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Abstract
This project investigates numerical
computation problem involved in pu

synthesis, We propose two LMI-based methods
to solve the problem. In contrast with the so
called D-K iteration, (D,G)-K iteration, and
M-K iteration, the controller parameters and
the generalized multipliers can be computed
simultaneously if the LMIs in the second
method are feasible.

Keywords: y  synthesis, linear matrix
inequality (LMI), bilinear matrix inequality
(BMI)

1. Introduction

In g synthesis robust controllers can be
obtained by minimizing the H~ norm of an
appropriately scaled transfer matrix with
respect to the multiplier and the controller {1-4]

(a rigorous proof of certain important identitics
used in y synthesis can be bund in [35,6] ).
This problem is not jointly convex in the
scaling and the controller, though scparately
convex in each of these variables. Thus g
synthesis is basically based on iterating
between analysis problem during which the
controller is fixed and optimal scalings are
obtained via convex minimization, and
synthesis problem in which the scalings are
fixed and improved controllers are found via
H_ norm minimization. In the phase of
computing optimal scalings, the scalings are
available via solving a set of linear matrix
inequalities at several grid frequencics, and
curve fitting is performed to obtain a transfer
function representation of them. In many cases,
improvement of robustness during the
synthesis iteration strongly depends on the
quality of the curve fits for the scalings and
this step has been seriously criticized as the
weak link in p synthesis. To alleviate this
difficulty, Safonov and coworkers ({7,8]
proposed a multiplier approach (Kmsynthesis
or called M-K iteration) to compute suitable
scalings. The H_ norm minimization
problem is transformed to be an equivalent
generalized positive real problem in which the
scalings are replaced with a linear
parameterization of some fixed order
multipliers and thus no curve fitting of the
scalings is required. A similar method
employing rational functions as a basis was
proposed in [9] at about the same time. These
two methods are referred to the so-called basis

fimction methods.



In the subsequent development for u
synthesis, Goh et al presented a bilinear matrix
inequality (BMI) formulation for g synthesis
[10]. This formulation allows the finite
dimensional joint local and global optimization
over multiplier and controller spaces, which is
claimed to have advantages over (D,G)-K
iteration and M-K iteration. However, its
computation remains a difficult task.
Nevertheless, in Goh’ s paper it is important to
note that the associated formulaton for g
synthesis is equivalent to a static output
feedback formulation with augmented plants.
In view of the research work on the latter issue,
new interesting numerical methods for
computing static output feedback gains were
developed recently [11] (also see the
references therein). This motivates the present
rescarch of developing new computational
algorithms for g synthesis on the basis of
BMI formulation and the method developed in

[11].
2. Preliminaries

A. Notation
F( R )=

herm{X} = %(x+ X

linear fractional transformaticn

sect{X(s)} = (1 - X))+ X(s) ™
Given ¥>0 and P(s), define the sector
transformed plant

~ A 0
P(s): = sect”:O i]P(s)}
[A BK}
K(s)eK:
cC, D
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Define Q:K{l—[o 2 1|K:| and
0 D,
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T(s): = sec {7 (s)}
=sect{7F, (P(s), K(s))}
=F: {P(s).K(5)}

< FT %T ]
C; D,
Then KT =R, +U,QV, .Define the
generalized multiplier M(s) as M(s) = WICI(S)
where M(s) contains the basis functions
chosen. Then M(s)T(s)= WM(s)T(s) and
1\71(3):{‘(5) © Ryr + UprQVir -

B. Goh' s results [10]
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For a fixed >0, and given the

generalized plant P(s), the closed-loop system
as shown in Figure 1 is robustly stable against

all  possible  structured uncertainties
A= dlag[Al: 9A ]E R-Hwa Mth "A'l“ = Ys
there exist matrices X=X, , X=Xy, X=X3" ,

W with appropriate structure commutmg with
the uncertainties, and Q such that the following
mequalities told.

[

e[

0](RMT +U,;QV, T)}>0 A1)

0
}M}:*O,
W

(2)



herm{X, (R, + U,QV,)}<0,X,;>0. ..(3)

3. Main Results

A. In the follwing we present an algorithm to
solve the BMIs in Golt’ s paper [10] , which
solve ineq (3), i.e., [10, ineq (30)] first, then
inegs (1) and (2) [10, (28) and (29
simultaneously.

1. Determine the generalized plant P(s).

2. Given y >0, compute P.

3. Assume the controller K(s) has order q,
compute Ra, Ua, and Va.

4. Solve the P-Problem [11] for P, N, and
M, with A=R,p, B=Uy, C=V, , and
P=X;. If feasible, then Q=M'N. This
solves inequality (3).

5. Choose basis fimction fimctions for the
generalized multipliers M(s).

6. Compute Rvt, UmT, and Vmr.

7. Apply the LMI technique again to solve
the inequalities (1) and (2) for X, X,
and W.

B. Youk parameterization approach

In this subsection, we will employ Youla
parameterization technique and the linear
fractional transformation technique to the
robust stability condition present in Gob's
paper [10], ie., inegs (1)-(3), which finally will
lead to another set of bilinear matrix
nequalities. -

Since "T‘(s)=F,(ﬁ(s),K(s)) , applying
Youla parameterization technique yiclds,

T(s) = T,(s) + T,(s)Q(s)T, (s) , where

Q(s)e RH_and [+ f)nQ(oo) invertible. The
robust stability condition then becomes that of
finding a generalized multipliers M(s) and a

stable transfer fimction matrix Q(s) such that

the following conditions

() M(i + :szi) is strictly positive real
without stability;

(i) M is strictly positive real without stability;

(i)Qe RH., .

hold.

Let M(s) & Au By , and
M DM

Q(s)= LQ](S) , wherear > 0 and Qu(s)e
s+o
RH_, . Using linear fractional technique the

expressionM(:l:1 + iQ(s)ﬁ) can be interpreted
as the closed-loop transfer function matrix Tz,
ie., Tzw =F{G,K),

where
9 l ~ 0 AGI | BG[ BGZ
Gis)=|T, 0 T%.Hx | G | Doy D
T o0 o0 Cez | Doy Dea
and
K()—[M(S) 0 :IHK55=|: K BK}
0 Qs k Dk
A, 0 |B, 0
10 Ayl 0 By
c, 0 |D, 0
0 Cqu| 0 D

In view of the particular structure associated
with the generalize multiplier M(s) and Kss,
there exist permutation matrices Ey and E such
that

Qss= E,E, K EE,’

Ml
= M,
: 0
M,
Ay By
0 Co Dy,
A, B,
where M, =| ™ "M =11
Mi DMi
Then F{G,K)e RHUQssV, where E=EyE;
o, 0 0 i, 0
R={0 A, B,| U=[0 B, [E'
0 CGJ DG]] 0 DGI2

and



VzET[Iq 0 0]
0 CGZ DGZI

Note that q is the order of the “controller” K(s),

which contains all the controller parameters
and the generalized multipliers. Also it is
readily checked that

A, B .
[C: DM]EUMQSSU”’

M

AQ1=UQ1Q$UQI.

where
Uy = [1 O]EMT

Ug=l0 @ 0]

With the above notation applying the
generalized positive real lemma, we get the
state-space  counterpart of the underlying
robust stability condition, which reads : the
closed — loop system in Figure 1 is robust1¥
stable 1f there exist matrices X—Xl , X=Xy,
X;=X3', and Qss of the prescribed structure
such that

X 0
herm {[ OI W](R+ UQSSV)}>0,

X, 0 T
herm {[ . I](UMQSSUM )}>0,

hemn (X, )(U 4 Qgs Uy )}> 0., > 0.
Applying the LMI technique ([11], the
closed-loop system is robustly stable if there
exist matrices

X, 010 0
R N
0 0 |X, 0
o 0o Xx,
and
N=[N6' NO ],where
22

X, and Nj; are of the same structure as
M, 0
) , such that the following LMI
0 M,

conditions hold.
EzXEzT >0,

hem {U,,NUT }<0,
herm {U,NUT > 0,

X 0
herm {[0 l]R+UNV}>O

where E;=[0 I 0 0] iIf feasible, the
realization of the controller parameter Q(s}
can be computed via the formula

A, B X7 :
Q, Q| o™ 0 N,,, which can be
CQ] DQI 0 X;l

employed to find the robust controller,

4, Conclusion

Two LMI-based u synthesis methods were
proposed. The most interesting feature is that
the controller parameters and the generalized
multipliers can be computed simultaneously if
the LMIs in the second method are feasible.
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