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中英文摘要及關鍵詞 
 

摘要 

    正交分頻多工的系統於接收端時域取樣值，對於先導訊號運用最大似然估計法，對於

頻率偏移做估計，通道為頻率選擇特性。最大似然估計法之計算複雜度為指數性，所以我

們提出簡化最大似然估計法，使在計算複雜度與估計精確度能兼顧。所提出之方法，隨著

訊號雜訊比增加，其均方誤差趨近於 Cramer-Rao 界限，另外，接收端時域取樣位置之選擇，

影響到收斂範圍與收斂準確度。 

 

關鍵詞: 最大似然估計、頻率偏移、Cramer-Rao 界限 

 

 
Abstract 

   By using a pilot sample from a selected time-slot in a time-domain orthogonal frequency 
division multiplexing (OFDM) block, we present a simple maximum-likelihood (ML) scheme for 
frequency tracking in OFDM systems over frequency-selective channels. The frequency offset 
estimator thus obtained is found to become unbiased and its mean square error (MSE) will 
approach the Cramer-Rao bound (CRB) as signal-to-noise ratio (SNR) is increased. Moreover, 
the selection of time slot can determine a trade-off between tracking accuracy and tracking range.  
 

Index Terms—Maximum-likelihood (ML) estimation, frequency offset, Cramer-Rao bound 
(CRB)  

 

 
 

 

 

 

 

 

 

 

 

 

 



 

 Abstract—By using a pilot sample from a selected time-slot in a 
time-domain orthogonal frequency division multiplexing (OFDM) 
block, we present a simple maximum-likelihood (ML) scheme for 
frequency tracking in OFDM systems over frequency-selective 
channels. The frequency offset estimator thus obtained is found to 
become unbiased and its mean square error (MSE) will approach 
the Cramer-Rao bound (CRB) as signal-to-noise ratio (SNR) is 
increased. Moreover, the selection of time slot can determine a 
trade-off between tracking accuracy and tracking range.  
 

Index Terms—Maximum-likelihood (ML) estimation, 
 frequency offset, Cramer-Rao bound (CRB)  

 

I. INTRODUCTION 
 is well known that, in orthogonal frequency division 

multiplexing (OFDM) systems, timing and frequency 
synchronization as well as channel estimation must be 

performed for accurate data detection. In general, the 
synchronization process can be divided into two stages, viz., 
coarse acquisition and fine tracking [1], [2]. Coarse acquisition 
can be achieved by correlating pilot data or redundant cyclic 
prefix data in either time or frequency domain [3]-[5]. After 
acquisition, usually the frequency and timing offset will 
become quite small. However, due to time-varying effect of the 
channel, small residual synchronization error will still exist and 
thus needs be continuously tracked [2]. In [6], a least 
squares-based residual synchronization technique is proposed 
using one frequency-domain OFDM block of pilot data. In [7], 
a maximum-likelihood (ML)–based fine frequency synchroni- 
zation scheme is presented using one time-domain OFDM 
block consisting of both signal and pilot data. In this paper, we 
propose a much simpler ML-based fine frequency synchroni- 
zation scheme using only one time slot pilot sample selected 
from a time-domain OFDM block. The remaining time slots in 
that block all contain signal data. Thus, very high pilot usage 
efficiency is achieved. Further, the selection of the pilot slot can 
provide trade-off between the tracking accuracy and the 
tracking range. The mean square error (MSE) of our ML 
estimator for fine frequency offset is shown to approach the 
Cramer-Rao bound (CRB) at high signal-to-noise ratios (SNRs). 
We shall take frequency-selective channels and assume that, 
aside from coarse frequency synchronization, the timing error 
and channel estimation have been completed.  

 
 

This paper is organized as follows: Section II describes the 
simple time-slot signal model in OFDM over frequency- 
selective channels. Section III presents the simple ML-based 
scheme for fine frequency offset estimation using one time slot 
of pilot sample along with theoretical analysis including CRB 
derivation. Then, Section IV shows numerical results. Finally, 
conclusion is given in Section V. 

II. SIGNAL MODEL 
Consider OFDM transmission in a frequency-selective 

channel. Let one transmitted OFDM block contains N samples. 
Assume timing synchronization and channel estimation have 
been completed. Then, discarding the cyclic prefix, the 
demodulated received baseband data sample at the nth time slot 
of an OFDM block can be expressed as  
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respectively the additive white Gaussian noise (AWGN) 
sample and the noise-free received data sample at the nth time 
slot, and δ  is the frequency offset normalized  to subcarrier 
spacing. We note here that, for mobile wireless 
communications, the frequency offset may include both carrier 
frequency offset and Doppler spread. We also assume that an 
initial frequency acquisition has been performed so that the 
frequency offset will not exceed half the subcarrier spacing [3], 
[6]. In other words, 2/1|| <δ . 
 
III. ML ESTIMATION OF FREQUENCY OFFSET USING A SINGLE 

TIME SLOT PILOT SAMPLE 
Of the N-samples in the time-domain OFDM block, assume 

the pth time slot is selected for the pilot sample pr , the 

remaining 1−N  time slots are signal data. We wish to use the 
pilot sample pr   to estimate the fine frequency offset δ  based 

on the ML criterion. The baseband noise sample pw  is a 
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complex Gaussian random variable with zero mean and 
variance 2

wσ . Then, the log-likelihood function for pr  is 
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To find the ML estimator δ̂ , we differentiate (2) with respect 
to δ  and then set the result to zero. We readily get  
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Using both the real and imaginary parts of (3), we can obtain a 

solution for δ̂  as 
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where Re and Im respectively denote real part and imaginary 

part. Equation (4) means Npj
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We take small offset errors and large SNR 22 /|| wpy σ . Then 

using xx ≈−1tan  for small x, (5) can be approximated as 
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where 2/2*2 ||]|Re[| p
Npj

ppp yeywy ≈+ − δπ  for large 
SNR has been used. Taking the expectation, we find the 

estimator expectation to be δδ ≈]ˆ[E . Therefore, for small 
offset errors at large SNRs, the estimator (4) is unbiased. Next, 

squaring (6) and taking the expectation, we find the MSE of our 
estimator as 
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The Fisher information matrix (a 11×  matrix for the current 
simple case) can readily be computed from (2) as [8] 
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whence, the CRB can be calculated as 
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where 22 /||SNR wpp y σ= . Equation (9) is exactly identical 
to (7). To summarize, the estimator of (4) is unbiased and its 
MSE approaches CRB at large SNRs. 
  In view of (4), the range of estimation is pN 2/±  (The 
arctan here should cover the range π± ). Thus, the smaller the 
p, the larger the range. On the other hand, (7) indicates that the 
larger the p, the more accurate the estimate. Therefore, the 
selection of time slot can provide a trade-off between 
estimation range and estimation accuracy. 

 
IV. NUMERICAL RESULTS 

In our simulations, we choose the length of one OFDM block 
or the number of subcarriers to be 64=N . We take a 
frequency-selective channel with an exponential power profile 
and a dispersion length of 16 sample units. Since after coarse 
frequency synchronization, the residual frequency offset will 
be within half the subcarrier spacing, we shall choose 63=p  
for maximum estimation accuracy while maintaining the 
estimation range around 5.0± . The performance of our 
frequency estimator is shown in Fig. 1 and Fig. 2 respectively 
for a small frequency offset ( 05.0=δ ) and a large frequency 
offset ( 5.0=δ ). In both figures, the top plot of (a) gives the 
estimator variance (MSE and CRB) vs. pSNR  curves and the 

bottom plot of (b) presents the estimator bias ( δδ −]ˆ[E ) vs. 

pSNR  curve. Averaging over 1,000 simulation runs is 
performed to produce all results. Both figures show that the 
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estimator gradually becomes unbiased and its MSE approaches 
the CRB as SNR is increased. In fact, the estimator MSE almost 
coincides the CRB at large SNRs. This proves that our 
estimator indeed performs very satisfactorily. 
 

V. CONCLUSION 
By using only a pilot sample in a single time slot selected 

from a time-domain OFDM block, the proposed simple 
ML-based frequency offset estimator for OFDM in 
frequency-selective channels is proved to provide satisfactory 
estimation accuracies for frequency tracking. 
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Fig. 1  Estimator performance for 05.0=δ  . 
(a) Estimator  variances vs. SNR.  
(b) Estimator bias vs. SNR. 
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Fig. 2  Estimator performance for 5.0=δ  . 
(a) Estimator  variances vs. SNR.  
(b) Estimator bias vs. SNR. 
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一、參加會議經過 
    The 2009 IEEE International Conference on Networking, Sensing and Control was held in 
Okayama, Japan. The main theme of the conference was advanced technologies for safety and 
functional maintenance. The area of safety and functional maintenance was a fusion of a number 
of research areas in networking, sensing, and control. However, the real challenge was to obtain 
advanced control technology for safety and management technology and to construct an 
information system to share information on safety technology and on investigated accidents. The 
following three tasks were required to address new problems of this challenging and promising 
area, 1) to construct an integrated management system for safety; 2) to obtain an advanced 
technology for distributed control, distributed operation and logistics management to maintain 
functions isolated systems in disaster; 3) to construct operation supporting and training systems to 
keep safety, to prevent human error and to function as a co-operator. This conference provided a 
remarkable opportunity for the academic and industrial community to address new challenges and 
share solutions, and discussed future research directions. It featured plenary speeches, industrial 
panel sessions, funding agency panel sessions, interactive sessions, and invited/special sessions. 
Contributions were from academia, industry, and management agencies. 

Okayama city is a midsized city with population of 700,000 in Japan and is good to enjoy 
both convenience of city life and peacefulness of rural area. The city is at a crossroads in the 
western part of Japan, 1 hour by super express train from Osaka or Hiroshima, 1 hour air flight 
from Tokyo, 3.5 hours by super express train from Tokyo and also has daily flight from Shanghai, 
China and Seoul, Korea. 

Besides the purpose of exchanging scientific ideas and results, ICNSC 2009 was a useful 
forum to help establishing and strengthening a network of scientists, researchers and engineers, to 
promote between research and industrial bodies in different countries, and enables to initiate 
possible future collaborations. 

 
二、與會心得 

By using a pilot sample from a selected time-slot in a time-domain orthogonal frequency 
division multiplexing (OFDM) block, we present a simple maximum-likelihood (ML) scheme for 



frequency tracking in OFDM systems over frequency-selective channels. The frequency offset 
estimator thus obtained is found to become unbiased and its mean square error (MSE) will 
approach the Cramer-Rao bound (CRB) as signal-to-noise ratio (SNR) is increased. Moreover, 
the selection of time slot can determine a trade-off between tracking accuracy and tracking range. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 Abstract—By using a pilot sample from a selected time-slot in a 
time-domain orthogonal frequency division multiplexing (OFDM) 
block, we present a simple maximum-likelihood (ML) scheme for 
frequency tracking in OFDM systems over frequency-selective 
channels. The frequency offset estimator thus obtained is found to 
become unbiased and its mean square error (MSE) will approach 
the Cramer-Rao bound (CRB) as signal-to-noise ratio (SNR) is 
increased. Moreover, the selection of time slot can determine a 
trade-off between tracking accuracy and tracking range.  
 

Index Terms—Maximum-likelihood (ML) estimation, 
 frequency offset, Cramer-Rao bound (CRB)  

 

I. INTRODUCTION 
 is well known that, in orthogonal frequency division 

multiplexing (OFDM) systems, timing and frequency 
synchronization as well as channel estimation must be 

performed for accurate data detection. In general, the 
synchronization process can be divided into two stages, viz., 
coarse acquisition and fine tracking [1], [2]. Coarse acquisition 
can be achieved by correlating pilot data or redundant cyclic 
prefix data in either time or frequency domain [3]-[5]. After 
acquisition, usually the frequency and timing offset will 
become quite small. However, due to time-varying effect of the 
channel, small residual synchronization error will still exist and 
thus needs be continuously tracked [2]. In [6], a least 
squares-based residual synchronization technique is proposed 
using one frequency-domain OFDM block of pilot data. In [7], 
a maximum-likelihood (ML)–based fine frequency synchroni- 
zation scheme is presented using one time-domain OFDM 
block consisting of both signal and pilot data. In this paper, we 
propose a much simpler ML-based fine frequency synchroni- 
zation scheme using only one time slot pilot sample selected 
from a time-domain OFDM block. The remaining time slots in 
that block all contain signal data. Thus, very high pilot usage 
efficiency is achieved. Further, the selection of the pilot slot can 
provide trade-off between the tracking accuracy and the 
tracking range. The mean square error (MSE) of our ML 
estimator for fine frequency offset is shown to approach the 
Cramer-Rao bound (CRB) at high signal-to-noise ratios (SNRs). 
We shall take frequency-selective channels and assume that, 
aside from coarse frequency synchronization, the timing error 
and channel estimation have been completed.  

 
 

This paper is organized as follows: Section II describes the 
simple time-slot signal model in OFDM over frequency- 
selective channels. Section III presents the simple ML-based 
scheme for fine frequency offset estimation using one time slot 
of pilot sample along with theoretical analysis including CRB 
derivation. Then, Section IV shows numerical results. Finally, 
conclusion is given in Section V. 

II. SIGNAL MODEL 
Consider OFDM transmission in a frequency-selective 

channel. Let one transmitted OFDM block contains N samples. 
Assume timing synchronization and channel estimation have 
been completed. Then, discarding the cyclic prefix, the 
demodulated received baseband data sample at the nth time slot 
of an OFDM block can be expressed as  

n
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where kH  and kX  are respectively the channel frequency 
response and the frequency-domain transmitted data symbol of 

the kth subcarrier, nw  and ∑
−

=

=
1

0

/21 N

k

Nnkj
kkn eXH

N
y π  are 

respectively the additive white Gaussian noise (AWGN) 
sample and the noise-free received data sample at the nth time 
slot, and δ  is the frequency offset normalized  to subcarrier 
spacing. We note here that, for mobile wireless 
communications, the frequency offset may include both carrier 
frequency offset and Doppler spread. We also assume that an 
initial frequency acquisition has been performed so that the 
frequency offset will not exceed half the subcarrier spacing [3], 
[6]. In other words, 2/1|| <δ . 
 
III. ML ESTIMATION OF FREQUENCY OFFSET USING A SINGLE 

TIME SLOT PILOT SAMPLE 
Of the N-samples in the time-domain OFDM block, assume 

the pth time slot is selected for the pilot sample pr , the 

remaining 1−N  time slots are signal data. We wish to use the 
pilot sample pr   to estimate the fine frequency offset δ  based 

on the ML criterion. The baseband noise sample pw  is a 
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complex Gaussian random variable with zero mean and 
variance 2

wσ . Then, the log-likelihood function for pr  is 

        2/2
2

2 ||1ln Npj
pp

w
w eyr δπ

σ
πσ −−−=Λ .                  (2) 

To find the ML estimator δ̂ , we differentiate (2) with respect 
to δ  and then set the result to zero. We readily get  

        
p
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y
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e =/ˆ2 δπ .                                                           (3) 

Using both the real and imaginary parts of (3), we can obtain a 

solution for δ̂  as 
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where Re and Im respectively denote real part and imaginary 

part. Equation (4) means Npj
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We take small offset errors and large SNR 22 /|| wpy σ . Then 

using xx ≈−1tan  for small x, (5) can be approximated as 
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where 2/2*2 ||]|Re[| p
Npj

ppp yeywy ≈+ − δπ  for large 
SNR has been used. Taking the expectation, we find the 

estimator expectation to be δδ ≈]ˆ[E . Therefore, for small 
offset errors at large SNRs, the estimator (4) is unbiased. Next, 

squaring (6) and taking the expectation, we find the MSE of our 
estimator as 
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The Fisher information matrix (a 11×  matrix for the current 
simple case) can readily be computed from (2) as [8] 
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whence, the CRB can be calculated as 
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where 22 /||SNR wpp y σ= . Equation (9) is exactly identical 
to (7). To summarize, the estimator of (4) is unbiased and its 
MSE approaches CRB at large SNRs. 
  In view of (4), the range of estimation is pN 2/±  (The 
arctan here should cover the range π± ). Thus, the smaller the 
p, the larger the range. On the other hand, (7) indicates that the 
larger the p, the more accurate the estimate. Therefore, the 
selection of time slot can provide a trade-off between 
estimation range and estimation accuracy. 

 
IV. NUMERICAL RESULTS 

In our simulations, we choose the length of one OFDM block 
or the number of subcarriers to be 64=N . We take a 
frequency-selective channel with an exponential power profile 
and a dispersion length of 16 sample units. Since after coarse 
frequency synchronization, the residual frequency offset will 
be within half the subcarrier spacing, we shall choose 63=p  
for maximum estimation accuracy while maintaining the 
estimation range around 5.0± . The performance of our 
frequency estimator is shown in Fig. 1 and Fig. 2 respectively 
for a small frequency offset ( 05.0=δ ) and a large frequency 
offset ( 5.0=δ ). In both figures, the top plot of (a) gives the 
estimator variance (MSE and CRB) vs. pSNR  curves and the 

bottom plot of (b) presents the estimator bias ( δδ −]ˆ[E ) vs. 

pSNR  curve. Averaging over 1,000 simulation runs is 
performed to produce all results. Both figures show that the 
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estimator gradually becomes unbiased and its MSE approaches 
the CRB as SNR is increased. In fact, the estimator MSE almost 
coincides the CRB at large SNRs. This proves that our 
estimator indeed performs very satisfactorily. 
 

V. CONCLUSION 
By using only a pilot sample in a single time slot selected 

from a time-domain OFDM block, the proposed simple 
ML-based frequency offset estimator for OFDM in 
frequency-selective channels is proved to provide satisfactory 
estimation accuracies for frequency tracking. 
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Fig. 1  Estimator performance for 05.0=δ  . 
(a) Estimator  variances vs. SNR.  
(b) Estimator bias vs. SNR. 
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Fig. 2  Estimator performance for 5.0=δ  . 
(a) Estimator  variances vs. SNR.  
(b) Estimator bias vs. SNR. 
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