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Abstract 
In this paper, an evolutionary approach is proposed to 
obtain a discrete-time state-space interval model for 
uncertain continuous-time systems having interval 
uncertainties. Based on a worst-case analysis, the 
problem to derive the discrete interval model is first 
formulated as multiple mono-objective optimization 
problems for matrix-value functions associated with the 
discrete system matrices, and subsequently optimized via 
a proposed genetic algorithm (GA) to obtain the lower 
and upper bounds of the entries in the system matrices. 
To show the effectiveness of the proposed approach, 
roots clustering of the characteristic equation of the 
obtained discrete interval model is illustrated for 
comparison with those obtained via existing methods.  
 
Keywords: Discrete modelling, evolutionary algorithms, 
uncertain continuous-time systems, interval plant, 
discretization, model conversion, sampled-data systems. 
 
1. Introduction 
Most practical systems, such as flight vehicles, electric 
motors, and robots, are formulated in continuous-time 
uncertain settings. The uncertainties in these systems 
arise from unmodelled dynamics, parameter variation, 
sensor noises, actuator constraints, etc. These variations 
of the uncertain parameters generally do not follow any 
of the known probability distributions and are most often 
quantified in terms of bounds [1]-[2]. Hence, practical 
systems or plants are most suitably represented by 
continuous-time parametric interval models [3]-[5], 
rather than deterministic mathematical models. Simple as 
they might be, uncertain models in the form of interval 
systems have provided a convenient way in constructing 
mathematical models for physical systems, based on 
which practical design can be achieved for use in 
industry. It is no wonder that a large body of literature 
[4], [6] exploring robustness and performance issues of 
interval systems over the past few years. 

On the other hand, digital control is getting more and 
more popular. The current trend toward digital control of 
dynamic systems is mainly due to the availability of low-
cost digital computers and the advantages found in 
working with digital signals [7]. It is also well known 
that digital control [8]-[10] provides many advantages 
over the analogue control in terms of reliability, 
flexibility, cost, performance, etc. For digital simulation 
and digital design of continuous-time systems, however, 
it is essential to find an equivalent discrete-time model 
from the continuous-time model subject to digital control 
by using a zero-order hold (ZOH). Thanks to continuous 
efforts made to solve this problem over the past years, 
model conversion of a nominal continuous-time state-
space model to an equivalent discrete-time state-space 
model has been well established and reported in the 
literature [11]-[14]. However, for uncertain continuous 
systems having an interval structure, the exact discrete-
time state-space model for the sampled system is 
difficult to obtain, if not impossible [15], because the 
entries of the discrete system matrices depend non-

linearly on the uncertain plant parameters. This has 
seriously prevented the applicability of available 
robustness results [16]-[17] in the discrete-time domain.  

To solve the problem in deriving a suitable discrete-
time model for uncertain interval plants, several attempts 
have been made over the past years to develop methods 
to obtain approximate discrete-time interval models 
which tightly enclose the exact discrete-time model of 
the continuous-time uncertain system [1], [18]-[20]. 
Among these methods, Oppenheimer and Michel [18] 
used an interval Taylor-series approximation method to 
convert a continuous-time uncertain system to an 
equivalent discrete-time interval model. Shieh et al. [19] 
developed an approximation method to convert a 
continuous-time uncertain system to an equivalent 
discrete-time interval model by applying the Pade 
approximation and the interval arithmetic, where the 
exponential function of an interval system matrix is 
approximated by a rational interval matrix-valued 
function. Shieh et al. [1] also proposed an interval 
geometric-series approximation method together with 
interval arithmetic to convert a continuous-time 
uncertain system to an equivalent discrete-time interval 
model. The aforementioned methods claimed that the 
obtained interval models were guaranteed to enclose the 
exact discrete-time uncertain model. Nevertheless, 
without carefully manipulating the developed results, the 
interval method might give a very conservative model, 
owing to the inherent conservativeness of the interval 
arithmetic [20]. In an attempt to find a less conservative 
discrete-time interval model, a GA-based method [20] 
was proposed to search the lower and upper bounds of 
the enclosing discrete-time interval system matrices. 
Unfortunately, the results obtained via this approach 
failed to enclose the exact discrete-time model, as will be 
demonstrated in the example of this paper. From the 
above-mentioned discussions, we can say that discrete 
modelling of continuous-time uncertain state-space 
models has not been sufficiently explored, and there is a 
need to derive an equivalent discrete-time interval state-
space model with better accuracy suitable for digital 
simulation and design of the uncertain interval systems 
by using the available robustness results in the discrete-
time domain [16]-[17]. 

Recent developments of evolutionary algorithms 
[21]-[26] have provided a promising alternative to solve 
the above-mentioned problem because of their 
capabilities of directed random search for global 
optimization [27]-[28]. This motivates the use of genetic 
algorithms to derive a less conservative discrete-time 
interval model for uncertain continuous–time systems by 
overbounding the uncertain plant parameters. Based on a 
worst-case analysis, the problem to derive the discrete-
time interval model is first formulated as multiple mono-
objective optimization problems for matrix-value 
functions associated with the discrete-time system 
matrices, and subsequently minimized and maximized 
via a proposed genetic algorithm to obtain the lower and 
upper bounds for the entries of the system matrices. 
Performance verification of the obtained discrete interval 
model based on roots clustering of the characteristic 
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equation will be made in comparison to those obtained 
via existing methods to show the effectiveness of the 
proposed approach.  

The paper is organized as follows. Section 2 
formulates the design problem to derive a discrete-time 
model for continuous-time interval plants. Derivation of 
a desired discrete interval model for uncertain interval 
plants via genetic algorithms is introduced in Section 3, 
where the design problem is formulated as multiple 
mono-objective optimization problems to be solved via a 
proposed genetic algorithm. Illustrated examples are 
demonstrated in Section 4. Conclusions are drawn in 
Section 5. 

 
2. Discrete-time model of continuous-time interval 

plants 
Consider a continuous-time interval system given by 

0
II )0( ),()()( ccccc xxtutxtx =+=

•

BA  (1) 

)()( 0 txty cc C=    (2) 
where 1×ℜ∈ n

cx  is the state, 1)( ×ℜ∈ m
c tu  is the input, 

1)( ×ℜ∈ p
c ty  is the output, nn×ℑℜ∈IA  and mn×ℑℜ∈IB  

are uncertain interval matrices, such that 

][
2
1 ], , [] , [ 000

I AAAAAAAAAA +=Δ+Δ−==  (3) 

][
2
1 ], , [] , [ 000

I BBBBBBBBBB +=Δ+Δ−==  (4) 

0CBA  , , 00  are nominal system matrices, and BA ΔΔ  ,  
are the pair of uncertain matrices which are the 
perturbations of the nominal system matrices. 

The associated discrete-time uncertain model for the 
continuous system in Eqs. (1-2) can be expressed as: 

0)0( ),()()( cdddd xxkTukTxTkTx =+=+ HG  (5) 

)()( 0 kTxkTy dd C=     (6) 
where 

TT ee )( 0
I AAAG Δ+==    (7) 

∫=
T

de
0

II

ττ BH A

    
(8) 

TkTtkTkTukTutu dcc +≤≤== for   ),()()( (9) 
T  is sampling period and the piecewise-constant input 

)(tud  is the output signal from the zero-order hold 
(ZOH). The system output matrix np×ℜ∈0C  has no 
influence during model conversion. It is noted that, in 
general, the structured continuous-time uncertain system 
matrices II  , BA  would yield unstructured discrete-time 
system matrices HG  ,  in Eqs. (7-8). Exact evaluation of 
the uncertain discrete-time system matrices HG  ,  is 
extremely difficult, if not impossible [1], [19]-[21]. On 
the other hand, direct use of the interval arithmetic to 
obtain the interval matrices for system matrices HG  ,  
often gives very conservative results, due to the nature of 
the interval arithmetic and the inherent conservativeness 
of interval arithmetic operations. For example, 

II1III )( , IAA0AA ≠≠− −
n

. As a result, interval analysis 
is generally carried out using real (i.e., degenerate 
interval) analysis to find the desired real result. 
Subsequently, the inclusion theorem [29]-[31] is applied 

to the result sought by replacing the real variables and 
the real arithmetic operations with the interval variable 
and interval arithmetic operations, respectively. Since no 
efficient analytical and/or numerical methods are 
available [2] for finding the exact discrete-time model of 
Eqs. (5-9), it is therefore reasonable to seek an 
approximately enclosed discrete-time interval model.  

Fortunately, exact evaluation of degenerate (real) 
matrices via real arithmetic is feasible.  Assume that the 
uncertain interval matrices IA  and IB  contain 
degenerate (real) matrices nn

r
×ℜ∈A  and mn

r
×ℜ∈B , 

such that IAA ∈r  and IBB ∈r  , respectively.  The 
discrete-time degenerate model for the continuous 
system in Eqs. (1-2) can be expressed as: 

0)0( ),()()( cddrdrd xxkTukTxTkTx =+=+ HG
 (10) 

where 
T

r e rAG =    (11) 

∫=
T

rde
0

ττBH rA
r    

(12) 

are the discrete-time degenerate (real) matrices. 
Applying the inclusion theorem to the discrete-time 
degenerate model in Eqs. (10-12) with IAA ∈r  and 

IBB ∈r  results in the desired discrete-time uncertain 
model in Eqs. (7-8), where 

TT
r ee r

IAA GG =∈=    (13) 
I1I1 ))(())(( BAIGHBAIGH −− −=∈−= nrrnrr

 (14) 
The design objective can now be formulated as: Given 
continuous-time interval system matrices ),( II BA  of 
Eqs. (1-2), determine the discrete-time interval system 
matrices nn×ℑℜ∈IG  and mn×ℑℜ∈IH , which tightly 
enclose the exact discrete-time model )( HG, in Eqs. (7-
8), based on the respective degenerate interval (real) 
matrices rr HG ,  over the parameter space.  

 
3. Derivation of the discrete interval model via 

genetic algorithms 
Because of the capability of genetic algorithms (GAs) in 
directed random search for global optimization, they will 
be used to evolutionarily identify a less conservative 
enclosing approximant ( IG , IH ) such that GGI ⊃  and 

HHI ⊃ , on the basis of the degenerate matrices rr HG  ,  
to optimize the matrix-value functions of the discrete-
time system matrices G  and H . 

To facilitate the evolution process via genetic 
algorithms, matrices in the forms of element (entry) 
representation are desired. For the continuous-time 
uncertain interval matrices IA  and IB , we have 
alternative presentations as: 

njiaaaa ijijijij ,,2,1,  ], , [ ],[I L===A  (15) 

mvnu

bbbb uvuvuvuv

,,2,1;,,2,1

  ], , [  ],[I

LL ==

==B  (16) 
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, where ija  and uvb  are the ijth and uvth elements of IA  

and IB , respectively. 
ija  and 

uvb  denote the lower 

bounds of ija  and uvb , while ija  and uvb  denote the 

upper bounds of ija  and uvb , respectively. Degenerate 
matrices rr BA  , , on the other hand, are composed of real 

numbers rija  and ruvb  , respectively: 

] , [ ],[ ijijrijrijr aaaa ∈=A   (17) 

] , [ ],[ uvuvruvruvr bbbb ∈=B   (18) 

Therefore, we can directly use real-number arithmetic 
operation to evaluate Eqs. (11-12). 

As far as the discrete-time system is concerned, the 
entries in the uncertain system matrices 

][ ],[ uvij hg == HG  can be expressed as matrix-value 
functions: 

),( Tag ijijij α=  and ),,( Tbah uvijuvuv β=  
 (19)

 
respectively, where ijg  is a function of ija

 
and T, and 

uvh  is a function of ija , uvb , and T. We can obtain the 
upper and lower bounds for each entry in the system 
matrices G  and H  by optimizing the corresponding 
matrix-value functions ijα  

and uvβ . That is, 

njiaTgaTg ijijijijijij
,,2,1,  ),,(max),,(min L=== αα

   (20) 

mvnuji
baThbaTh uvijuvuvuvijuvuv

,,2,1;,,2,1,,
  ),,,(max),,,(min

LL ==

== ββ  

(21) 
Therefore, we can obtain a discrete-time interval model 
( IG , IH ), which encloses the exact discrete model 
( HG  , ), such that 

Te
I

] , [ AI GGGG =⊃=   (22) 

∫=⊃= ττ de II

] , [ BHHHH AI   (23) 

where 
njigg ijij

,,2,1,],[],[ L=== GG
 

(24) 

.,,2,1;,,2,1
],[],[

mvnu
hh uvuv

LL ==
== HH   (25) 

Note that the matrix-value functions ijα , uvβ  in Eq. (19) 
are nonlinear and generally nonconvex functions of ija  
and ),( uvij ba , respectively, in the searching space of the 
uncertain plant parameters. Gradient-based optimization 
algorithms generally lead to solutions that have local 
properties only. Genetic algorithms, with their power as 
an efficient and robust alternative for solving complex 
and highly nonlinear optimization problems, are 
therefore used to identify the lower and upper bounds of 
the entries in the discrete system matrices. 

 

3.1 Population Initialization 
Basically, genetic algorithms are probabilistic algorithms 
which maintain a population of individuals 
(chromosomes, vectors) for iteration t. Each 
chromosome represents a potential solution to the 
problem at hand, and is evaluated to give some measure 
of its “fitness”. Then, a new population is formed by 
selecting the more fit individuals. Some members of the 
new population undergo transformations by means of 
genetic operators to form new solutions. After some 
number of generations, it is hoped that the system 
converges with a near-optimal solution [27]-[28]. A 
genetic algorithm requires a population of potential 
solutions to be initialized and maintained during the 
process.  In this paper, a fixed number of the population 
size N is used. Real number representation for potential 
solutions is adopted to simplify genetic operator 
definitions and obtain a better performance of the genetic 
algorithm itself. Thus, there are no encoding and 
decoding operations involved, which is particularly 
useful if vast amount of parameters are to be adjusted.  

Assume that t
kX  is the k-th chromosome in a 

population of N at generation t, which represents entries 
of the continuous interval system matrices IA  and IB  in 
Eqs. (15-16) and is defined as: 

Nkmvnuji
bbbbaaaa nmuvnn ij

t
k

,,2,1  ,,,2,1 ,,,2,1,, 
 ,]      [  1211 1211

LLL

LLLL

===

=X   

 (26) 
Initial chromosomes are randomly generated from within 
the pre-defined range: 

njiaaa ijijij ,,2,1,for ],,[ L==  (27) 

[ ] mvnubbb uvuvuv ,,2,1 and  ,,,2,1for   ,, LL ===  
  (28) 

After initialization, several genetic operations are 
performed during procreation. 
 
3.2 Fitness evaluation 
Basically, there are )( mnnn ×+×  matrix-value 
functions associated with the discrete-time model, 
i.e. njiaT ijij ,,2,1,   ),,( L=α  and 

mvnubaT uvijuv ,,2,1 ,,,2,1   ),,,( LL ==β , which are 
nonlinear function of the uncertain plant parameters. We 
need to establish fitness functions to direct the evolution 
process for optimizing the matrix-value functions in 
Eq.(19). To reduce redundancy, we assume that 

Nkf t
k ,,2,1   , L= , represents the evaluation of 

chromosome t
kX  for the matrix-value functions of either 

),( ijij aTα  or ),,( uvijuv baTβ , depending on the 
optimization problem under consideration. The upper 
bound t

f  and lower bound tf  in evaluating the 
chromosomes in the current population  t  for a particular 
matrix-value function can be obtained as follows: 

},,2,1 ,min{ Nkff t
k

t
L==  

},,2,1 ,max{ Nkff t
k

t
L==  

, respectively.  
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The fitness of each chromosome t
kX  in a population t 

can then be assigned according to the fitness functions 
defined below: 
(i) Fitness function for chromosome t

kX  in determining 
the lower bound of a matrix-value function (i.e., in the 
derivation of uvij

hg or    ): 

[ ]1)( 
1)X(1 +−

= tt
k

t
k ff

F  (29) 

(ii) Fitness function for chromosome t
kX  in determining 

the upper bound of a matrix-value function (i.e., in the 
derivation of uvij hg or    )

 
:  

[ ]1)( 
1)X(2

+−
=

t
k

t
i
k ff

F  (30) 

The rationale of fitness assignment is described as 
follows: chromosome t

kX  corresponding to a larger 
function evaluation t

kf  will receive a smaller fitness; 
while chromosome t

kX  corresponding to a smaller 
function evaluation t

kf  will be assigned a larger fitness 
in deriving the lower bounds of the matrix-value 
functions, via F1 in Eq. (29). In a very similar way, 
fitness function in deriving the upper bounds of the 
matrix-value functions can be devised as F2 in Eq. (30). 
By doing so, evolution can be directed toward derivation 
of an optimal set of system matrices for the discrete-time 
system, which tightly enclose the exact discrete model.  

Obviously, there are totally )(2 mnnn ×+××  
optimization problems for processing. After generations 
of evolution, it is expected that the genetic algorithms 
converges and a best chromosome with largest fitness 
representing the boundary of the entry of the discrete-
time interval model can obtained. 

 
3.3 Evolutionary scheme of the proposed genetic 
algorithm 
Evolutionary process of the proposed genetic algorithm 
includes the steps of population initialization and 
reproduction operation. Real-coded (RC) representation 
for potential solutions is adopted in the proposed GA-
based approach to simplify genetic operator definitions 
and obtain a better performance of the genetic algorithm 
itself [21]-[22]. The tournament selection is employed to 
keep the balance between the population diversity and 
selective pressure during the evolution process. Several 
genetic operators: Simulated binary crossover and non-
uniform mutation are performed on the selected 
chromosomes after the reproduction operation with 
suitable selection of control parameters [22]. To prevent 
the loss of the optimal solution ever searched and 
increase the convergence rate, the elitist replacement is 
adopted to preserve the optimal solution in the current 
generation. From the experiments ever conducted, we 
observed that the extrema generally lie on or near the 
boundaries of the uncertain plant parameters. Boundary 
mutation is extremely suitable for use in this case, and 
will be adopted to locate the boundaries for each of the 
matrix-value functions with success. For examples in 
this paper, the population size is chosen as 50, the 

crossover rate and mutation rate are 0.8 and 0.05, 
respectively.  
 
4. Illustrated Examples 
Example 1: 
Consider an asymptotically stable linear R-L-C circuit 
[29] described by an uncertain state equation with the 
following nominal and perturbed system matrices: 

⎥
⎦

⎤
⎢
⎣

⎡
=Δ⎥

⎦

⎤
⎢
⎣

⎡
=Δ

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

−
=

0
0

 ,
01.0
010

2
2

 ,
31

02
00

BA

BA

.
 

It is desired to find an approximate discrete-time interval 
model, enclosing the exact discrete-time model, for the 
continuous-time uncertain system at sampling period 
T=0.1s. 

 
[Solution]: 
The uncertain interval matrics of the continuous-time 
system are: 

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

−−
=

2
2

 ,
3]1.19.0[

0]9.11.2[ II BA  

By using the proposed GA-based approach, the discrete-
time interval system matrices for the continuous-time 
uncertain system at sampling period T=0.1 can be 
obtained as: 

⎥
⎦

⎤
⎢
⎣

⎡
=

]740818.0   740818.0[]086141.0   069766.0[
]000000.0   000000.0[]826959.0   .8105840[I

gaG  

after 50 generations of evolution. In comparison to the 
results: 

⎥
⎦

⎤
⎢
⎣

⎡ −
=

]742774.0    738867.0[]088960.0   066945.0[
]001953.0  001953.0[]829520.0   808029.0[I

pG

,  
obtained by the Pade approximation method [19], and  

⎥
⎦

⎤
⎢
⎣

⎡ −
=

]740844.0     74078.0[]087916.0    067817.0[
]00003.0     00003.0[]828714.0    808646.0[I

gG

 
via the interval geometric series approximation method 
[1], the discrete-time interval model via the propsoed 
approach is clearly less conservative with tighter 
boundaries on the extries of the discrete system 
matrices.  

To show the effectiveness of the proposed approach, 
Fig. 1 shows the root clustering of the characteristic 
equation of the exact discrete-time model and those 
obtained by the proposed GA-based approach, the Pade 
approximation method [19], and the interval geometric 
series approximation method [1], respectively. As 
shown in Fig. 1, roots of the characteristic equations 
obtained via various approaches lie entirely on the real 
axis. To facilitate comparison between all the methods, 
we calculate the upper and lower bounds of root 
clustering of the characteristic equation for each 
method. As shown in Table 1, we find that root 
clustering of the discrete interval model via the 
proposed GA-based method is not distinguishable to 
that of the exact discrete-time model. On the other 
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hand, the other two methods, though enclosing the 
exact discrete-time model, however, provide more 
conservative results than the proposed method. It is 
clear that root clustering of the characteristic equation 
of the discrete model obtained by using the proposed 
GA-based method bears a closer resemblance to that of 
the exact discrete model. Pade approximation method 
[19] and the interval geometric-series approximation 
method [1] both failed to obtain a satisfactory 
performance as demonstrated in this example. 

 

0.72 0.74 0.76 0.78 0.8 0.82 0.84
-0.5

0

0.5

1

Real

Im
ag

Exact / Proposed GA
Geometric-series

Pade approximation

 
Fig. 1  Root clusterings of the characteristic equation of 

various discrete models at T=0.1 Secs. of Example 1. 
 
 

Table 1  Boundaries of root clustering of the discrete 
models via various approaches 

 Root clustering 
on the left-hand 

side 

Root 
clustering on 

right-hand 
side 

Exact results 0.740818 [0.810584, 
0.826959] 

Proposed GA-
based method 

0.740818 [0.810584, 
0.826959] 

Pade 
approximation 
method [19] 

[0.736440, 
0.745555] 

[0.805248, 
0.831479] 

Interval 
geometric series 

Method [1] 

[0.740741, 
0.740883] 

[0.808607, 
0.828744] 

 
 
Example 2: 
Consider an uncertain continuous-time system with the 
following nominal and perturbed system matrices [20]: 
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It is desired to find an approximate discrete-time interval 
model for the continuous-time uncertain system at 
sampling period T=0.18s. 
 
[Solution]: 
By using the proposed GA-based approach after 50 
generations of evolution, we obtain the discrete interval 
system matrices as follows: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−−−
−−−−

=

0.0777]   [0.07410.0834]-   [-0.0862
0.8477]   [0.7879]0.8953-   9440.0[
1.2667]-   [-1.26730.8615]   [0.1809

0.0278]   [0.0278]0.0822   0.0805[

]0392.1   0000.1[]1713.0   1690.0[]0.0074   0.0010[]0.0016   0.0016[
]4283.0   0102.0[]9181.0   8805.0[]0790.0   0098.0[]0.0175   0.0169[
]6622.0   6712.0[]0584.0   0588.0[]8336.0   8321.0[]0.0075   0.0075[
]0834.0   0837.0[]0040.0   0040.0[]00440.   0044.0[]9934.0   9934.0[

I

I

ga

ga

H

G

 
For comparison purpose, the results obtained by 

Shieh adopting a GA-based approach [20] are listed 
below:  

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−−−
−−−−

=

0.0777]   [0.07410.0834]-   [-0.0862
0.8476]   [0.7878]0.8953-   9440.0[
1.2667]-   [-1.26730.8608]   [0.1809

0.0278]   [0.0278]0.0822   0.0805[

]0391.1   0000.1[]1713.0   1690.0[]0.0074   0.0010[]0.0016   0.0016[
]4259.0   0100.0[]9180.0   8807.0[]0789.0   0103.0[]0.0175   0.0169[
]6622.0   6711.0[]0584.0   0588.0[]8336.0   8321.0[]0.0075   0.0075[
]0834.0   0837.0[]0040.0   0040.0[]00440.   0044.0[]9934.0   9934.0[

I

I

S

S

H

G

 
Although the results are very close to those obtained via 
the proposed approach, there is, however, a significant 
difference as far as enclosure of the exact discrete-time 
model is concerned. That is, the interval model revealed 
in [20] did not enclose the exact discret-time interval 
model. For instance, when 
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−−
−−

=

00
99.452.5
5922.76293.2

1761.04422.0

,

00000.100
5244.2707.00774.01002.0
0208.40024.001.10482.0
4555.00188.00271.00366.0

B

A
 

 
, where a certain perturbation occurred on top of the 
nomial matrices, the exact discrete-time model becomes: 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−−
−−

=

0775.00861.0
8465.09420.0
2673.14529.0

0278.00812.0

,

0392.11713.00011.00016.0
4272.09181.00121.00172.0
6711.00588.08335.00075.0
0837.00040.00044.099340

H

G

.

. 

 
It’s easy to check that ( ) 9181.03,3 =G , ( ) 4272.04,3 =G , 
and ( ) 0392.14,4 =G  lie outside the range 
of ( ) [ ]9180.0   8807.03,3I =SG ,

( ) [ ]0.4259   0100.04,3I −=SG , and 

( ) [ ]0391.1   0000.14,4I =SG , respectively [20]. On the 
contrary, the discrete-time interval model via the 
proposed GA-based approach presents trustworthy 
results which tightly enclose the exact discrete-time 
model of the uncertain continuous-time system. To 
demonstrate the effectiveness of the propsoed approach, 
root clustering of the characteristic equation of the 
discrete-time model via the proposed approach is 
illustrated in Fig. 2 in comparison to its exact 
counterpart, where green and red portions represent the 
root clustering of the derived and exact discrete-time 
models, respectively. As illustrated in Fig. 2, enclosure 
of the exact boundaries of the root distribution has been 
guaranteed via the proposed GA-based approach. Note 
that we have 48 optimization processes to locate the 
boundaries for all the entries (i.e. 

2 ,4,3,2,1,,  ,, and , == vujihhgg uvuvijij
) in the enclosing 

discrete-time system matrices ( II  , gaga HG ) in this example. 
If a single Pentium 4 personal computer (2.0GHz, 
512MB RAM) is used, the discrete-time interval system 
matrices are obtained with a computation time of 1680 
seconds. With the adoption of a parallel computation 
scheme [25] where 10 PCs (CPU 2.0 GHz and 512MB 
RAM) work as slaves, significant evolution efficiency 
can be achieved with a total computation time of 172 
seconds to derive the discrete-time interval system 
matrices.  
 

 
Fig. 2  Root clustering of the characteristic equation of 
the discrete-time model via the proposed approach in 

comparison to its exact counterpart in Example 2. 
 
 

5. Conclusions 
In this paper, we have investigated the use of genetic 
algorithm to obtain a discrete-time interval model for 
uncertain interval systems. Because of the non-convexity 
generally exhibited in the matrix-value functions during 
the discretization process of uncertain interval plants, 
conventional methods generally failed to obtain 
satisfactory results of the associated discrete-time model. 
The proposed GA-based approach from the worst-case 
analysis point of view, on the other hand, is capable of 
evolutionarily deriving a discrete-time model tightly 
encloses the exact model as demonstrated in the 
illustrated examples. As a result, the problem of highly-
coupled nonlinearities with exponential nature occurred 
in the exact discrete-time system matrices is therefore 
circumvented, while preserving the interval structure in 
the resulting discrete-time model by using the proposed 
approach. In light of the facts that multiple optimization 
processes to be simultaneously executed to obtain the 
entries of the discrete system matrices, a parallel 
computation scheme for the proposed evolutionary 
approach can be considered to accelerate the derivation 
process. Furthermore, there is no restrictive condition 
under which the proposed approach is developed. 
Performance verification has demonstrated that roots 
clustering of the discrete-time interval model using the 
proposed GA-based approach has a better resemblance 
to that of the exact discrete model, in comparison to 
existing methods. 
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