WE(4) 500  685 422 656 666 566 695 713 667 763 701 803 804 653 961 

WE (5) +73 -66 -52 +12 -32 -31 -14 -13 -9 -35 +22 +13 -40 +83 +73 

WE-Income ratio(6) 0.71% 0.52% 0.18% 0.49% 0.39% 0.25% 0.37% 0.34% 0.31% 0.29% 0.30% 0.38% 0.20% 0.24% 0.56% 

Note: 1. The abbreviations of WE, WR,  , PC, and WC represent water expenditure, water right, change, per capita, and water consumption, respectively. 

2. In the first column, the item with superscript (3) = (1) + (2); (5) = (3) – (4); and (6) = (3) / I. 


