
1

Security Flaws in Zhang and Xu Improved

Concurrent Signature Scheme

Abstract. Nguyen first introduces the unlinkability

property for concurrent signature schemes to

protect signers’ privacy. Huang and Wang

proposed a fair concurrent signature scheme based

on identity recently. However, Zhang and Xu

show that Huang and Wang scheme does not

satisfy the unforgeability property, because Huang

and Wang scheme is vulnerable to forgery. To

overcome the forgery flaws, they proposed an

improved scheme. Unfortunately, a new cheating

attack is proposed to show that Zhang and Xu

scheme is still unfair. Zhang and Xu scheme does

not provide unlinkability property, so the privacy

protection is weak.

Keywords: Unlinkabiliy, fairness, concurrent

signatures, fair exchange.

I. INTRODUCTION

Chen et al. [2] introduces concurrent

signatures as a new solution for fair signature

exchange problem between two signers. The

fairness of the concurrent signature scheme is

based on the idea of ambiguous signatures that

maybe generated only by two possible signers. In

a concurrent signature scheme, an initial signer

sends the matching signer an ambiguous signature

which is bound by a secret value, keystone. After

verifying the ambiguous signature from the initial

signer, the matching signer sends the initial signer

his/her ambiguous signature. After verifying the

matcher signer’s ambiguous signature, the initial

signer can transform the matching signer’s

ambiguous signature into the signature binding to

the matching signer by releasing the keystone.

After the release of the keystone, the matching

signer can transform the initial signer’s ambiguous

signature into the signature binding to the initial

signer. Finally, both the signers fairly exchange

their signatures.

Nguyen [3] stressed the importance of

unlinkability of concurrent signature for the

privacy protection in real applications. By

unlinkability, no one can find out the link between

the two exchanged signatures in the concurrent

signature scheme. For example, the concurrent

signature scheme is used in the electronic

transaction on Internet. The customer and the

merchant have to fairly exchange the signature of

the customer’s payment instruction and the

signature of the merchant’s agreement on

customers’ order. However, the customer does not

hope anyone finds out the link between the

payment and the order agreement, due to the

privacy protection. Therefore, the unlinkability is

important in the real applications.

Huang and Wang [4] proposed a fair ID-based

concurrent signature scheme. Unfortunately,

Zhang and Xu[5] show that Huang and Wang

scheme does not satisfy the unforgeability property.

To fix the forgery problem of Huang and Wang

scheme, they proposed an improved scheme.

However, a new cheating attack is proposed to

show that Zhang and Xu scheme does not satisfy

the fairness and the unlinkability properties.

The security requirements of a concurrent

signature scheme are stated in the next section.

2

Then Zhang and Xu scheme will be reviewed in

Section III. The new cheating attack and some

comments on Zhang and Xu scheme are presented

in Section IV. Finally, Section V is a brief

conclusion.

II. SECURITY REQUIREMENTS

A secure concurrent signature scheme should

satisfy the following security requirements:

Correctness: If a signature σ is generated

correctly by Asign algorithm on a message m,

Averify algorithm returns “accept” with a

non-negligible probability. Given a signature σ on

m and a security parameter l, after the keystone k is

released, the output of Verify algorithm is “accept”

with a non-negligible probability

Unforgeability: Except the cooperation of the

initial signer and the matching signer, no one can

generate a valid concurrent signature with a

non-negligible probability.

Ambiguity: Before the keystone k is released,

no verifier is able to identify the actual signer with

the probability that is greater than 1/2.

Fairness: Both signatures of the initial signer

and the matching signer can be bound with their

signers’ identities simultaneously after the keystone

k is released.

Unlinkability: The relationship between two

exchanged concurrent signatures cannot be found,

as long as the keystone is released

III. REVIEW OF ZHANG AND XU SCHEME

The bilinear pairing and the underlying security

assumption are stated before the review of Zhang

and Xu scheme.

A. Bilinear Pairings and Security Assumptions

Let G1 be a cyclic additive group generated by

the element P with order q, and G2 be a cyclic

multiplicative group with the same order q, where q

is a prime number. A bilinear pairing is a map e:

G1×G1→G2 satisfying three properties:

Bilinear property: For any elements P, Q, RG1,

e(P+Q, R)=e(P, R)e(Q, R) and e(P, Q+R)= e(P,

Q)e(P, R).

Non-degenerated property: There exist P and

QG1 such that e(P, Q)≠ 1, where 1 is the identity

of the group G2.

Computable property: A polynomial-time

algorithm exists to compute e(P, Q) for two

elements P and Q  G1.

The security of Zhang and Xu scheme is

based on the Computational Co-Diffie-Hellman

(Co-CDH for short) assumption. The Co-CDH

problem and assumption are defined below.

Co-CDH Problem: Given a randomly chosen (P1,

P2, aP1, bP2), compute abP2G2, where P1 and

P2G1, and a, b Zq
*
 are two unknown integers.

Co-CDH Assumption: For every probabilistic

polynomial-time algorithm A, the probability of A

solving Co-CDH-Problem is negligible.

B. Zhang and Xu Scheme

Zhang and Xu’s scheme [1] consists of the five

algorithms and one protocol. The five algorithms

are Setup, Key generation, Asign, Averify, and

Verify algorithms. In the following, Setup, Key

generation, Asign, and Averify algorithms are

describe first. Then the protocol is stated.

Finally the Verify algorithm is stated.

Setup Algorithm

The system parameters and functions are

generated by this algorithm. The private key

generator (PKG for short) randomly chooses its

master private key s∈Zq
*
, and sets its public key

Ppub= sP. Then PKG publishes two cryptographic

hash functions H1:{0, 1}
*
→G1 and H2:{0, 1}

*
→

3

Zq
*
. Then the system parameters are {G1, G2, e, q,

P, Ppub, H1, H2}. All the message space M,

keystone space K and keystone fix space F are Zq
*
.

Key Generation Algorithm

The signer Ui submits PKG his/her identity IDi,

then PKG sets Ui's public key Pi= H1(IDi) and

computes the signer's private key si= sPi.

Asign Algorithm

By using this algorithm, the user generates the

ambiguous signature on some message. Suppose

that Signer Ui generates his/her ambiguous

signature on the message mi for Uj. On the given

input (Pi , Pj , si , f, mi), Ui randomly chooses αZq
*
,

sets C1= f, and computes h= H2(mi||Pi||Pj||C1), C2=

αPi-C1-hPj, and V= (h+α)si. The output

ambiguous signature is σi
=(C1, C2,V).

Averify Algorithm

To validate the ambiguous signature σi= (C1,

C2, V) generated by Ui for Uj, the input of this

algorithm is (mi, σi, Pi, Pj, Ppub). On this input,

check whether or not e(P, V)= e(Ppub,

C1+C2+hPi+hPj). If the equation holds, output

“accept”; otherwise, output “reject”.

After the description of those four algorithms,

the protocol for the exchange of concurrent

signatures is stated below. Without losing

generality, suppose that UA is the initial signer and

UB is the matching signer.

Concurrent Signature Protocol

Step 1: The initial signer UA chooses a random

number αZq
*
, and computes β1= e(P,

Ppub)

 and β2= H2(e(Ppub,PB)


). UA also

picks a random keystone kZq
*
, and

computes c= mAβ2, f= H2(k||β1||c), and

S= αPpub-fsA, where mA is the exchanging

message of UA. Then UA generates

his/her ambiguous signature σA= Asign(PA,

PB, sA, f, mA)= (C1, C2, V). Finally send

(σA, c, S) to B.

Step 2: UB computes β1= e(P, S)e(Ppub, PA)
C1, β2=

H2(e(S, PB)e(PA, sB)
C1),

and mA= cβ2.

Then verify the ambiguous signature σA

by Averify(mA, σA, PA, PB, Ppub). If

Averify(mA, σA, PA, PB, Ppub)= “reject”,

abort.

Step 3: UB chooses a random number tZq
*, and

computes β3= e(P, Ppub)
t
 and β4=

H2(e(Ppub,PA)
t
). On the exchanged

message mB, UB computes c'= mBβ4, f=

H2(C1||β3||c'), and S'= tPpub- fsB. Then

generate the ambiguous signature σB=

Asign(PB, PA , sB , f, mB)= (C1', C2', V').

Finally send (σB , c', S') to UA.

Step 4: UA computes β3= e(P,S')e(Ppub, PB)
C1'

, β4=

H2(e(S', PA

)e(PB, sA)

C1'

) and mB= c' β4.

Then verify the ambiguous σB by

performing Averify(mB, σB, PB, PA, Ppub).

If the result is “reject”, abort. Check

whether or not C1'=H2(C1||β3||c'). If C1'

H2(C1||β3||c'), then A aborts; otherwise, A

releases the keystone k to B and both

signatures are binding concurrently.

Finally, (mA, σA, c, S, mB, σB, c', S', k) become the

concurrent signature of two parties.

The concurrent signature verification

algorithm is stated below.

Concurrent Signature Verification

On the concurrent signature (mA, σA, c, S, mB,

σB, c', S', k), compute β1=e(P, S)e(Ppub , PA)
C1, and

check whether or not C1= H2(k||β1||c) and

Averify(mA, σA, PA, PB,Ppub)= “accept”. Return

invalid if neither C1= H2(k||β1||c) nor Averify(mA,

σA, PA, PB,Ppub)= “accept” holds. Then compute

β3= e(P, S')e(Ppub , PB)
C1'

, and check whether or not

4

C1'= H2(C1||β3||c') and Averify(mB, σB, PA, PB,

Ppub)= “accept”. Return invalid if any equation

does not hold; otherwise, return valid to means that

(mA, σA, c, S, mB, σB, c', S', k) is a valid concurrent

signature of A and B on mA and mB.

IV. CRYPTANALYSIS OF ZHANG AND

XU SCHEME

The new cheating attack on Zhang and Xu

scheme is first proposed. By our cheating attack,

the initial signer obtains the concurrent signature

on some message without the agreement of the

matching signers. The matching signer cannot

obtain the concurrent signature after the concurrent

signature protocol.

Cheating attack

 Our cheating attack on Zhang and Xu scheme is

described below.

Step 1: Initial signer UA chooses a random

number αZq
*
, and computes β1= e(P,

Ppub)

 and β2= H2(e(Ppub,PB)


). UA picks

a random keystone kZq
*
, and computes

c= mAβ2, f= H2(k||β1||c), and S= αPpub-fsA,

where mA is the exchanging message of

UA. Then UA generates his/her

ambiguous signature σA= Asign(PA, PB, sA,

f, mA)= (C1, C2, V). To cheating the

matching signer, UA computes his/her

cheating ambiguous signature σA"=

Asign(PA

, PB, sA , f , mA")= (C1, C2", V"),

where mA"

is a cheating message.

Choose a random S" and compute β2"=

H2(e(S", PB)e(sA, PB)
C1) and c"= mA"β2".

Finally send (σA", c", S") to UB.

Step 2: UB computes β1"= e(P, S")e(Ppub, PA)
C1,

β2"= H2(e(S", PB)e(PA, sB)
C1)

and mA"=

c"β2". Then verify the ambiguous

signature σA" by Averify(mA", σA", PA, PB,

Ppub). If Averify(mA", σA", PA, PB, Ppub)=

“reject”, abort.

Step 3: UB chooses a random number tZq
*, and

computes β3= e(P, Ppub)
t
 and β4= H2(e(Ppub,

PA)
t
). On the exchanged message mB, UB

computes c'= mBβ4, f= H2(C1||β3||c'), and

S'=tPpub-fsB. Then generate the

ambiguous signature σB= Asign(PB, PA ,

sB , f, mB)= (C1', C2', V'). Finally send

(σB , c', S') to UA.

Step 4: UA computes β3= e(P,S')e(Ppub, PB)
C1'

,

β4=H2(e(S', PA

)e(PB, sA)

C1'
) and mB=c'β4.

Then verify the ambiguous σB by

performing Averify(mB, σB, PB, PA, Ppub) If

the result is “reject”, abort. Check

whether or not C1'=H2(C1||β3||c'). If C1'

H2(C1||β3||c'), then A aborts; otherwise, A

obtains the valid concurrent signature (σA

,

c , S , σB

, c' , S' , k) on the message mA

and mB without the agreement of UB by

using the keystone k.

On the other hand, the concurrent signature (σA", c",

S", σB

, c' , S' , k) is illegal for C1 H2(k||β1"||c").

That is the matching signer UB does not obtain the

concurrent signature he/she wants. Notice that

Averify(m"A, σ"A, PA, PB, Ppub) must be accept for

the cheating ambiguous signature σA"= Asign(PA,

PB, sA, f, mA"). Thus the initial signer UA obtains

the concurrent signature he/she wants. Therefore

our cheating attack is successful.

Moreover, Zhang and Xu scheme does not

satisfy unlinkability property that is an important

security requirement in real applications of

concurrent signatures.

V. CONCLUSIONS

A cheating attack is proposed to show that

Huang et al. concurrent signature scheme is not fair.

5

Huang et al. scheme does not provide unlinkability

but it is important properties for the concurrent

signature scheme [3].

REFERENCES

[2] L. Chen, C. Kudla, and K. Paterson,

“Concurrent Signature,” Advances in

Cryptology- EUROCRYPT 2004, LNCS 3027,

New York: Springer-Verlag, 2004. pp.

287-305.

[3] K. Nguyen, “Asymmetric Concurrent

Signatures,” Proceedings of Information and

Communications Security Conference, ICICS

2004, LNCS 3783, New York:

Springer-Verlag, 2005, pp. 181-193.

[4] X. F. Huang and L. C. Wang. “A Fair

Concurrent Signature Scheme Based on

Identity,” Proceedings of the 2nd

International Conference on

High-performance Computing and

Applications (HPCA’09), Aug 10-12, 2009,

Shanghai, China. LNCS 5938. Berlin:

Springer-Verlag, 2010, pp. 198-205.

[5] Z. Zhang and S. Xu. “Cryptanalysis and

Improvement of a Concurrent Signature

Scheme Based on Identity,” 2011 IEEE 2nd

International Conference on Proceedings of

the Software Engineering and Service Science

(ICSESS), Beijing, July 15-17, 2011, pp. 453-

456.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5967841
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5967841

