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Abstract

In this paper, an evolutionary approach is proposed to
obtain a discrete-time state-space interval model for
uncertain continuous-time systems having interval
uncertainties. Based on a worst-case analysis, the
problem to derive the discrete interval model is first
formulated as multiple mono-objective optimization
problems for matrix-value functions associated with the
discrete system matrices, and subsequently optimized via
a proposed genetic algorithm (GA) to obtain the lower
and upper bounds of the entries in the system matrices.
To show the effectiveness of the proposed approach,
roots clustering of the characteristic equation of the
obtained discrete interval model is illustrated for
comparison with those obtained via existing methods.

Keywords: Discrete modelling, evolutionary algorithms,
uncertain continuous-time systems, interval plant,
discretization, model conversion, sampled-data systems.

1. Introduction

Most practical systems, such as flight vehicles, electric
motors, and robots, are formulated in continuous-time
uncertain settings. The uncertainties in these systems
arise from unmodelled dynamics, parameter variation,
Sensor noises, actuator constraints, etc. These variations
of the uncertain parameters generally do not follow any
of the known probability distributions and are most often
quantified in terms of bounds [1]-[2]. Hence, practical
systems or plants are most suitably represented by
continuous-time parametric interval models [3]-[5],
rather than deterministic mathematical models. Simple as
they might be, uncertain models in the form of interval
systems have provided a convenient way in constructing
mathematical models for physical systems, based on
which practical design can be achieved for use in
industry. It is no wonder that a large body of literature
[4], [6] exploring robustness and performance issues of
interval systems over the past few years.

On the other hand, digital control is getting more and
more popular. The current trend toward digital control of
dynamic systems is mainly due to the availability of low-
cost digital computers and the advantages found in
working with digital signals [7]. It is also well known
that digital control [8]-[10] provides many advantages
over the analogue control in terms of reliability,
flexibility, cost, performance, etc. For digital simulation
and digital design of continuous-time systems, however,
it is essential to find an equivalent discrete-time model
from the continuous-time model subject to digital control
by using a zero-order hold (ZOH). Thanks to continuous
efforts made to solve this problem over the past years,
model conversion of a nominal continuous-time state-
space model to an equivalent discrete-time state-space
model has been well established and reported in the
literature [11]-[14]. However, for uncertain continuous
systems having an interval structure, the exact discrete-
time state-space model for the sampled system is
difficult to obtain, if not impossible [15], because the
entries of the discrete system matrices depend non-

linearly on the uncertain plant parameters. This has
seriously prevented the applicability of available
robustness results [16]-[17] in the discrete-time domain.

To solve the problem in deriving a suitable discrete-
time model for uncertain interval plants, several attempts
have been made over the past years to develop methods
to obtain approximate discrete-time interval models
which tightly enclose the exact discrete-time model of
the continuous-time uncertain system [1], [18]-[20].
Among these methods, Oppenheimer and Michel [18]
used an interval Taylor-series approximation method to
convert a continuous-time uncertain system to an
equivalent discrete-time interval model. Shieh et al. [19]
developed an approximation method to convert a
continuous-time uncertain system to an equivalent
discrete-time interval model by applying the Pade
approximation and the interval arithmetic, where the
exponential function of an interval system matrix is
approximated by a rational interval matrix-valued
function. Shieh et al. [1] also proposed an interval
geometric-series approximation method together with
interval arithmetic to convert a continuous-time
uncertain system to an equivalent discrete-time interval
model. The aforementioned methods claimed that the
obtained interval models were guaranteed to enclose the
exact discrete-time uncertain model. Nevertheless,
without carefully manipulating the developed results, the
interval method might give a very conservative model,
owing to the inherent conservativeness of the interval
arithmetic [20]. In an attempt to find a less conservative
discrete-time interval model, a GA-based method [20]
was proposed to search the lower and upper bounds of
the enclosing discrete-time interval system matrices.
Unfortunately, the results obtained via this approach
failed to enclose the exact discrete-time model, as will be
demonstrated in the example of this paper. From the
above-mentioned discussions, we can say that discrete
modelling of continuous-time uncertain state-space
models has not been sufficiently explored, and there is a
need to derive an equivalent discrete-time interval state-
space model with better accuracy suitable for digital
simulation and design of the uncertain interval systems
by using the available robustness results in the discrete-
time domain [16]-[17].

Recent developments of evolutionary algorithms
[21]-[26] have provided a promising alternative to solve
the above-mentioned problem because of their
capabilities of directed random search for global
optimization [27]-[28]. This motivates the use of genetic
algorithms to derive a less conservative discrete-time
interval model for uncertain continuous—time systems by
overbounding the uncertain plant parameters. Based on a
worst-case analysis, the problem to derive the discrete-
time interval model is first formulated as multiple mono-
objective optimization problems for matrix-value
functions associated with the discrete-time system
matrices, and subsequently minimized and maximized
via a proposed genetic algorithm to obtain the lower and
upper bounds for the entries of the system matrices.
Performance verification of the obtained discrete interval
model based on roots clustering of the characteristic
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equation will be made in comparison to those obtained
via existing methods to show the effectiveness of the
proposed approach.

The paper is organized as follows. Section 2
formulates the design problem to derive a discrete-time
model for continuous-time interval plants. Derivation of
a desired discrete interval model for uncertain interval
plants via genetic algorithms is introduced in Section 3,
where the design problem is formulated as multiple
mono-objective optimization problems to be solved via a
proposed genetic algorithm. Illustrated examples are
demonstrated in Section 4. Conclusions are drawn in
Section 5.

2. Discrete-time model of continuous-time interval
plants
Consider a continuous-time interval system given by

Xe(t) = A'x_ () + B'u (1), x,(0)=x, (1)

¥ () = Cox. (1) )

where x e R™ is the state, y_(t) e R™* is the input,

y (t) e R™* is the output, A' e IR™ and B' € IR™"
are uncertain interval matrices, such that

Al =[A,A]=[A, —AA, A, + AA], A, :%[K+A] @3)

B'=[B,B]=[B, - AB,B, + AB], BO:%[§+5] 4)

A,,B,,C, are nominal system matrices, and AA, AB

are the pair of uncertain matrices which are the
perturbations of the nominal system matrices.

The associated discrete-time uncertain model for the
continuous system in Egs. (1-2) can be expressed as:

Xq (KT +T) =Gx, (KT) + Hu, (kT), x,(0)=x, (5)

Yy (KT) = Cox, (KT) ©)
where
G= eA'T _ e(A0+AA)T (7)
H=[ e*"B'ds 8)

U (t) =u (kT) =u, (KT), forkT <t <KkT +T (9)
T is sampling period and the piecewise-constant input
u,(t) is the output signal from the zero-order hold

(ZOH). The system output matrix C e ®"" has no

influence during model conversion. It is noted that, in
general, the structured continuous-time uncertain system
matrices A' B' would yield unstructured discrete-time
system matricesG, H in Egs. (7-8). Exact evaluation of
the uncertain discrete-time system matrices G,H is
extremely difficult, if not impossible [1], [19]-[21]. On
the other hand, direct use of the interval arithmetic to
obtain the interval matrices for system matrices G, H
often gives very conservative results, due to the nature of
the interval arithmetic and the inherent conservativeness
of interval arithmetic operations. For example,
A'-A'20,, (A"YA' =1'. As a result, interval analysis

is generally carried out using real (i.e., degenerate
interval) analysis to find the desired real result.
Subsequently, the inclusion theorem [29]-[31] is applied

to the result sought by replacing the real variables and
the real arithmetic operations with the interval variable
and interval arithmetic operations, respectively. Since no
efficient analytical and/or numerical methods are
available [2] for finding the exact discrete-time model of
Egs. (5-9), it is therefore reasonable to seek an
approximately enclosed discrete-time interval model.
Fortunately, exact evaluation of degenerate (real)
matrices via real arithmetic is feasible. Assume that the
uncertain interval matrices A' and B' contain

degenerate (real) matrices A, € R™" and B, e R™",

such that A, e A' and B, eB' , respectively. The

discrete-time degenerate model for the continuous
system in Egs. (1-2) can be expressed as:
Xg (KT +T) =G, X, (KT) + H,u, (KT), x,(0) =X,

(10)
where
G, =e™ (11)
H,= [ e*B,dr (12)
0

are the discrete-time degenerate (real) matrices.
Applying the inclusion theorem to the discrete-time
degenerate model in Egs. (10-12) with A eA' and
B, e B' results in the desired discrete-time uncertain
model in Egs. (7-8), where

G, =e* eG=¢e"T (13)
H, =(G, -1,)(A,) "B, eH=(G~I,)(A")"B'
(14)

The design objective can now be formulated as: Given
continuous-time interval system matrices (A',B') of
Egs. (1-2), determine the discrete-time interval system
matrices G' € IR™" and H' € IR™™, which tightly
enclose the exact discrete-time model (G, H) in Egs. (7-
8), based on the respective degenerate interval (real)
matrices G,,H, over the parameter space.

3. Derivation of the discrete interval model via
genetic algorithms

Because of the capability of genetic algorithms (GAS) in

directed random search for global optimization, they will

be used to evolutionarily identify a less conservative

enclosing approximant (G', H') such that G' > G and

H' > H, on the basis of the degenerate matrices G, H,

to optimize the matrix-value functions of the discrete-
time system matrices G and H.

To facilitate the evolution process via genetic
algorithms, matrices in the forms of element (entry)
representation are desired. For the continuous-time
uncertain interval matrices A' and B', we have
alternative presentations as:

Al =[a,], & =[i,§_ij], i,j=12,---,n (15)
B' :[bu\,]y bu\, :[b b7uv]’

uv !

(16)
u=12,---,n;v=12,---,m



, Where a and b, are the ijth and uvth elements of A'

and B', respectively. a; and p denote the lower

bounds of a; and b, , while a and Buv denote the

upper bounds of q; and b, , respectively. Degenerate

uv !

matrices A, B, , on the other hand, are composed of real

numbers a,; and B, , respectively:
A, =[a;], ay <la;,a] 17)
Br = [bruv]! b E [buv ' UV] (18)

Therefore, we can dlrectly use real-number arithmetic
operation to evaluate Eqgs. (11-12).

As far as the discrete-time system is concerned, the
entries in  the uncertain  system  matrices
G:[gij], H=[h,] can be expressed as matrix-value
functions:

gij (aIJ’T) and h ﬂuv(au' uv ! )
(19)
respectively, where g is a function of a; and T, and

h is a function of ., b, and T. We can obtain the

uv ijr Muv?
upper and lower bounds for each entry in the system
matrices G and H by optimizing the corresponding
matrix-value functions ¢; and g, . Thatis,

gijzmina (T’ |J) gijzmaxa (T7 |]) irjzllzx"'nn
(20)
buvzminﬂ (T a'u' uv) h“"_maxﬂ (T au' uv)
i!jluzllzl'.'ln;vzllz!"'!

(21)
Therefore, we can obtain a discrete-time interval model
(G', H"), which encloses the exact discrete model
(G, H), such that

G'=[G,G]>G=¢"" (22)

H'=[H, H]>H=[e""B'dr (23)
where

G=[g,]. G=I[g,l i,j=12--n (29)

ﬂz[huv]a ﬁz[HUVL (25)

u=12,---,n; v=12,---,m

Note that the matrix-value functions a; B, in Eq. (19)
are nonlinear and generally nonconvex functions of a

and (a;,b,,). respectively, in the searching space of the

Ij’
uncertain plant parameters. Gradient-based optimization
algorithms generally lead to solutions that have local
properties only. Genetic algorithms, with their power as
an efficient and robust alternative for solving complex
and highly nonlinear optimization problems, are
therefore used to identify the lower and upper bounds of
the entries in the discrete system matrices.

3.1 Population Initialization
Basically, genetic algorithms are probabilistic algorithms
which  maintain a population of individuals
(chromosomes,  vectors) for iteration t. Each
chromosome represents a potential solution to the
problem at hand, and is evaluated to give some measure
of its “fitness”. Then, a new population is formed by
selecting the more fit individuals. Some members of the
new population undergo transformations by means of
genetic operators to form new solutions. After some
number of generations, it is hoped that the system
converges with a near-optimal solution [27]-[28]. A
genetic algorithm requires a population of potential
solutions to be initialized and maintained during the
process. In this paper, a fixed number of the population
size N is used. Real number representation for potential
solutions is adopted to simplify genetic operator
definitions and obtain a better performance of the genetic
algorithm itself. Thus, there are no encoding and
decoding operations involved, which is particularly
useful if vast amount of parameters are to be adjusted.
Assume that x: is the k-th chromosome in a

population of N at generation t, which represents entries

of the continuous interval system matrices A' and B' in

Egs. (15-16) and is defined as:

xtk = [an a;, "'aij A, b11 b12 '”buv bnm ]’
i,j,u=12,---,n, v=12,---m, k=12,---,N

(26)

Initial chromosomes are randomly generated from within

the pre—defined range:

[a,J,ai,-], fori, j=12,---,n 27

= [buv,buvl foru=12,---,n, andv=12,---;m

(28)
After initialization, several genetic operations are
performed during procreation.

3.2 Fitness evaluation

Basically, there are (nxn+nxm) matrix-value
functions associated with the discrete-time model,
1.e. (T, u) i,j=12,---,n and
ﬁUV(T’ ij? UV) u:1!2|'“ynyV:l|21”'!
nonlinear function of the uncertain plant parameters. We
need to establish fitness functions to direct the evolution
process for optimizing the matrix-value functions in
EQ.(19). To reduce redundancy, we assume that
f', k=12,---,N , represents the evaluation of

chromosome X; for the matrix-value functions of either
aij(T’ Ij) or (T a]' uv)
optimization problem under consideration. The upper
bound F' and lower bound f' in evaluating the

m, which are

depending on the

chromosomes in the current population t for a particular
matrix-value function can be obtained as follows:

£ =min{f k=12,-,N}

T =max{f' k=12,N}
, respectively.



The fitness of each chromosome X in a population t

can then be assigned according to the fitness functions
defined below:
(i) Fitness function for chromosome X: in determining

the lower bound of a matrix-value function (i.e., in the

derivation of Qij or hw):
F (X)) = (29)
1( k) [(fkt_it)'i‘l]

(i) Fitness function for chromosome x: in determining

the upper bound of a matrix-value function (i.e., in the

derivation of §ij or hw):

R (%) = /J/[(? — 1Y +1] 0

The rationale of fitness assignment is described as
follows: chromosome x: corresponding to a larger

function evaluation f! will receive a smaller fitness;
while chromosome x: corresponding to a smaller
function evaluation f' will be assigned a larger fitness

in deriving the lower bounds of the matrix-value
functions, via F; in Eq. (29). In a very similar way,
fitness function in deriving the upper bounds of the
matrix-value functions can be devised as F, in Eq. (30).
By doing so, evolution can be directed toward derivation
of an optimal set of system matrices for the discrete-time
system, which tightly enclose the exact discrete model.
Obviously, there are totally 2x(nxn+nxm)

optimization problems for processing. After generations
of evolution, it is expected that the genetic algorithms
converges and a best chromosome with largest fitness
representing the boundary of the entry of the discrete-
time interval model can obtained.

3.3 Evolutionary scheme of the proposed genetic
algorithm

Evolutionary process of the proposed genetic algorithm
includes the steps of population initialization and
reproduction operation. Real-coded (RC) representation
for potential solutions is adopted in the proposed GA-
based approach to simplify genetic operator definitions
and obtain a better performance of the genetic algorithm
itself [21]-[22]. The tournament selection is employed to
keep the balance between the population diversity and
selective pressure during the evolution process. Several
genetic operators: Simulated binary crossover and non-
uniform mutation are performed on the selected
chromosomes after the reproduction operation with
suitable selection of control parameters [22]. To prevent
the loss of the optimal solution ever searched and
increase the convergence rate, the elitist replacement is
adopted to preserve the optimal solution in the current
generation. From the experiments ever conducted, we
observed that the extrema generally lie on or near the
boundaries of the uncertain plant parameters. Boundary
mutation is extremely suitable for use in this case, and
will be adopted to locate the boundaries for each of the
matrix-value functions with success. For examples in
this paper, the population size is chosen as 50, the

crossover rate and mutation rate are 0.8 and 0.05,
respectively.

4. lllustrated Examples

Example 1:

Consider an asymptotically stable linear R-L-C circuit
[29] described by an uncertain state equation with the
following nominal and perturbed system matrices:

T

01 0 0
AA = , AB =

It is desired to find an approximate discrete-time interval
model, enclosing the exact discrete-time model, for the
continuous-time uncertain system at sampling period
T=0.1s.

[Solution]:
The uncertain interval matrics of the continuous-time

system are.
B'= 2
12

Al [21 -19] O
[09 11 -3

By using the proposed GA-based approach, the discrete-

time interval system matrices for the continuous-time

uncertain system at sampling period T=0.1 can be

obtained as:

| {[0.810584 0.826959] [0.000000 0.000000]}

| [0.069766 0.086141] [0.740818 0.740818]

after 50 generations of evolution. In comparison to the
results:
| [[0.808029 0.829520] [-0.001953 0.001953]}

P~ [0.066945 0.088960] [0.738867 0.742774]

ga

obtained by the Pade approiimation method [19], and
| {[0.808646 0.828714] [-0.00003 0.00003]}

9 7|[0.067817 0.087916] [0.74078 0.740844]

via the interval geometric series approximation method
[1], the discrete-time interval model via the propsoed
approach is clearly less conservative with tighter
boundaries on the extries of the discrete system
matrices.

To show the effectiveness of the proposed approach,
Fig. 1 shows the root clustering of the characteristic
equation of the exact discrete-time model and those
obtained by the proposed GA-based approach, the Pade
approximation method [19], and the interval geometric
series approximation method [1], respectively. As
shown in Fig. 1, roots of the characteristic equations
obtained via various approaches lie entirely on the real
axis. To facilitate comparison between all the methods,
we calculate the upper and lower bounds of root
clustering of the characteristic equation for each
method. As shown in Table 1, we find that root
clustering of the discrete interval model via the
proposed GA-based method is not distinguishable to
that of the exact discrete-time model. On the other
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hand, the other two methods, though enclosing the
exact discrete-time model, however, provide more
conservative results than the proposed method. It is
clear that root clustering of the characteristic equation
of the discrete model obtained by using the proposed
GA-based method bears a closer resemblance to that of
the exact discrete model. Pade approximation method
[19] and the interval geometric-series approximation
method [1] both failed to obtain a satisfactory
performance as demonstrated in this example.

1 | | | | |
: : : Exaét/Propoéed GA
| | | Geofnetric-serles
! ! ! Pade approximation
| | | | |
1] e e
| | | | |
j=) | | | | |
g | | | | |
- | | | | |
| | | | |
Of - - — el = — =Ll cm——
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
-0.5 L L 1 L L
0.72 0.74 0.76 0.78 0.8 0.82 0.84

Fig. 1 Root clusterings of the characteristic equation of
various discrete models at T=0.1 Secs. of Example 1.

Table 1 Boundaries of root clustering of the discrete
models via various approaches

Root clustering Root
on the left-hand | clustering on
side right-hand
side
Exact results 0.740818 [0.810584,
0.826959]
Proposed GA- 0.740818 [0.810584,
based method 0.826959]
Pade [0.736440, [0.805248,
approximation 0.745555] 0.831479]
method [19]
Interval [0.740741, [0.808607,
geometric series 0.740883] 0.828744]
Method [1]
Example 2:

Consider an uncertain continuous-time system with the
following nominal and perturbed system matrices [20]:

00366 0.0271 0.0188 -—0.4555
0.0482 —-101 00024 -4.0208
°~| 0002 02855 —-0.707 1.3229 |
0 0 1000 0
04422 0.1761
3.0447 —7.5922
°7| _552  4.99
0 0
m o 0 o0
aall0 000
0 +02192 0 +1.2031
o 0o 0 o0
0 o0
Ap| £20673 0
0 o0
0 o0

It is desired to find an approximate discrete-time interval
model for the continuous-time uncertain system at
sampling period T=0.18s.

[Solution]:

By using the proposed GA-based approach after 50
generations of evolution, we obtain the discrete interval
system matrices as follows:

[0.9934 0.9934] [0.0044 0.0044] [-0.0040 —0.0040] [-0.0837 —0.0834]
[0.0075 0.0075] [0.8321 0.8336] [-0.0588 —0.0584] [-0.6712 —0.6622]
[0.0169 0.0175] [0.0098 0.0790] [0.8805 0.9181]  [-0.0102 0.4283]
|[0.0016 0.0016] [0.0010 0.0074] [0.1690 0.1713]  [1.0000 1.0392]
[ [0.0805 0.0822] [0.0278 0.0278]
oo [0.1809 0.8615] [-1.2673 -1.2667]

®~|[-0.9440 -0.8953] [0.7879 0.8477]
| [-0.0862 -0.0834] [0.0741 0.0777]

Gy, =

For comparison purpose, the results obtained by
Shieh adopting a GA-based approach [20] are listed
below:

Gl =
7 |[0.0169 0.0175] [0.0103 0.0789]

[0.0016 0.0016] [0.0010 0.0074]

[ [0.0805 0.0822]  [0.0278 0.0278]
[0.1809 0.8608] [-1.2673 -1.2667]
[-0.9440 -0.8953] [0.7878 0.8476]

| [-0.0862 -0.0834] [0.0741 0.0777]

[0.8807 0.9180]
[0.1690 0.1713]

[-0.0100 0.4259]
[1.0000 1.0391]

Hy =

Although the results are very close to those obtained via
the proposed approach, there is, however, a significant
difference as far as enclosure of the exact discrete-time
model is concerned. That is, the interval model revealed
in [20] did not enclose the exact discret-time interval
model. For instance, when

[[0.9934 0.9934] [0.0044 0.0044] [-0.0040 —0.0040] [-0.0837 —0.0834]
[0.0075 0.0075] [0.8321 0.8336] [-0.0588 —0.0584] [-0.6711 —0.6622]



[-0.0366 0.0271 0.0188 —0.4555
A 0.0482 -1.01 0.0024 -—4.0208
0.1002 0.0774 -0.707 25244 |
| 0 0 1.0000 0
[0.4422 0.1761
B 2.6293 -7.5922
—-5.52 4.99
0 0

, Where a certain perturbation occurred on top of the
nomial matrices, the exact discrete-time model becomes:
(09934 0.0044 —0.0040 —0.0837

0.0075 0.8335 -0.0588 -0.6711

C=l00172 00121 09181 04272 |
100016 00011 01713  1.0392
(00812 00278

. _| 04520 12673

~0.9420 0.8465
|-0.0861 0.0775

It’s easy to check that G(3,3)=0.9181,G(34)=0.4272,

and  G(4,4)=1.0392 lie outside the range
of G+(3,3)=[0.8807 0.9180] :
G.(3,4)=[-0.0100 0.4259] : and

G.(4,4)=[1.0000 1.0391], respectively [20]. On the

contrary, the discrete-time interval model via the
proposed GA-based approach presents trustworthy
results which tightly enclose the exact discrete-time
model of the uncertain continuous-time system. To
demonstrate the effectiveness of the propsoed approach,
root clustering of the characteristic equation of the
discrete-time model via the proposed approach is
illustrated in Fig. 2 in comparison to its exact
counterpart, where green and red portions represent the
root clustering of the derived and exact discrete-time
models, respectively. As illustrated in Fig. 2, enclosure
of the exact boundaries of the root distribution has been
guaranteed via the proposed GA-based approach. Note
that we have 48 optimization processes to locate the
boundaries for all the entries (i.e.

g;.9, andh,,.h,,, i, j,u=1234,v=2) in the enclosing
discrete-time system matrices (G'ga, H'ga) in this example.

uv?!—uv?
If a single Pentium 4 personal computer (2.0GHz,
512MB RAM) is used, the discrete-time interval system
matrices are obtained with a computation time of 1680
seconds. With the adoption of a parallel computation
scheme [25] where 10 PCs (CPU 2.0 GHz and 512MB
RAM) work as slaves, significant evolution efficiency
can be achieved with a total computation time of 172
seconds to derive the discrete-time interval system
matrices.

Real

Fig. 2 Root clustering of the characteristic equation of
the discrete-time model via the proposed approach in
comparison to its exact counterpart in Example 2.

5. Conclusions

In this paper, we have investigated the use of genetic
algorithm to obtain a discrete-time interval model for
uncertain interval systems. Because of the non-convexity
generally exhibited in the matrix-value functions during
the discretization process of uncertain interval plants,
conventional methods generally failed to obtain
satisfactory results of the associated discrete-time model.
The proposed GA-based approach from the worst-case
analysis point of view, on the other hand, is capable of
evolutionarily deriving a discrete-time model tightly
encloses the exact model as demonstrated in the
illustrated examples. As a result, the problem of highly-
coupled nonlinearities with exponential nature occurred
in the exact discrete-time system matrices is therefore
circumvented, while preserving the interval structure in
the resulting discrete-time model by using the proposed
approach. In light of the facts that multiple optimization
processes to be simultaneously executed to obtain the
entries of the discrete system matrices, a parallel
computation scheme for the proposed evolutionary
approach can be considered to accelerate the derivation
process. Furthermore, there is no restrictive condition
under which the proposed approach is developed.
Performance verification has demonstrated that roots
clustering of the discrete-time interval model using the
proposed GA-based approach has a better resemblance
to that of the exact discrete model, in comparison to
existing methods.
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