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Abstract 

 

We derive the pricing formulas for guarantees whose guaranteed minimum rates of 

return are set relative to cross-currency stochastic rates of return, “GCSRs” for short, via a 

cross-currency framework. GCSRs are often embedded in contracts which include life and 

pension insurance policies, guaranteed investment contracts and index-linked bonds, etc. 

The valuation of such guarantees has not been investigated in previous literature regarding 

guarantees. Our research finds that valuing GCSRs via a single-currency framework 

which is adopted in previous research on guarantees causes a significant underestimation 

of GCSRs under both maturity and multi-period guarantee. The underestimation of 

multi-period guarantee is much more significant than that of maturity guarantee. As a 

result, the pricing formulas derived in our research are more suitable, tractable and 

feasible for practice than those in previous relevant literature. 
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1 Introduction 

A common way to reduce the financial risk in financial contracts is to embed the 

policies with minimum rate of return guarantees to bind the return from below. Such 

contracts include life and pension insurance policies, guaranteed investment contracts 

(GICs), cf. e.g., Walker (1992), and index-linked bonds, etc. Because these guarantees are 

often embedded in policies issued by insurance companies, investment banks or 

government, it is important that the issuers know the value of the policies they are selling. 

Since these guarantees may be surprisingly expensive, this may cause the issuers to charge 

too small premiums to put their financial stability at risk. Besides, there are requirements 

that insurance companies explicitly inform the customers about the economic value of the 

embedded guarantees in some countries. As a result, further analysis for pricing rate of 

return guarantees correctly is important and warranted.  

There are a variety of guarantee designs in financial contracts embedded with 

guaranteed rate of return in practice. One class of these guarantees is so-called absolute 

guarantees, i.e., guarantees where the minimum rate of return is set to be deterministic. 

The other is so called relative guarantees in the literature (Lindset, 2004), i.e., guarantees 

where the minimum guaranteed rates of return are linked to a stochastic rate of return on 

an asset such as an index, a reference portfolio, a specific asset traded in financial markets, 

etc. The occurrence of relative guarantees is due to the problem of absolute guarantees. 

Granting a deterministic guaranteed rate results in a problem which is unable to attract 

contract participants by a low guaranteed rate. On the other hand, contract issuers bear 

financial burdens to attract contract participants with a high guaranteed rate. 

Previous research on valuing guarantees for life insurance products or pension funds 

has focused on absolute guarantees, which provide participants to receive a constant or 

predetermined minimum rate of return. The existing literature which analyzed absolute 

guarantees under the assumption of deterministic interest rate included Brennan and 

Schwartz (1976), Boyle and Schwartz (1977), Boyle and Hardy (1997), and Grosen and 

Jorgensen (1997, 2000). Persson and Aase (1997) and Hansen and Miltersen (2002) 

employed the Vasicek (1977) interest rate model. Miltersen and Persson (1999), Lindset 

(2003), and Bakken, Lindset and Olson (2006) adopted the Heath-Jarrow-Morton 

framework (HJM, 1992). 

Despite the popularity of relative rate of return guarantees, especially those issued in 
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Latin America, the research on them is significantly less in number than absolute 

guarantees. Only few articles were written on the relative rate of return guarantees. Ekern 

and Persson (1996) investigated unit-linked life insurance contracts with different types of 

relative guarantees. Pennacchi (1999) valued both the absolute and the relative guarantee 

provided for Chilean and Uruguayan pension plans by using a contingent claim analysis. 

Both papers assume that interest rate is deterministic. However, Lindset (2004) analyzed 

several kinds of minimum guaranteed rates of return within the HJM framework. The 

guaranteed rate of return examined in these three papers is set relative to the rates of return 

on equity-market assets. Besides, Yang, Yueh and Tang (2008) studied rate of return 

guarantees for pension funds linked relative to a return measured by market realized 

δ-year spot rates with the HJM framework. However, one problem of their result is 

available only for a special case with a limited guarantee period under multi-period 

guarantee. Hsieh and Chen (2010) analyzed guarantees whose guaranteed rate of return is 

set relative to a stochastic interest rate under the LIBOR market model (LMM). They 

derived general pricing formulas for guarantees with an arbitrary guarantee period and 

solved the limitations of Yang et al. (2008). 

In practice, it is common for that the underlying asset which provides the rate of return 

for the contract and the guaranteed rates of return are denominated in cross-currency, 

(GCSR denotes a minimum rate of return guarantee whose guaranteed rate of return is set 

relative to a cross-currency stochastic rate of return, hereafter.). This situation can be 

always observed in unit-linked products. However, the all previous literature regarding 

guarantees assumed that both the underlying assets and the guaranteed rate in contracts are 

denominated in a single-currency. This assumption is not consistent with the real 

economic environment and leads to that those pricing formulas are not suitable for valuing 

GCSRs since the “quanto-effect” which has been discussed in the finance literature is not 

considered. Amin and Jarrow (1991), Schlogl (2002), Musiela and Rutkowski (2005), and 

Wu and Chen (2007) show that the “quanto-effect” affects the pricing results and should 

be considered in valuing cross-currency financial products. 1 

                                                 
1 Examples of such contracts can be observed in pension plans and unit-linked life insurance contracts. The 
countries which provide pension plans with a stochastic guaranteed rate include Chile, Colombia, Peru and 
Argentina (see e.g., Pennacchi, 1999; Lindset, 2004). Ekern and Persson (1996) analyze a number of 
unit-linked contracts with stochastic guaranteed rates. Exhibit 5 in Appendix C shows the statistics regarding 
the unit-linked products provided by the European Insurance and Reinsurance Federation (CEA). From the 
statistics, the European life insurance market in 2010 was characterized by a significant rise and percentage 
in the share of unit-linked contracts in total life premium.  
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This research attempts to derive the general pricing formulas for GCSRs embedded in 

financial contracts. The guaranteed minimum rate of return is set relative to a 

cross-currency stochastic rate of return. This issue is important and has not been 

investigated in previous research on guarantees. 

Our article has several contributions to the literature on relative guarantees, 

particularly in the presence of an open cross-currency economic environment and 

stochastic interest rates. 

First, we derive the general pricing formulas of GCSRs. Our pricing formulas consider 

the “quanto-effect” and hence are consistent with the real economic environment. The 

pricing formulas of GCSRs in this research will be more general and suitable for pricing 

guarantees in a real cross-currency environment. If the model setting degenerates to the 

single-currency case, the pricing formulas of GCSRs become the pricing formulas of the 

single-currency guaranteed contract. 

Second, our research finds that valuing GCSRs via a framework which is used in 

previous research regarding guarantees and does not consider the effect of exchange rate 

(we call this framework a single-currency framework hereafter) causes a significant 

underestimation of GCSRs. The underestimation may lead issuers to charge too small 

premiums to suffer financial distress.2 The underestimation can be avoided by using our 

pricing formulas. 

Third, the derived formulas can be applied to value GCSRs under both multi-period 

and maturity guarantees with an arbitrary guarantee period. The lack of general formulas 

which can be applied to an arbitrary guarantee period due to utilizing other interest rate 

models is solved by adopting LMM to describe the behavior of interest rate. 

Rate-of-return guarantees are embedded in these two fundamentally different types. The 

contract period of multi-period guarantees is divided into several subperiods. A binding 

guarantee is specified for each subperiod. Many life insurance contracts and guaranteed 

investment contracts (GIC) sold by investment banks, cf. e.g., Walker (1992), are 

examples of multi-period guarantees. In contrast, maturity guarantees are binding only at 

contract expiration. There are some extra bonuses of adopting the LMM. One is that the 

quotes of interest rates are consistent with market conventions and thus make the pricing 

formulas more tractable and feasible for practitioners. The other is that the problems 

exhibited in the other interest rate models, such as the Vasicek model, the Cox, Ingersoll 
                                                 
2 More details about the results of numerical analysis are represented in Subsection 5.2. 
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and Ross (CIR) model, and the HJM model, are overcome.3  

Finally, using our pricing formulas to value GCSRs will be more efficient than 

adopting time-consuming simulation, especially for those insurance and pension policies 

with a long duration. 

This article is structured as follows. Section 2 describes the financial plans embedded 

with guarantees and the structure of each guarantee. Section 3 represents the economic 

environment and the dynamics of assets for pricing. In Section 4, the pricing formulas of 

each guarantee are derived. Section 5 represents the examination of accuracy of the 

pricing formulas via Monte Carlo simulation and shows some numerical analysis. In 

Section 6, the results of this paper are concluded with a brief summary. 

2 Financial Plans Embedded with Guarantees and Guarantee Structure 

We describe financial plans (such as insurance or pension policies) embedded with 

GCSRs under maturity and multi-period guarantees and represent each type of guarantees. 

In addition, the guaranteed rates of return of plans are set relative to cross-currency 

stochastic rates of return. 

Assume that  0 1, ,..., 0,NT T T   with 0 10 ... Nt T T T      . In accordance with 

practice, we define 1, 1, 2,...,i iT T i N     and 0T t   . An investor contributes a 

notional principle to the financial plan in each period. We list the notations with “d” for 

domestic and “f” for foreign as follows. 

2.1 Financial Plans Embedded with GCSRs under Maturity Guarantees (First-Type 

Guarantees) 

A participator of financial plans contributes principals to the plan at time 0 1 1, ,..., NT T T  . 

At maturity, the participator receives the terminal payout of a financial plan embedded 

with GCSRs under maturity guarantees  I NFP T , ie:  

   
    

*1 1
1

, *
1 1 1

max , 1 ,
N NN

f i
I N d n d i i

n i n i nf i

S T
FP T P L T T

S T


 


    

       
    

    (2.1.1) 

where 

 ,d nP  =  the principal which the investor contributes to the plan at time nT  

denominated in units of domestic currency. 
                                                 
3 For the purpose of brevity, these problems are specified in Section 3.  
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 *
fS   =     fS X  (  *

fS   is used for the simplicity of presentation, hereafter ). 

 fS   =  the underlying foreign asset price at time   denominated in units of 

foreign currency (  * *
,f fS S   ). 

 X   =  the exchange rate at time   expressed as the domestic currency value of 

one unit of foreign currency. 

 
 
 

*
1

*

f i

f i

S T

S T
  =  the actual rate of return on the underlying in period  1i iT T    . 

 ,d i iL T T  =  the domestic Ti-matured LIBOR rates with a compounding period  . 

The maturity guarantee is binding only at the contract expiration. The plan provides 

the investor a minimum interest rate guarantee on the principal paid into the contract. Note 

that the guaranteed rate of first-type guarantees is set relative to a cross-currency 

stochastic LIBOR interest rate.  The underlying asset and the guaranteed rate are 

denominated in cross currency, which is common in unit-linked contracts. However, there 

is no research on the relative guarantee to deal with this issue. 

The payout to the participator in NT ,  I NFP T , can be written as the value of a pure 

financial plan without guarantees,  NU T , plus the value of the first-type guarantee, 

 I NG T , such that 

   
 

    
 

 

*1
1

, *
1 1

( )

*1 1
1

, *
1 1 1

max 1 , , 0

N

I N

NN
f i

I N d n
n i n f i

U T

N NN
f i

d n d i i
n i n i n f i

G T

S T
FP T P

S T

S T
P L T T

S T





  

 


    

    
  

           

 

  





 (2.1.2) 

   
 

*1
1

, *
1 1

NN
f i

I N d n
n i n f i

S T
U T P

S T




  

    
  

   (2.1.3) 

      
 

   

*1 1
1

, *
1 1 1

max 1 , , 0

n
NI

N NN
f i

I N d n d i i
n i n i n f i

T

S T
G T P L T T

S T


 


    



 
          
 
 

  


 (2.1.4) 

        
 

*1 1
1

*
1 1

max 1 , , 0
N N

n f i
I N d i i

i n i n f i

S T
T L T T

S T


 


   

 
     

 
   (2.1.5) 

   n
I NT  is defined as the time NT  value of the first-type guarantee for one dollar 
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contributed in the n-th period. Actually, the cash flow of    n
I NT  is a type of options. 

The amount of principal only serves as a scalar of the actual payout. As a result,  I NG T  

is the sum of the option value of each period and the potential costs for issuers at the 
expiration date. 

2.2 Financial Plans Embedded with GCSRs under Multi-period Guarantees 

(Second-Type Guarantees) 

A financial plan embedded with GCSRs under multi-period guarantees provides the 

terminal payout,  II NFP T , to the participator at maturity, ie: 

   
    

*1
1

, *
1 1

max , 1 ,
NN

f i
II N d n d i i

n i n f i

S T
FP T P L T T

S T





  

          
   (2.1.6) 

The contract period is divided into several subperiods for multi-period guarantees. The 

contract specifies a binding guarantee for each subperiod.  

The payout to the participator in NT ,  II NFP T , can be also written as the value of a 

pure financial plan without guarantees,  NU T , plus the value of the second-type 

guarantee,  II NG T , such that 

 

   
 

 

 
      

 
 

*1
1

, *
1 1

* *1 1
1 1

, * *
1 1 1

max , 1 ,

N

II N

NN
f i

II N d n
n i n f i

U T

N NN
f i f i

d n d i i
n i n i nf i f i

G T

S T
FP T P

S T

S T S T
P L T T

S T S T





  

 
 

    

    
  

                   

 

  





 (2.1.7) 

    
      

 
   

* *1 1
1 1

, * *
1 1 1

max , 1 ,

n
NII

N NN
f i f i

II N d n d i i
n i n i nf i f i

T

S T S T
G T P L T T

S T S T


 
 

    



 
                  
 
 

  


 (2.1.8) 

      
      

 

* *1 1
1 1

* *
1 1

max , 1 ,
N N

n f i f i
II N d i i

i n i nf i f i

S T S T
T L T T

S T S T


 
 

   

   
            
   (2.1.9) 

where    n
II NT  is defined as the time NT  value of the second-type guarantee for one 

dollar contributed in the n-th period. 

The major difference between the first-type and the second-type guarantee is that a 
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maturity guarantee is binding only at the contract expiration, while the contract period of a 

multi-period guarantee is divided into several subperiods, where a binding guarantee is 

specified for each subperiod. 

3 Economic Model  

From the payoff structure of GCSRs, the pricing model should include the dynamics of 

the foreign equity-type asset, the exchange rate and the domestic interest rates. These 

dynamics will be adopted to develop the arbitrage-free pricing formulas of GCSRs. 

Assume that trading takes place on a continuous basis in the time interval  0, , for some 

fixed horizon 0    . The uncertainty is described by the filtered probability space 

    0,
, , ,

t t
F Q F


 . The filtration    0,t t

F


 is the Q -augmentation of the filtration 

generated by independent standard Brownian motions         1 2
, , ...,

D
W t W t W t W t . Q 

represents the spot martingale probability measure. The filtration    0,t t
F


 denotes the 

flow of information accruing to all the agents in the economy. The dynamics of assets 

under the martingale measure Q are given as follows (see Harrison and Kreps (1979), 

Amin and Jarrow (1991), Schlogl (2002), Musiela and Rutkowski (2005) and Wu and 

Chen (2007) for more details). 

The Dynamics of the Exchange Rate 

The dynamics of the spot exchange rate  X t  is assumed to have a lognormal 

volatility structure and its stochastic process under the martingale measure Q is given by  

 
          ,d f X

dX t
r t r t dt t dW t

X t
       (3.1.1) 

where ( )X t  is a deterministic volatility vector function of an exchange rate 

satisfying the standard regularity conditions and  ( ), ,kr t k d f  is the kth country’s 

risk-free short rate at time t. 

The Dynamics of the Foreign Equity-Type Asset 

The dynamics of the foreign reference equity-type asset  fS t  under the martingale 

measure Q is given by 
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 
            ,f

f X Sf Sf
f

dS t
r t t t dt t dW t

S t
          (3.1.2) 

where  Sf t  is a deterministic volatility vector function satisfying the standard regularity 

conditions. 

The Dynamics of Interest Rates: LIBOR Market Model (LMM) 

We adopt the LMM to describe the behavior of domestic interest rate. The LMM has 

been developed by Brace, Gatarek and Musiela (1997, BGM). The processes of domestic 

LIBOR rates under the LMM are briefly expressed as follow. 4 The notations are given 

below:  

 ,df t T  =  the domestic forward interest rate contracted at time t for instantaneous 

borrowing and lending at time T with 0 t T    . 

 ,dP t T  =    exp ,
T

dt
f t u du , the time t price of a domestic zero coupon bond (ZCB) 

paying one dollar at time T. 

  dr t  =   ,df t t , the domestic risk-free short rate at time t. 
  d t  =   

0
exp

t

dr u du 
   , the domestic money market account at time t with an initial 

value  0 1d  . 

For some  0, 0,T   , define the forward LIBOR rate process 

  , ;0dL t T t T    as given by 

     1 , , ,d d dL t T P t T P t T      exp ,
T

dT
f t u du


   

The dynamics of the LIBOR rates, the ZCB price and the reference investment 

portfolio under the spot martingale measure Q are given as follows: 

             , , , , , ,d d Pd d ddL t T L t T t T t T L t T t T dW t           (3.1.3) 

         , , ,d d d PddP t T P t T r t dt t T dW t    (3.1.4) 

where    , : 0, D
d T T R    is a deterministic, bounded and piecewise continuous volatility 

function and  ,Pd t T  is defined as (3.1.5).  

                                                 
4 A further description regarding the LMM can be found in advanced textbooks in finance, see, e.g. Svoboda 
(2004) and Musiela and Rutkowski (2005). 
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The bond volatility  ,Pd t T  must be specified to fit the arbitrage-free condition in 

HJM and is given as follows:  

 
 
 

 

   
1

1

,
, 0, & 0

, 1 ,

0 .

T t

d
d

Pd k d

L t T k
t T k t T T

t T L t T k

otherwise

 



 
    

  



 
     

  



  (3.1.5) 

where  1 T t     denotes the greatest integer that is less than  1 T t   . 

According to the bond volatility process (3.1.5),     0,
,P t T

t T


 
 

  is stochastic 

rather than deterministic. To solve equation (3.1.3) for the distribution of  ,dL T T , BGM 

(1997) approximated  ,Pd t T  by  ,Pd t T  at any fixed initial time s, and given by 

 
 
     

 1

1

,
, 0, & 0,

, 1 ,

0

T t
d

d
Pd k d

L s T k
t T k t T T

t T L s T k

otherwise

 



 
     

  



 
     

  



  (3.1.6) 

where 0 s t T     . Hence, the calendar time of the process     ,
,d t s T

L t T


 in (3.1.6)  

is frozen at its initial time s  and the process     ,
,Pd

t s T
t T


 becomes deterministic. By 

substituting  ,Pd t T   for  ,Pd t T   into the drift term of (3.1.3), the drift and the 

volatility terms become deterministic, so we can solve (3.1.3) and find the approximate 

distribution of  ,dL T T  to be lognormal. This Wiener chaos order 0 approximation used 

in (3.1.6) is first utilized by BGM (1997) for pricing interest rate swaptions, developed 

further in Brace, Dun and Barton (1998) and formalized by Brace and Womersley (2000). 

It also appeared in Schlogl (2002) and Wu and Chen (2007). 

There are some extra bonuses of adopting the LMM. One is that the quotes of interest 

rates are consistent with market conventions and thus make the pricing formulas more 

tractable and feasible for practitioners. The other is that the problems exhibited in the 

other interest rate models, such as the Vasicek model, the Cox, Ingersoll and Ross (CIR) 

model, and the HJM model, are overcome. These problems include: (a) the instantaneous 

short rate or the instantaneous forward rate is abstract, market-unobservable and 

continuously compounded. So it is complicated and difficult to recover model parameters 

from market-observed data; (b) the pricing formulas of extensively traded interest rate 
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derivatives, such as caps, floors, swaptions, etc., based on the short rate models or the 

Gaussian HJM model are not consistent with market practice. This leads to some 

difficulties in parameter calibration; (c) as examined in Rogers (1996), the rates under 

Gaussian term structure models can become negative with a positive probability, which 

may cause pricing errors. 

4 Valuation of Guarantees 

In this section, two variants of the guarantees are priced based on the model 

framework above and by adopting martingale pricing method.5 

4.1 Valuation of the First-Type Guarantee (Maturity Guarantee) 

The pricing formulas of the first-type guarantee with the final payoff as specified in 

equation (2.1.4) and (2.1.5) are given as follows, and the proof is provided in Appendix A. 

   ( )
,

1

N
n

I d n I
n

G t P t


   (4.1.1) 

       ( ) ( ) ( )
1, 1 2, 2

n nn n n
I t tt N d N d     (4.1.2) 

where 

    ( )
1, 1, expn

t d n nP t T     ,  ( )
2, 1,n

t d nP t T   , 

        
12

1

1 0 0
0

, 1 , 1 ,
n

d n d d k
k

P t T T t L t T L t T





 
       

 


, 

      

     

1

1

( 1) 1 1

1 1

( )

( ) ( ) ,

i

i

N T i i i
B B An t

i n

N N T i i j j
A B A Bt

i n j i

u u u du

u u u u du

  

   



 

  

   

   

   

 

  
 

( ) ( , ) ( , )d d

i
P PA i Nt t T t T       , 1( ) ( , ) ( , )d d

i
p pB i Nt t T t T  

     , 

     

 

   
     

21
2 2

1 2 1, ,
n nn n n

n n n
n

V
d d d V V V

V

 
    , 

                                                 
5 Details regarding the martingale pricing method can be seen in advanced textbooks in finance, see, e.g. 
Shreve (2004) and Musiela and Rutkowski (2005). 
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 N   the cumulative normal probability, 

            2 2 ,n n n n nV Var X Var Y Cov X Y  
, 

          
( 1) 11 12

1 1 1

( ) 2 ( ) ( )
i i

NN NT Ti i i i j j
A B A B A Bn t t

i n i n j i

Var X u u du u u u u du     
  

     

        
, 

   1

1

2 21( ) ( )
n N

n

T Tn
C En t T

Var Y u du u du 



  
, 

1
1( ) ( , ) ( , )d d

n
p pC n Nt t T t T  


     ,  

 ( ) ( ) ( , )dpD Sf X Nt t t t T        , 

          1

1

1 1
1

1 1

, ( ) ( ) ( ) ( )
n i

n

N NT Ti i n i i
A B C A B En n t T

i n i n

Cov X Y u u u du u u u du     



 


   

       
 

 ,dP t   is defined as (3.1.6).  0,dL t T  is the simply-compounded spot interest rate 

prevailing at time t for the maturity T0 and       1

0 0 0, 1 ,d dP t T T t L t T


     . 

By observation pricing equation, the effect of exchange rate is considered and 

characterized by  X t  in ( )D t , and the inappropriate estimation due to using the 

pricing formula in previous literature is avoided . The extra bonus of adopting the LMM 

model is that all the parameters in (4.1.1) and (4.1.2) can be easily obtained from market 

quotes, thus making the pricing formula more tractable and feasible for practitioners. 

4.2 Valuation of the Second-Type Guarantee (Multi-Period Guarantee) 

The pricing formulas of the second-type guarantees with the final payoff as specified 

in equation (2.1.8) and (2.1.9) are derived as follows and the proof is provided in 

Appendix B. 

   ( )
,

1

N
n

II d n II
n

G t P t


   (4.1.3) 

     
1

( )
1 3

1

, 2 1
N

n i
II d n

i n

t P t T N d



 

 
   

 
  (4.1.4) 

where 
2

3 2
i iV

d  ,   1 22 i

i

T i
i DT

V u du  ,  1( ) ( ) ( ) ( , )df

i
pD S X it t t t T    

     . 

Again, the effect of exchange rate is reflected by  X t  in ( )i
D t . Moreover, our 

formulas can be applied to any arbitrary guarantee period  , which solves the limitation 

of previous literature. 
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5 Numerical Analysis 

5.1 Examination by Monte Carlo simulation and Numerical Analysis 

Some practical examples are given to examine the accuracy of the pricing formulas 

derived in the previous section by comparing the results with Monte Carlo simulation. 

Based on actual 2-year market data,6 two types of guarantees with different guarantee 

periods (δ=1 year and δ=0.5 year) are priced at the date, 2011/12/31, and the results are 

listed in Exhibit 1 and 2. The simulation is based on 50,000 sample paths. The FTSE index 

is used to replace the underlying foreign asset for the numerical purpose. The LIBOR rates 

in US are used to be domestic interest rates. The exchange rate is expressed as the US 

dollar value of one unit of pound. To ease the comparison and analysis, the principal 

which the investor contributes to the plan at each period is assumed to be $1 in the case of 

δ=1 and $0.5 in the case of δ=0.5. 

Several notable points are yielded by observing the numerical results. First, the pricing 

formulas have been shown to be accurate and robust in comparison with Monte Carlo 

simulation for the recent market data. Second, Exhibit 2 shows that our formulas can be 

applied for arbitrary values of δ (other than δ=1). The formula of Yang et al. (2008) is 

available only for the special case where the interest rate guarantee is linked to the 

one-year spot rate, i.e. δ=1.  

Third, the second-type guarantee is more expensive than the first-type guarantee in 

both cases of δ=1 and δ=0.5. With a longer maturity date, the cost difference is getting 

more and more significant. Because the effect of higher guaranteed rates in some periods 

can be alleviated by lower guaranteed rates in other periods for the first-type guarantee. 

Such alleviation does not work for the second-type guarantee.  

Finally, using the derived formulas is more efficient than adopting time-consuming 

simulation for those guarantees with long duration. 

 

 

 

                                                 
6 All the market data are drawn and computed from the DataStream database and are available upon request 
from the authors. 
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Exhibit 1. The Price of Two Types of Guarantees for δ=1 Year 

 First-Type Guarantee G1(t) Second-Type Guarantee G2(t) 

Maturity Date CS MC PD CS MC PD

TN (A) (B) (C) (D) (E) (F)

5 0.7582 0.7581 0.0203% 1.4078 1.4081 0.0242%

10 2.4081 2.4076 0.0188% 7.7672 7.7637 0.0449%

15 4.6337 4.6327 0.0232% 22.6605 22.6725 0.0531%

20 7.1947 7.1950 0.0042% 52.6054 52.6039 0.0029%

25 9.9181 9.9214 0.0333% 109.4984 109.5933 0.0866%

30 12.7123 12.6997 0.0993% 214.9352 215.0796 0.0672%

CS and MC represent, respectively, the results of the formula and Monte Carlo simulations. 

PD denotes the percentage difference which is equal to ∣CS-MC∣÷ [(CS+MC)÷2]. 
 

 

 

Exhibit 2. The Prices of Two Types of Guarantees for δ=0.5 Year 

 First-Type Guarantee G1(t) Second-Type Guarantee G2(t) 

Maturity Date CS MC PD CS MC PD

TN (A) (B) (C) (D) (E) (F)

5 0.8664 0.8663 0.0177% 2.6219 2.6216 0.0128%

10 2.6042 2.6055 0.0491% 15.5430 15.5451 0.0136%

15 4.9059 4.9076 0.0340% 52.4808 52.4566 0.0462%

20 7.5231 7.5237 0.0068% 146.4593 146.5345 0.0513%

25 10.2892 10.2845 0.0459% 377.0310 376.7209 0.0823%

30 13.1166 13.1249 0.0632% 935.5293 934.7146 0.0871%
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5.2 Comparison: Cross-Currency vs. Single-Currency  

In this subsection, we show what the results are if pricing GCSRs is completed within 

a single-currency framework under which the effect of exchange rate is not considered. 

Such framework is adopted in previous research regarding guarantees. The results are 

compared with those which are valued via a cross-currency framework aforementioned.  

In the case of δ=1 year, exhibit 3 shows that the prices of guarantees are 

underestimated about 11.23%~20.21% for first-type guarantee and about 22.67%~44.96% 

for second-type guarantee. In the case of δ=0.5 year, the prices of guarantees are 

undervalued about 12.48%~22.07% for first-type guarantee and about 27.20%~62.23% 

for second-type guarantee as listed in exhibit 4. The percentage of underestimation is 

getting larger with a shorter maturity for first-type guarantee but with a longer maturity for 

second-type guarantee. Moreover, the percentage of underestimation for second-type 

guarantee is much bigger than that for first-type guarantee. From the above analysis, we 

know that issuers may charge too small premiums to put their financial stability at risk if a 

single-currency framework is used to price GCSRs.  

 
 
 

Exhibit 3. The Percentage of Underestimation of Two Types of Guarantees for δ=1 Year 

 First-Type Guarantee G1(t) Second-Type Guarantee G2(t) 

Maturity Date CS CSNO PU CS CSNO PU

TN (A) (B) (C) (D) (E) (F)

5 0.7582 0.6050 -20.2109% 1.4078 1.0886 -22.6686%

10 2.4081 1.9832 -17.6422% 7.7672 5.7121 -26.4589%

15 4.6337 3.9309 -15.1671% 22.6605 15.7048 -30.6953%

20 7.1947 6.2283 -13.4330% 52.6054 34.0477 -35.2772%

25 9.9181 8.7087 -12.1933% 109.4984 65.6163 -40.0756%

30 12.7123 11.2843 -11.2333% 214.9352 118.3089 -44.9560%

CS represents the results of the formula under a cross-currency framework. 

CSNO represents the results of the formula under a single-currency framework. 

PU denotes the percentage of underestimation which is equal to (CSNO-CS)÷CS. 
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Exhibit 4. The Percentage of Underestimation of Two Types of Guarantees for δ=0.5 Year

 First-Type Guarantee G1(t) Second-Type Guarantee G2(t) 

Maturity Date CS CSNO PU CS CSNO PU

TN (A) (B) (C) (D) (E) (F)

5 0.8664 0.6752 -22.0681% 2.6219 1.9088 -27.1968%

10 2.6042 2.1037 -19.2178% 15.5430 10.3166 -33.6258%

15 4.9059 4.0893 -16.6454% 52.4808 31.0874 -40.7643%

20 7.5231 6.4075 -14.8291% 146.4593 75.8836 -48.1879%

25 10.2892 8.8989 -13.5119% 377.0310 167.9415 -55.4568%

30 13.1166 11.4798 -12.4789% 935.5293 353.3952 -62.2251%

 
 

5 Conclusions 

Two different types of GCSRs have been developed via a risk-neutral valuation 

method. The guaranteed rates of return embedded in financial plans are set relative to a 

cross-currency stochastic rate of return. The derived pricing formulas reflect the effect of 

exchange rate and are more consistent with market practice than those given in the 

previous researches. The formulas of GCSRs under maturity and multi-period guarantees 

can be applied to any arbitrary guarantee period δ. Pricing GCSRs with the derived 

formulas can be executed more efficiently than time-consuming simulation, especially for 

those plans with a long duration. Thus, our pricing formulas of GCSRs are more suitable, 

tractable and feasible for practical implementation. In addition, the underestimation of 

GCSRs due to utilizing a single-currency can be avoided by using our formulas. 
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Appendix A: Proof of Equation (4.1.1) and (4.1.2) 

A lemma is first presented and then employed to price (2.1.4) and (2.1.5). 

Lemma 1: Given that X and Y are normal random variables with mean zero and variances 

 2  , the following identity holds: 

       2 21 1
1 2 1 22 2exp expx yE K X K Y K N d K N d V 


         

where    max ,0Z Z
  ,  1

2

21
2ln K

Kd V V     and 2V  is the variance of X Y . 

Proof: See Amin and Jarrow (1991, p324) for details. 

Proof of Equation (4.1.1) and (4.1.2) 

By applying the martingale pricing method,7 the market value of the first-type guarantees 

at time t, 0 10 ... Nt T T T     , is derived as follows: 

   
TN

u
t

r duQ
I I N tG t E e G T F

    
  

,  (where   t tE F E    ,   tr t r .) (A.1) 

Substituting  I NG T  as shown in (3.1.2) into (A.1), we know 

(A.1)    ( ) ( )
, ,

1 1

TN
u

t

N Nr duQ n n
t d n I N d n I

n n

E e P T P t


 

       
  
   (A.2) 

where  QE   denotes the expectation under the domestic martingale measure Q and 

 ( )n
t I  is derived as follows. 

        ( ) ( ) ( ),
TN

u
t N

r du Tn Q n n
I t I N d N t I Nt E e T P t T E T

      
 

 (A.3) 

 NTE   denotes the expectation under the forward martingale measure NTQ  (with respect 

to the numeraire  ,d NP t T ) defined by the Radon-Nikodym derivative 

   
   
, ,

N d N N d NT

d N d

P T T P t T
dQ dQ

T t 
 .8 

                                                 
7 Details regarding the martingale pricing method can be seen in advanced textbooks in finance, see, e.g. 
Shreve (2004) and Musiela and Rutkowski (2005). 
8 See Shreve (2004) and Musiela and Rutkowski (2005) for details on the changing-numeraire mechanism. 
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By inserting the definition of  ( )n
I NT  as shown in (3.1.4) into (A.3), (A.3) can be shown to be 

(A.3)    
 

 

 
 
 

*1

*
1 1 1

1 2

,
,

,
N

N
f Nd i iT

d N t
i n d i i f n

A A

S TP T T
P t T E

P T T S T





   

 

  
            


 

 (A.4) 

where    
 1

1 ,
,

,
d i i

d i i
d i i

L T T
P T T

P T T




  , 
 
 

1

1 1

,
( 1)

,

N
d i i

i n d i i

P T T
A

P T T



  

    and 

              * *
1 1 12 f N f n f N N f n nA S T S T S T X T S T X T     . 

We then solve (A-1) and (A-2), respectively. 

The dynamics of    1, , , 1,..., 1d i i d i iP T T P T T i n N    , and    * *
1f N f nS T S T  are 

determined below. 

 
 

   
   

 
 1 1

, , ,

, , ,

i
d i i d i i d i N i

i
d i i d i i d i N i

P T T P T T P T T A T

P T T P T T P T T B T 

   (A.5) 

 
 

   
   
     

     
 
 

 
   

*

*
1 1 1

1 1 1
1

1 1 1 1 1

, ,

, ,

f N f N N

f n f n n

f N N d N N d n n N n
n

f n n d n N d n N n

S T S T X T

S T S T X T

S T X T P T T P T T D T
C T

S T X T P T T P T T D T

  

  


    



 

  (A.6) 

We define each variable at time t as follows. 

     , , , 1,..., 1i
d i d NA t P t T P t T i n N     (A.7) 

     1, , , 1,..., 1i
d i d NB t P t T P t T i n N     (A.8) 

     1
1, ,n

d n d NC t P t T P t T
 , (A.9) 

     ( ) ,f d ND t S t X t P t T . (A.10) 

By employing (3.1.1)~(3.1.5) and Ito’s Lemma and substituting  ,Pd t   defined in 

(3.1.6) for  ,Pd t  , the dynamics of (A.7)~(A.10) under the forward measure NTQ can be 

obtained. Under the forward measure NTQ , the random variables defined from (A.7) to 
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(A.10) are martingales. Their dynamics can be written as follows. 

 
     

 

 , , N N

i
A

i
T Ti

Pd Pdi N t A ti

t

dA t
t T t T dW t dW

A t


  
 
       
  


 (A.11) 

 
     

 

 1, , N N

i
B

i
T Ti

Pd Pdi N t B ti

t

dB t
t T t T dW t dW

B t


  

 
       
  


 (A.12) 

 
     

 

 
1

1
1

11
, , N N

n
C

n
T Tn

Pd Pdn N t C tn

t

dC t
t T t T dW t dW

C t


  







 
       
  


 (A.13) 

     
 

 ( )
,

( )
N N

E

T T
PdSf X N t E t

t

dD t
t t t T dW t dW

D t


   
 
       
  


 (A.14) 

(where  N NT T
tdW t dW ) 

Solving the stochastic differential equations from (A.11) to (A.14), we obtain: 

       
21

2

T Ti i Ti i N
A A u

t t
u du u dWi i

iA T A t e
     , (A.15) 

       
21

2

T Ti i Ti i N
B B u

t t
u du u dWi i

iB T B t e
     , (A.16) 

   
 

   
21 11 11

11 2
1

,

,

T Tn n Tn n N
C C u

t t
u du u dWnn

n
N

P t T
C T e

P t T

     


  , (A.17) 

 
 

   2

1 1

1

2

1

T TN N TN
D D u

T Tn n
u du u dW

N

n

D T
e

D T

 
 

  



  , (A.18) 

    
 

       
2 21

2

1

,
1 ,

,

T Ti i Ti i i i N
A B A B u

t t
u u du u u dW

d i
d i i

d i

P t T
L T T e

P t T

   


           



    (A.19) 

By using (A.19), (A-1) can be derived as follows. 

(A-1)
 
 

    
   

1 2 2

1
1

1
1 1

1

1
, 2

exp
,

i

i
N

N T i i
A BN t

i nd i

N Ti n Ti id i
A B ut

i n

u u du
P t T

P t T
u u dW

 

 




 


  

 

          
       

 


 
 (A.20) 
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Define 

     , 1,..., 1
i

N
T Ti i

i A B ut
X u u dW i n N        ,  

1

1

.
N

in
i n

X X


 

   (A.21) 

Then, we know that 

      2iT i i
i A Bt

Var X u u du    (A.22) 

           , , 1
iT i i j j

i j A B A Bt
Cov X X u u u u du j i          (A.23) 

          
( 1) 11 12

1 1 1

( ) 2 ( ) ( )
i i

NN NT Ti i i i j j
A B A B A Bn t t

i n i n j i

Var X u u du u u u u du     
  

     

          (A.24) 

By combing equations from (A.21) to (A.24) with (A.20), (A.20) can be written as (A.25). 

(A.20)
 
   

 

    
1

1, 1
exp exp

, 2
n

d n
n n n

d N

K

P t T
X Var X

P t T
          

 (A.25) 

where 

 
 

 
 

1
1

1 1

, ,

, ,

N
d n d i

i nd N d i

P t T P t T

P t T P t T




  

   (A.26) 

               
1 11 1

1 1 1
n

NN NT Ti i j ji i i i i
B B BA A BAt ti n i n j i

u u u du u u u u du      

 
 
                          

  

     
            (A.27) 

Next, (A-2) can be obtained by adopting (A.17) and (A.18) as below. 

(A-2)
 
 

   

   

1

1

1

1

2 21

1

1

1
, 2exp
,

n N

n

n N
N N

n

T Tn
C Et Td n

T TT Tnd N
C u E ut T

u du u duP t T

P t T
u dW u dW

 

 















         
         

 

 
 (A.28) 

Define  

 1 1
1

n
N

T Tn
C ut

Y u dW   ,   
1

2

N
N

n

T T
E uT

Y u dW


  ,   

2

1
in

i

Y Y


   (A.29) 

As a result, 

   1 21
1

nT n
Ct

Var Y u du   ,    
1

2

2

N

n

T

ET
Var Y u du



   (A.30) 
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      1

1

2 21n N

n

T Tn
C En t T

Var Y u du u du 



    (A.31) 

Combing equations from (A.29) to (A.31) with (A.28), (A.28) can be written as (A.32). 

(A.28)
 
 

 

    

2

1
1 2

,

,
n n

n

Y Var Yd n

d N

K

P t T
e

P t T




 (A.32) 

By the results of (A1) and (A2) as shown in (A.25) and (A.32), (A.4) can be represented as 

                 1 1
2 2( )

1 2, n n n nN
X Var X Y Var Yn nTn

t d N tI P t T E K e K e


           
 (A.33) 

Applying Lemma 1, we know  

(A.33)    
 

      
 

            1 1
1 2 1, 1 2, 2

, ,
,

, ,
n n n n n n nd n d n

d N t t
d N d N

P t T P t T
P t T e N d N d N d N d

P t T P t T

        
  

 (A.34) 

where 

     1, 1, expn
t d n nP t T 

     ,     2, 1,n
t d nP t T    (A.35) 

        
12

1

1 0 0
0

, 1 , 1 ,
n

d n d d k
k

P t T T t L t T L t T





 
       

 
  (A.36) 

 
     

   
     

2 21
1 2 12 , ,n n n

n n n n n nd V V d d V V V         (A.37) 

                 2 2 ,n n n n n n nV Var X Y Var X Var Y Cov X Y      (A.38) 

    ,n nCov X Y  can be derived as below. 

          1

1

1 1
1

1 1

, ( ) ( ) ( ) ( )
n i

n

N NT Ti i n i i
A B C A B En n t T

i n i n

Cov X Y u u u du u u u du     



 


   

         (A.39) 

 1,d nP t T   can be derived as follows. 

   
 
 

2

1
00 1

,1
1 ,

, ,

n
d k

d n
kd d k

P t T
P t T

P t T P t T




 

 
  

 
  (A.40) 

According to (A.40), we can obtain (A.36) after rearrangement. 
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Note that the time differences,  0T t  and 1n nT T   , are measured as year fraction 

between two dates.  0,dL t T  is the simply-compounded spot interest rate prevailing at 

time t for the maturity T0. 

Therefore, equation (4.1.1) and (4.1.2) have been derived. 

Appendix B: Proof of Equation (4.1.3) and (4.1.4) 

By applying the martingale pricing method, the market value of the second-type 

guarantees at time t, 0 10 ... Nt T T T     , is derived as follows: 

   
TN

u
t

r duQ
II II N tG t E e G T F

    
  

 (B.1) 

Substituting  
NTG II  as shown in (3.2.2) into (B.1), we know 

(B.1)    ( ) ( )
, ,

1 1

TN
u

t

N Nr duQ n n
t d n II N d n II

n n

E e P T P t


 

        
  
   (B.2) 

Define 

      
 

*1
1( )

*
1

max 1 , ,
N

f in
II N d i i

i n f i

S T
M T L T T

S T





 

 
  

  
  (B.3) 

Hence, 

     
 

*
( ) ( )

*
1

f Nn n
II II N

f n

S T
t M T

S T 

    (B.4) 

Therefore,  ( )n
II t  can be derived as below. 

       
 

*
( ) ( ) ( )

*
1

T T TN N N
u u u

t t t
r du r du r du f Nn Q n Q n Q

II t II N t II N t
f n

S T
t E e T E e M T E e

S T

  



                 
      

 (B.5) 

According to the definition of  ( )n
II NM T , we know 

 
1

1
( )

1

T TN N
u u

t t

i

Nr du r duQ n Q
t II N t T

i n

E e M T E e C


 

 

         
    
  (B.6) 

where 
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    
 

    
 

 
 

1

*
1

*

* *
1 1

* *

max 1 , ,

1 , , , 1, ,... 1

i

f i
T d i i

f i

f i f i
d i i

f i f i

S T
C L T T

S T

S T S T
L T T i n n N

S T S T















 

 
  

  

 
      
  

 (B.7) 

By “The Law of Iterated Conditional Expectation” in Duffie (1988), (B.8) can be obtained 

as follows. 

(B.6)

 

   
11

1

1 1

3
1 1

1

, 2
TT in

uu Tt i

i i

N Nr dur duQ Q i
t T T d

i n i n

B

E e E e C P t T N d




 

   



        
    

 


 (B.8) 

where 

 
1

1,
Tn

u
t

r duQ
t d nE e P t T






   
 

, (B.9) 

 
1

1 32
Ti

u
Ti

i i

r du
Q i
T TE e C N d





    
  

, (B.10) 

21
22

3

1
, ,

2
i i

i i i
i

V
d V V V

V
    (B.11) 

 1 22 ,
i

i

T i
i DT

V u du   (B.12) 

       1, .i
PdE Sf X it t t t T    

      (B.13) 

We solve (B-1) as follows. 

(B-1)    1

11, i

i i

T
d i i T TP T T E C

  (B.14) 

where  1iTE
   denotes the expectation under the forward martingale measure 1iTQ   

defined by the Radon-Nikodym derivative    
   

1 1 1 1

1

, ,
i d i i d i iT

d i d i

P T T P T T
dQ dQ

T T 
   



 . 

By using (B.7),  1

1

i

i i

T
T TE C


 can be derived below. 

      
 

 

 
 

 

1 1 1

1

* *
1 1

* *
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1 ,i i i

i i i i

f i f iT T T
T T T d i i T

f i f i

B bB a

S T S T
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  





 



              
         

 (B.15) 
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where       11 , , ,d i i d i i d i iL T T P T T P T T    

We then solve (B-1a) and (B-1b), respectively. 

(B-1a)
 
 
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 
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E I
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 (B.16) 

I  is an indicator function with 
 
 

 
 

*
1

*
1

,

,
1, .

0, .

f id i i

d i i f i

S TP T T

P T T S T

otherwise




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The dynamics of    1, ,d i i d i iP T T P T T  , and    * *
1f i f iS T S T  are determined below. 

 
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d i i i

i
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1 1 1 1 1 1

*
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f i f i i d i i d i i i

S T S T X T P T T P T T D T
C T

S T S T X T P T T P T T D T
     

 

  .  (B.18) 

We define each variable at time t as follows. 

     1, ,i
d i d iC t P t T P t T   (B.19) 

     1( ) ,i
f d iD t S t X t P t T   (B.20) 

By employing (3.1.1)~(3.1.4) and Ito’s Lemma and substituting  ,Pd t   defined in 

(3.1.6) for  ,Pd t  , the dynamics of (B.19) and (B.20) under the forward measure 
1iTQ  can be obtained as given below. Under the forward measure 1iTQ  , the random 

variables defined in (B.19) and (B.20) are martingales, and their dynamics can be written 

as follows. 

 
     
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       
  


 (B.21) 
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
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

 
       
  


 (B.22) 

Solving the stochastic differential equations (B.21) and (B.22), we obtain: 



 24

 
     1 1

1
21 1

exp
2

i i
i

i i

i
T Ti Ti i

D D ui T T
i

D T
u du u dW

D T
  

      
   , (B.23) 

 
 

   
   
 
     1 1

1

*
1 1 1

*

2

1

, 1
exp

, 2
i i

i

i i

f i f i i

f i f i i

T Td i i Ti i
D D uT T

d i i

S T S T X T

S T S T X T

P T T
u du u dW

P T T
  



  





     
  

. (B.24) 

Hence, 

(B.16)  
 

 
 
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where  1iT
rP    denotes the probability under the forward martingale measure 1iTQ  . 

By inserting (B.24) into  1iT
rP   , the probability can be obtained after rearrangement as 

follows: 
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where 

3 2i
id V ,  1 22 i

i
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Using (B.24), we know 
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where  iR
rP   denotes the probability under the martingale measure Ri which is defined 

by the Radon-Nikodym derivative 
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From the Radon-Nikodym derivative 1iT
idR dQ  , we know that 

 1i iT R i
t t DdW dW t dt   . (B.30) 
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Under the measure iR , we obtain (B.31) by substituting (B.30) into (B.24) 

 
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By inserting (B.31) into  iR
rP  , the probability can be obtained after rearrangement as 

follows: 

 
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. (B.32) 

By combing (B.16), (B.25), (B.26), (B.28) with (B.32), (B-1a) can be obtained below. 

(B-1a)
 
     

   3 3
1 1

, ,
.

, ,
d i i d i ii i

d i i d i i

P T T P T T
N d N d

P T T P T T 

    (B.33) 

From (B.24), we obtain 

(B-1b)
 
 

 
 

1

*
1

*
1

,
.

,
i

i

f i d i iT
T

f i d i i

S T P T T
E

S T P T T
 



    
  

 (B.34) 

Hence, 

(B.15)
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   3
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,
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P T T
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And we obtain (B-1) as shown in (B.36). 
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Besides, (B.37) can be obtained by using (A.28). 
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Inserting (B.8) and (B.37) into (B.5), we derive the result as follows. 
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Therefore, the proof of equation (4.1.3) and (4.1.4) is completed.  
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Appendix C 

Exhibit 5: Share of Unit-Linked Contracts in Total Life Premium 
Source: CEA  Life Premium (Euro million)            †Share-UL(%) 
Country 2009 2010 2009 2010

Belgium 18,404 19,141 9.04% 10.70%

Bulgaria 103 115 5.28% 5.62%

Switzerland 19,484 21,828 9.51% 10.13%

Czech Republic 2,044 2,601 39.11% 46.80%

Germany  81,371 87,165 13.91% 13.48%

Denmark 14,342 14,938 25.04% 35.18%

Estonia 133 182 45.25% 61.52%

Spain 29,074 27,297 14.77% 17.44%

Finland 2,847 4,570 56.76% 56.04%

France  137,923 143,837 13.02% 13.39%

United Kingdom 155,417 152,583 17.00% 14.94%

Croatia 339 337 6.59% 6.79%

Hungary 1,466 1,606 57.21% 61.35%

Italy 81,116 90,102 12.00% 17.10%

Malta 193 224 12.95% 15.18%

Netherlands 24,381 21,573 34.04% 43.00%

Norway 7,140 8,382 20.04% 19.99%

Poland 6,982 7,848 21.37% 25.89%

Portugal 9,876 12,103 29.22% 22.04%

Sweden 18,134 22,203 35.94% 34.38%

Slovenia 630 656 58.57% 60.37%

Romania 384 214 n.a. 41.69%

Cyprus 353 375 n.a. n.a.

Latvia 28 n.a. 13.50% n.a.

Greece 2,202 n.a. n.a. n.a.

Others 19,802 20,795 n.a. n.a.

CEA (Total) 634,169 660,676 15.96% 16.98%

CEA: European Insurance and Reinsurance Federation. 
† ”Share-UL” represents the share of unit-linked contracts in total life premium. 
‡ ”n.a.” denotes ”not available”. 
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