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Abstract

This paper proposes an observer-based output tracking control via virtual

desired reference model for a class of nonlinear systems with time-varying

delay and disturbance. First, the Takagi-Sugeno fuzzy model represents the

nonlinear system with time-varying delay and disturbance. Then we design

an observer to estimate immeasurable states and controller to drive the er-

ror between estimated state and virtual desired variables (VDVs) to zero

such that the overall control output tracking system has H∞ control perfor-

mance. Using Lyapunov-Kravoskii functional, we derive sufficient conditions

for stability. The advantages of the proposed output control system are: i)

systematic approach to derive VDVs for controller design; ii) relaxes need

for real reference model; iii) drops need for information of equilibrium; iv)

relaxed condition is provided via three-step procedure to find observer and

controller gain. We carry out simulation using a continuous stirred tank reac-
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tor system where the effectiveness of the proposed controller is demonstrated

by satisfactory numerical results.

Keywords: Time-delay systems, T-S fuzzy, virtual desired variables, linear

matrix inequalities

1. Introduction

Tracking control is important in practical applications, e.g., robotic con-

trol, servo-motor control, missile control, etc. For nonlinear systems, espe-

cially in recent years, control using Takagi-Sugeno (T-S) fuzzy model [1] has

attracted wide attention. This is due to the systematic approach to analysis

and design of controllers where multiple objectives can be considered in a

unified manner[2–15]. The controller design using parallel distributed com-

pensation (PDC) and stability analysis are carried out using Lyapunov direct

method which reformulates the control objectives into linear matrix inequal-

ity problems (LMIPs) [16–18]. Meanwhile, when immeasurable states exist,

studies [19–21] provide a T-S fuzzy observer-based stabilization schemes with

conditions in LMIPs. However, except for some works [22–24] which address

tracking, most results only focus on the stabilization problem. In details,

for regulation, the works [22, 25] uses feed-forward compensation of linear

control theory. Meanwhile for tracking, the works [22, 24] consider the com-

mand signal as disturbance to the closed-loop system where a robust control

scheme attenuates the tracking error residual. In addition, combining the

linear regulation theory and PDC, the works [25, 26] achieve the control ob-

jective of static or varying output. However, the study [23] has noted that

high interaction among plant and controller rules will lead to failure. For
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output tracking design, the works [27, 28] propose a novel concept of virtual

desired variables (VDVs). The advantages of VDV approach are i) unifies the

stability and tracking design problem, ii) relaxes the need for a real reference

model, and iii) achieves tracking of time-varying signals.

Another challenging problem in control is when time-delay exists in sys-

tems. Time delays frequently occur in many practical systems, e.g., chemical

processes, nuclear reactors, long transmission lines, and telecommunication.

Since time-delay is a main cause of instability and poor performance, con-

trol of such systems has received considerable attention. Generally speaking,

previous stability analysis can be classified as delay-dependent [29, 30] and

delay-independent [31, 32]. The delay-dependent methods need information

on the exact delay duration. On the other hand, the delay-independent

methods do not need any information of the delay making these approaches

more suitable for practical applications. However, most time-delay system

applications deal with stabilizing to a equilibrium. Recently, the work [33]

discusses robust output tracking with time-varying delays assuming ideal con-

ditions where premise variables between observer and controller fuzzy rules

are matched and actual reference signal exists.

In this paper, we are motivated to propose a novel output tracking con-

trol of a time-varying reference signal via a VDV approach based on the T-S

fuzzy model for time-varying delay systems with disturbances without need-

ing information of equilibrium. First, we represent the nonlinear system with

time-varying delay and disturbances into a T-S fuzzy model. Next, we design

a set of VDVs. Third, we combine the concept of VDVs controller synthesis

and observer-based estimation to develop an output tracking controller. Us-
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ing Lyapunov’s direct method, we derive sufficient conditions and formulate

LMIs which guarantees H∞ control performance. We then illustrate the ap-

proach on a continuous stirred tank reactor to validate the aforementioned

claims. Note that comparing to the work [33], we relax the need for assuming

perfect matching of premise variables between the observer and controller.

This further improves the applicability of the proposed method on real world

applications where observer premise variables only rely on estimated states.

In addition, we use a virtual reference model from the solution of the plan

itself as the stated reference needs an actual model.

The remaining paper is organized as follows. In Sec. 2, we formulate the

control problem. In Sec. 3, we design the observer-based output tracking

control. In Sec. 4, we explain the VDV design. Section 5 shows the results

of the numerical simulation. Finally, some concluding remarks are made in

Sec. 6.

2. Nonlinear System with Time-Varying Delay and Disturbance

Based on fuzzy modeling methods [34, 35], we can describe a class of

nonlinear systems with time-varying delay as the T-S fuzzy model:

Plant Rule i :

IF z1(t) is F1i and · · · and zf (t) is Ffi THEN

ẋ(t) = Aix(t) + Adix(t− τ(t)) +Bu(t) + w(t)

y(t) = Cx(t) + v(t)

x(t) = φ(t), t ∈ [−τ 0]
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where x(t) ∈ Rn, u(t) ∈ R and y(t) are state, control input and measured

output, respectively; Ai, B, Adi, C are matrices with appropriate dimensions;

z1(t) ∼ zf (t) are the premise variables which are states (or combination of

states); Fji (j = 1, 2, · · · , f) are the fuzzy sets; r is the number of fuzzy rules;

y(t) is the output; φ(t) is the initial condition; τ(t) is the time-varying delay

with upper bound τ0, i.e. τ(t) ≤ τ0; and w(t), v(t) are external disturbance

and sensor measurement disturbance, respectively.

Using the singleton fuzzifier, product fuzzy inference and weighted aver-

age defuzzifier, the inferred output

ẋ(t) =
r∑

i=1

µi(z(t))[Aix(t) + Adix(t− τ(t)) +Bu(t) + w(t)]

y(t) = Cx(t) + v(t), (1)

where z(t) = [z1(t) z2(t) · · · zn(t)]
T , and µi(z(t)) = wi(z(t))/

∑r
i=1 wi(z(t))

with wi(z(t)) =
∏f

j=1 Fji(z(t)). Note that
∑r

i=1 µi(z(t)) = 1 for all t, where

µi(z(t)) ≥ 0, for i = 1, 2, ..., r, are the normalized weights. For simplicity we

assume B = [0 0 · · · 0 b0]
T with scalar b0 ̸= 0 in system (1) in a region of

interest x ∈ Ωx.

We first consider the simplest case of i) all state variables are measurable;

and ii) time delay is constant and known, i.e. τ(t) = τ̄ . We now introduce

a set of VDVs xd(t) = [xd1(t) xd2(t) · · · xdn(t)]
T which lead to a virtual

reference model

ẋd(t) =
r∑

i=1

µi(z(t)) {Aixd(t) + Adixd(t− τ̄) +B(u(t)− uk(t))} , (2)

where uk(t) is the fuzzy controller to be determined. Decomposing (2), we
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have a constraint of kinematics

0 = ẋdℓ(t)−
r∑

i=1

µi(z(t))[Ai,ℓxd(t) + Adi,ℓxd(t− τ̄)] (3)

and a control input

u(t) = b−1
0

{
ẋdn(t)−

r∑
i=1

µi(z(t))[Ai,nxd(t) + Adi,nxd(t− τ̄)]

}
+ uk(t), (4)

where xdℓ(t) is the ℓth (for ℓ = 1, 2, · · · , n−1) element of xd(t); Ai,ℓ and Adi,ℓ

is the ℓth row of Ai and Adi matrix, respectively. We can then implement

the control as (4) whereas the virtual desired vector xd(t) satisfying (3) will

be determined later.

Define tracking error xh(t) = x(t)− xd(t). The fuzzy controller based on

PDC is as follows:

Controller Rule i :

IF z1(t) is F1i and · · · and zf (t) is Ffi THEN

uk(t) = −Ki(x(t)− xd(t)),

where Ki are constant control gains to be determined. The inferred output

of the controller

uk(t) = −
r∑

i=1

µi(z(t))Ki(x(t)− xd(t)), (5)

leading to the error dynamics

ẋh(t) =
r∑

i=1

µi(z(t))[Hixh(t) + Adixh(t− τ̄) + w(t)], (6)

where Hi = Ai −BKi.
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The control objective is to drive all system states track the virtual desired

states with H∞ performance∫ tf

0

xT
h (t)Rxh(t)dt ≤

1

ρ2

∫ tf

0

∥w(t)∥2 dt,

where tf is terminal time of control; ρ is a prescribed value denoting the

effect of w(t) on xh(t); and R is a symmetric positive definite matrix.

Theorem 1 : A controller (4) and a set of VDVs such that the system (6)

is stabilizable to a prescribed ρ > 0 with H∞ performance, if there exist a

symmetric positive definite matrix P , matrices Ki (i = 1, 2, ..., r) and Λ > 0

satisfying the following LMIs:
AiX +XAT

i +BMi +MT
i B

T +Q+ ρ2I (∗) (∗)

XAT
di −Q (∗)

X 0 −R−1

 < 0, (7)

where X = P−1, Mi = KiP
−1, Q = XΛX, and (∗) is denotes the transposed

elements in the symmetric positions.

Proof : Consider a Lyapunov-Krasovskii functional V = xT
h (t)Pxh(t) +∫ t

t−τ̄
xT
h (σ)Λxh(σ)dσ. Define a function

J = xT
h (t)Rxh(t)−

1

ρ2
wT (t)w(t) + V̇ (8)

≤
r∑

i=1

µi(z(t))xh(t)(
HT

i P + PHi +R + Λ+ ρ2PP + PAdiΛ
−1AT

diP
)
xh(t),

where we use the fact 2xT
h (t)Pw(t) ≤ ρ2xT

h (t)PPxT
h (t) +

1
ρ2
wT (t)w(t). If the

following matrix inequality

HT
i P + PHi +R + Λ + ρ2PP + PAdiΛ

−1AT
diP < 0 (9)
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holds, then J < 0. By integrating (8) from 0 to tf , the inequality
∫ tf
0
[xT

h (t)Rxh(t)−
1
ρ2
w(t)Tw(t) + V̇ ]dt ≤ 0. For initial condition V (0) = 0, we have V (tf ) +∫ tf

0
[xT

h (t)Rxh(t) − 1
ρ2
w(t)Tw(t)]dt ≤ 0. Since V (tf ) ≥ 0, we arrive with∫ tf

0
xT
h (t)Λxh(t)dt ≤ 1

ρ2

∫ tf
0

∥w(t)∥2 dt. Therefore, the tracking control has

H∞ performance. Applying Schur’s complement, we have (7). �
Remark 1: Note that if w(t) = 0, the system (6) is asymptotically stable

if there exists a symmetric and positive definite matrix P , some matrices Ki

(i = 1, 2, ..., r) and Q = XΛX > 0 satisfying the following LMIs: AiX +XAT
i +BMi +MT

i B
T +Q (∗)

XAT
di −Q

 < 0 (10)

where X = P−1, Fi = KiX and Q = XΛX.

3. Robust Output Tracking Controller Design

Consider the more practical case assuming some states are immeasurable

and time-varying delay is unknown. We consider two relationships of premise

variables between plant and observer: matching or mismatched.

3.1. Matching Premise Variables

Consider here the observer’s premise variable z(t) is same as the plant.

In this case, the proposed fuzzy observer rules are

Observer Rule i :

IF z1(t) is F1i and · · · and zf (t) is Ffi THEN

˙̂x(t) = Aix̂(t) + Adix̂(t− τm) +Bu(t) + Li(y(t)− ŷ(t))

ŷ(t) = Cx̂(t)
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where x̂(t) ∈ Rn and ŷ(t) ∈ R are state and output estimation, respectively;

τm is a suitable value of time-delay (where in practical situations, this suit-

able value is tunable via trial and error); and Li are observer gains to be

determined. Therefore, the inferred output

˙̂x(t) =
r∑

i=1

µi(z(t)) [Aix̂(t) + Adix̂(t− τm) +Bu(t)

+Li(y(t)− ŷ(t))] (11)

ŷ(t) = Cx̂(t).

Define estimation error e(t) = x(t)− x̂(t), where the time derivative

ė(t) =
r∑

i=1

µi(z(t))[(Ai − LiC)e(t) + Adie(t− τm)− Liv(t) + w̄(t)],

where w̄(t) =
∑r

i=1 µi(z(t))Adi[x(t−τ(t))−x̂(t−τm)]+w(t). Design a virtual

reference model

ẋd(t) =
r∑

i=1

µi(z(t))[Aixd(t) + Adixd(t− τ) +B(u(t)− uk(t)). (12)

Decomposing (12), the constraint of kinematics

0 = ẋdℓ(t)−
r∑

i=1

µi(ẑ(t))[Ai,ℓxd(t) + Adi,ℓxd(t− τm)], (13)

and control input

u(t) = b−1
0

(
ẋdn(t)−

r∑
i=1

µi(z(t))[Ai,nxd(t) + Adi,nxd(t− τ)

)
+ uk(t). (14)

Now, the fuzzy controller’s rules are

Controller Rule i :

IF z1(t) is F1i and · · · and zf (t) is Ffi THEN

uk(t) = −Ki(x̂(t)− xd(t)),
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where Ki are the control gains to be determined. The inferred output of the

controller

uk(t) = −
r∑

i=1

µi(z(t))Ki(x̂(t)− xd(t)). (15)

Therefore, the error dynamic

ẋh(t) =
r∑

i=1

µi(z(t))[(Ai −BKi)xh(t) + Adixh(t− τm) + LiCe(t) + Liv(t)].

Hence, the closed-loop error system

ẋe =
r∑

i=1

µi(z(t))[Gixe(t) +Mixe(t− τ) + Eiw̄(t)], (16)

where xe(t) = [eT (t) xT
h (t)]

T , w̄(t) = [v(t)T w̄(t)T ]T ,

Gi =

 Ai − LiC 0

LiC Ai −BKi


Mi =

 Adi 0

0 Adi

 , Ei =

 −Li I

Li 0

 .

Theorem 2 : A controller (14) and a set of VDVs such that the close-loop

fuzzy system (16) is stabilizable to a prescribed ρ > 0 with H∞ performance,

if there exist a symmetric and positive definite matrix P , some matrices Ki

(i = 1, 2, ..., r) and Λ > 0 satisfying the following LMIs:
GT

i P + PGi +R + Λ (∗) (∗)

MT
i P −Λ (∗)

ET
i P 0 −1

ρ2
I

 < 0

where (∗) is denotes the transposed elements in the symmetric positions.
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Proof : Consider a Lyapunov-Krasovskii functional as V (t) = xT
e (t)Pxe(t)+∫ t

t−τm
xT
e (λ)Λxe2(λ)dλ. The control objective is required to satisfy∫ tf

0

xT
e (t)Rxe(t)dt ≤

1

ρ2

∫ tf

0

∥w̄(t)∥2 dt (17)

with tf is terminal time of control, ρ is a prescribed value denotes the effect

of w̄(t) on xe(t), and R is a positive definite matrix. Define a function

J = xT
e (t)Rxe(t)−

1

ρ2
w̄(t)T w̄(t) + V̇

≤
r∑

i=1

µi(z(t))x̄
T
e (t)

[
GT

i P + PGi +R + Λ+ PMiΛ
−1MT

i P

+ρ2PEiE
T
i P
]
x̄e(t) (18)

where we use the facts xT
e (t)PMixe(t − τm) ≤ xT

e (t)PMiΛ
−1MT

i Pxe(t) +

ρ2xT
e (t−τm)Λxe(t−τm) and 2xT

e (t)PEiw̄(t) ≤ ρ2xT
e (t)PEiE

T
i Pxe(t)+

1
ρ2
w̄T (t)w̄(t).

If the condition

GT
i P + PGi +R + Λ+ PMiΛ

−1MT
i P + ρ2PEiE

T
i P < 0

holds, then J < 0. By integrating (18) from 0 to tf , we obtain∫ tf

0

(
xT
e (t)Rxe(t)−

1

ρ2
w̄(t)T w̄(t) + V̇

)
dt ≤ 0. (19)

Assuming initial condition V (0) = 0, we have V (tf ) +
∫ tf
0
[xT

e (t)Rxe(t) −
1
ρ2
w̄T (t)w̄(t)]dt ≤ 0. Since V (tf ) ≥ 0, we arrive with

∫ tf
0

xT
e (t)Rxe(t)dt ≤

1
ρ2

∫ tf
0

∥w̄(t)∥2 dt. This means that the overall system (16) has H∞ perfor-

mance.

3.2. Mismatched Premise Variables

Consider here the premise variables of observer depends on estimated

states ẑ(t) which leads to membership functions µi(ẑ(t)) ̸= µi(z(t)). The
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fuzzy observer rules are

Observer Rule i :

IF ẑ1(t) is F1i and · · · and ẑf (t) is Ffi THEN

˙̂x(t) = Aix̂(t) + Adix̂(t− τm) +Bu(t) + Li(y(t)− ŷ(t))

ŷ(t) = Cx̂(t)

where ẑ1(t) ∼ ẑf (t) are the observer’s premise variables composed of esti-

mated states. The inferred output

˙̂x(t) =
r∑

i=1

µi(ẑ(t))[Aix̂(t) + Adix̂(t− τm)

+Bu(t) + Li(y(t)− ŷ(t))] (20)

ŷ(t) = Cx̂(t).

The error dynamics

ė(t) =
r∑

i=1

µi(ẑ(t))[(Ai − LiC)e(t) + Adie(t− τm)− Liv(t)] + w̄(t) + h1(t),

where h1(t) =
∑r

i=1 (µi(z(t)− µi(ẑ(t)) [Aix(t) + Adix(t − τ(t))] and w̄(t) =∑r
i=1 µi(ẑ(t))Adi[x(t−τ(t))− x̂(t−τm)]+w(t). Therefore the time derivative

of tracking error

ẋh(t) =
r∑

i=1

µi(ẑ(t))[Aix̂(t)+Adix̂(t− τm)+Bu(t)+LiCe(t)+Liv(t)]− ẋd(t).

(21)

The fuzzy controller rules are

Controller Rule i :

IF ẑ1(t) is F1i and · · · and ẑf (t) is Ffi THEN

uk(t) = −Ki(x̂(t)− xd(t)),
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where Ki are control gains to be determined. Then the inferred output of

the controller

uk(t) = −
r∑

i=1

µi(ẑ(t))Ki(x̂(t)− xd(t)). (22)

Design a virtual reference model

ẋd(t) =
r∑

i=1

µi(ẑ(t))[Aixd(t) + Adixd(t− τ) +B(u(t)− uk(t)). (23)

Therefore the constraint of kinematics

0 = ẋdℓ(t)−
r∑

i=1

µi(ẑ(t))[Ai,ℓxd(t) + Adi,ℓxd(t− τm)]

and a new control input

u(t) = b−1
0

(
ẋdn(t)−

r∑
i=1

µi(ẑ(t))[Ai,nxd(t) + Adi,nxd(t− τm)

)
+uk(t). (24)

The error dynamics

ẋh(t) =
r∑

i=1

µi(ẑ(t))[(Ai −BKi)xh(t) + Adixh(t− τ̄) + LiCe(t) + Liv(t)].

Hence, the closed-loop error system

ẋe =
r∑

i=1

µi(ẑ(t))[Gixe(t) +Mixe(t− τ̄) + Eiw̄(t) + h̄(t)] (25)

where h̄(t) = [h1(t)
T 0]T ,

Gi =

 Ai − LiC 0

LiC Ai −BKi


Mi =

 Adi 0

0 Adi

 , Ei =

 −Li I

Li 0
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Remark 2 : Note that the membership functions Fji(z(t)) satisfy Fji(z(t))−

Fji(ẑ(t)) = ηT
ji
(z(t)− ẑ(t)) for some bounded function vector ηT

ji
and premise

variables z(t), ẑ(t) in the region of interest. Since premise variables are states

or combination of states, the relationship Fji(x(t)) − Fji(x̂(t)) = ηT
ji
(x(t) −

x̂(t)). Therefore the function error is proportional to the estimation error

where

µi(x(t))− µi(x̂(t)) = ηT
1i
e(t)

f∏
k=2

Fki(x(t)) + F1i(x̂(t))η
T
2i
e(t))

f∏
k=3

Fki(x(t))

+ · · ·+
f−2∏
k=1

Fki(x̂(t))η
T
(f−1)i

e(t)Ffi(x(t))

+

f−1∏
k=1

Fki(x̂(t))η
T
fi
e(t)

= ΓT
i e(t)

for some bounded function vector Γi. In light of the above relationship, we

have

h2(t) =
r∑

i=1

(µi(x(t))− µi(x̂(t))) [Aix(t) + Adix(t− τ(t))]

=
r∑

i=1

[
(Aix(t) + Adix(t− τ(t))) ΓT

i

]
e(t).

Suppose an upper bound for x(t), x(t− τ(t)) and τ(t) exists in the region of

interest. The term h1(t) therefore satisfies [36, 37]

hT
1 (t)h1(t) ≤ eT (t)UTUe(t)

with a symmetric positive-definite matrix U depend on ΓT
i , x(t) and x(t −

τ(t)). We can attenuate h1(t) from affecting control performance by choosing

suitable observer gains Li and controller gains Ki shown as follows.
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Theorem 3 : A controller (24) and a set of VDVs such that system (25)

is stabilizable to a prescribed ρ > 0 with H∞ performance, if there exist a

symmetric and positive definite matrix P , some matrices Ki (i = 1, 2, ..., r)

and Λ > 0 satisfying the following LMIs:
GT

i P + PGi +R + Λ+ PP + ŪT Ū (∗) (∗)

MT
i P −Λ (∗)

ET
i P 0 −1

ρ2
I

 < 0 (26)

where (∗) is denotes the transposed elements in the symmetric positions and

Ū =block-diag{U 0}.

Proof : Consider a Lyapunov-Krasovskii functional V = xT
e (t)Pxe(t) +∫ t

t−τ̄
xT
e (λ)Λxe(λ)dλ. The control objective must satisfy (17). Taking the

derivative of Lyapunov-Krasovskii functional and applying (18) along with

(25), the function

J = xT
e (t)Rxe(t)−

1

ρ2
w̄(t)T w̄(t) + V̇ (27)

≤
r∑

i=1

µi(ẑ(t))x̄
T
e (t)

[
Ḡi + P MT

i Λ
−1MiP + ρ2xT

e (t)PEiE
T
i P
]
x̄e(t),

where Ḡi = GT
i P + PGi +R + Λ+ PP + ŪT Ū . Since

xT
e (t)PMixe(t− τm) ≤ xT

e (t)PMiΛ
−1MT

i Pxe(t) + xT
e (t− τm)Λxe(t− τm)

2xT
e (t)PEiw̄(t) ≤ ρ2xT

e (t)PEiE
T
i Pxe(t) +

1

ρ2
w̄T (t)w̄(t)

2xT
e (t)Ph̄(t) ≤ xT

e (t)PPxe(t) + xT
e (t)Ū

T Ūxe(t).

If the condition (26) holds then J < 0. By integrating (27) from 0 to tf ,

we obtain (19). By assuming initial condition V (0) = 0, we have V (tf ) +∫ tf
0

(
xT
e (t)Rxe(t)− 1

ρ2
w̄(t)T w̄(t)

)
dt ≤ 0. Since V (tf ) ≥ 0, we have

∫ tf
0

xT
e (t)Rxe(t)dt ≤

1
ρ2

∫ tf
0

∥w̄(t)∥2 dt. This means that the overall system has H∞ performance.
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3.3. Procedure of Determining Observer and Controller Gain

We will now show the procedure for determining the observer and con-

troller gains for the most complex case where time-varying delay exist and

premise variables between observer and plant are mismatched. Note that for

more ideal cases, we can follow the same design procedures.

From Thm. 3, we can determine the observer gains Li and controller

gains Ki and P > 0, Λ > 0 satisfying (26) for a given ρ > 0, R = RT > 0

and U . We provide two procedures, two step or three step to solve the LMIs

(26).

Two-step procedure: The concept of two-steps procedure to determine

Ki , Li, P and Λ are introduced by [38]. The main idea begins from defining

P , Λ and R as block-diagonal form, i.e. P =block-diag{P1 P2}, Λ =block-

diag{Λ1 Λ2}, and R =block-diag{R1 R2}. According to (26), we therefore

have 

∆i (∗) (∗) (∗) (∗) (∗)

P2LiC Ψi (∗) (∗) (∗) (∗)

AT
diP1 0 −Λ1 (∗) (∗) (∗)

0 AT
diP2 0 −Λ2 (∗) (∗)

−LT
i P1 LT

i P2 0 0 −1
ρ2
I (∗)

P1 0 0 0 0 −1
ρ2
I


< 0, (28)

where ∆i = (Ai − LiC)TP1 + P1(Ai − LiC) + R1 + Λ1 + P1P1 + UTU and

Ψi = (Ai −BKi)
TP2 + P2(Ai −BKi) + P2P2 +R2 + Λ2.
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Step 1 The matrix inequalities (28) implies
∆i (∗) (∗)

AT
diP1 −Λ1 (∗)

−LT
i P1 0 −1

ρ2
I

 < 0. (29)

From Schur’s complement, we have (Ai − LiC)TP1 + P1(Ai − LiC) + R1 +

Λ1 + UTU + P2AdiΛ
−1
2 AT

diP2 + P1P1 + ρ2P1LiL
T
i P1 < 0 and

AT
i P1 + P1Ai −NiC − CTNT

i +R1 + Λ1 + UTU (∗) (∗) (∗)

AT
diP1 −Λ2 (∗) (∗)

−LT
i P1 0 −1

ρ2
I (∗)

P1 0 0 −I

 < 0,

(30)

where Ni = P1Li .

Step 2 According to (28) and by the Schur’s complement, we have

∆i (∗) (∗) (∗) (∗) (∗) (∗)

LiC Ψ̄i (∗) (∗) (∗) (∗) (∗)

AT
diP1 0 −Λ1 (∗) (∗) (∗) (∗)

0 AT
diX2 0 −Q2 (∗) (∗) (∗)

−LT
i P1 LT

i 0 0 −1
ρ2
I (∗) (∗)

P1 0 0 0 0 −1
ρ2
I (∗)

0 X2 0 0 0 0 −R−1
2


< 0 (31)

where X2 = P−1
2 , Ψ̄i = AiX2 +X2A

T
i − BFi − F T

i B
T +Q2 + I, Fi = KiX2,

and Q2 = X2Λ2X2. Once (30) is feasible, the controller gains Ki = FiP2,

Λ2 = P2Q2P2. Then, if (31) is feasible, the observer gains Li = P−1
1 Ni.

Three-steps procedure: In this procedure, the matrices P and Λ do
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not need to be block-diagonal, making LMIs (26) more feasible with compu-

tational load tradeoff.

Since (28) imply Ψi+P2AdiΛ
−1
2 AT

diP2 < 0, we have by Schur’s complement
Ψ̄i (∗) (∗)

AT
diX2 −Q2 (∗)

X2 0 −R−1
2

 < 0. (32)

Step 1 Solve (30) for observer gain Li;

Step 2 Solve (32) for controller gains Ki;

Step 3 From Step 1 and Step 2, if the gain Ki and Li are available, then

solve matrices P > 0 and Λ > 0 satisfying the following LMIs:
GT

i P + PGi +R + Λ+ ŪT Ū PMi PEi P

MT
i P −Λ 0 0

ET
i P 0 −1

ρ2
I 0

P 0 0 −I

 < 0

where P ∈ R2n×2n and Λ ∈ R2n×2n.

Note that in the three-steps procedure, the matrices P1, P2, Λ1, and

Λ2 ∈ Rn×n in Step 1 and Step 2. Meanwhile the matrices P ∈ R2n×2n and

Λ ∈ R2n×2n in Step 3.

Remark 3 The two-step procedure is more suitable and when (26) is sat-

isfied. However, since R, P and Λ are in block-diagonal form, the procedure

is more conservative in comparison to the three-step procedure.

4. Virtual Desired Variables Design

Analogous to the above discussion, the most complex case is when we

consider time-varying delay with mismatched premise variables between ob-
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server and plant. We will show in the following the detailed procedure for

designing VDVs xd(t). Note that for more ideal cases, we can follow the same

design procedures.

We design the VDVs according to the following equation

yd(t) = xdi(t) (33)

ẋdℓ(t) =
r∑

i=1

µi(ẑ(t))[Ai,ℓxd(t) + Adi,ℓxd(t− τ̄)], (34)

where ℓ = 1, 2, · · · , n − 1. By solving the constraint (33) and (34), we

obtain VDVs xd(t) and the tracking error xh(t). Therefore we can design the

controller

u(t) = b−1
0

(
ẋdn(t)−

r∑
i=1

µi(ẑ(t))[Ai,nxd(t) + Adi,nxd(t− τ̄)

)

−
r∑

i=1

µi(ẑ(t))Ki(x̂(t)− xd(t)). (35)

To implement the control input (35), we require the following information,

i) derivative signal ẋdn(t); ii) state estimation x̂(t); suitable time delay τm.

Three cases of output tracking are discussed as follows.

Case 1 (reference output equals desired state): Since desired output yd(t) =

xdn(t) and ẏd(t) ∈ L2, we solve (34) for VDVs and use observer (20) to

estimate immeasurable states. Therefore, the controller can be implemented

as (35).

Case 2 (reference output is not equal to the desired state): Since yd(t) ̸=

xdn(t), controller design might not be as straightforward. To cope with this,

we introduce an approximate signal ẋdn(t) ≈ (xdn(t)− xdn(t− ts)) /ts, where

ts is the sampling period. We may then attenuate the arising approximation

errors by suitably choosing observer gains Li and controller gains Ki.
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Case 3 (output regulation): This is an ideal case where the desired state

vector x̄d is constant and x̂(t) = x(t) = x̄d such that µi(z(t)) = µi(ẑ(t)),

xd(t− τ̄) = x̄d and x(t− τ(t)) = x̄d. Thus,

r∑
i=1

µi(zd))[Ai,ℓxd(t) + Adi,ℓxd(t− τ̄)] = 0, ℓ = 1, 2, · · · , n− 1 (36)

where zd = x̄d. There exists n− 1 equations in (36). If we assign the desired

output yd(t) = x̄dn, then ẋdn(t) = 0. Note that the desired state x̄d should

be properly chosen such that x̄d ∈ Ωx.

According the analysis above, the overall structure of the controlled out-

put tracking control system in Fig 1. Therefore, the design procedure for

controlled output tracking control is summarized as follows:

Design procedure:

Step 1 Construct the T-S fuzzy model for the nonlinear time-delay system

in (1).

Step 2 Given an attenuation level ρ, follow the three-steps procedure to

obtained controller and observer gain.

Step 3 Design the VDVs from (33) and (34), such that the error state xh(t)

is obtained.

Step 4 Implement the controller as (35).

According the analysis above, the design constraint of VDVs and con-

troller are for various cases are summarized in Table 1.
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5. Simulation Results

Consider a continuous stirred tank reactor (CSTR) from [39] represented

in dimensionless variables

ẋ1(t) = f1(x(t)) + (1− 1

λ
)x1(t− τ(t))

ẋ2(t) = f2(x(t)) + (1− 1

λ
)x1(t− τ(t)) + βu(t)

where

f1(x(t)) =
−1

λ
x1(t) +Da(1− x1(t)) exp(

x2(t)

1 + x2(t)/γ0
)

f2(x(t)) = (
−1

λ
+ β)x2(t) +HDa(1− x1(t)) exp(

x2(t)

1 + x2(t)/γ0
).

The state x1(t) corresponds to the conversion rate of the reaction 0 ≤ x1(t) ≤

1; and x2(t) > 0 is the dimensionless temperature. We set x2(t) ∈ Ω2 with

Ω2 = {x2| 0.1 ≤ x2 ≤ 6}. The parameters γ0 = 20, H = 8, β = 0.3,

Da = 0.072, λ = 0.8, and τ̄ = 2. Applying the design methodology mentioned

in previous sections, we arrive with the following:

Step 1 Define membership functions w11 = (g1 − d12)/(d11 − d12), w12 =

1−w11, w21 = (g2−d22)/(d21−d22), w22 = 1−w21, where g1 = exp(x2(t)/(1+

x2(t)/γ0)), g2 = exp(x2(t)/(1 + x2(t)/γ0))/x2, d11 = maxx2∈Ω2g1 = 101.0267,

d12 = minx2∈Ω2g1 = 1.1046, d21 = maxx2∈Ω2g2 = 16.8378, and d22 =
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minx2∈Ω2g1 = 2.5789. Therefore the subsystem matrices

A1 =

 (−1/λ)−Dad11 Dad21

−HDad11 −(1/λ+ β) +HDad21


A2 =

 (−1/λ)−Dad11 Dad22

−HDad11 −(1/λ+ β) +HDad22


A3 =

 (−1/λ)−Dad12 Dad21

−HDad12 −(1/λ+ β) +HDad21


A4 =

 (−1/λ)−Dad12 Dad22

−HDad12 −(1/λ+ β) +HDad22



Ad =

 1− 1/λ 0

0 1− 1/λ

 , B =

 0

β


Step 2: Solve controller and observer gains following the three-step pro-

cedure. Given an attenuation level ρ = 1.1, matrices R = 0.01diag(1, 1, 1, 1),

U = diag(0.01, 0.01), the solved controller gainsK1 = [ −175.2199 44.9349 ],

K2 = [ −180.2105 16.2964 ],K3 = [ 8.2168 42.8092 ],K4 = [ 3.3857 14.2047 ],

observer gains L1 = [ 16.3823 165.0860 ]T , L2 = [ 16.2812 164.2247 ]T ,

L3 = [ 16.4024 165.2433 ]T , L4 = [ 16.3008 164.3701 ]T , and matrices

P =


0.8749 −0.0805 0.0202 0.0040

−0.0805 0.0191 0.0045 −0.0071

0.0202 0.0045 0.0757 −0.0011

0.0040 0.0071 −0.0011 0.0077
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Λ =


0.5758 −0.1192 −0.0121 0.0369

−0.1192 0.2807 −0.0124 −0.0268

−0.0121 −0.0124 0.1057 −0.0194

0.0369 −0.0268 −0.0194 0.0217

 .

Step 3: Ensure desired state satisfies constraint

0 = ẋd1(t)−
r∑

i=1

µi(z(t))[Ai,1xd(t) + Adi,1xd(t− τ)]. (37)

We consider the desired output to be sine wave yd(t) = xd1(t) = 0.5+0.2 sin(t)

or multi-step signal. To ensure a smooth multi-step signal, we assign xd1(t) =

4xr1 and ẋd1(t) = 4xr2(t) with reference state xr1 and xr2. The reference

dynamic system

ẋr1(t) = xr2(t) (38)

ẋr2(t) = −4xr1(t)− 2xr2(t) + ref

where ref is the multi-step signal (each step size is fixed).

Since ẋd1(t) and xd1(t− τ) are available, from (37), we have

xd2(t) =
ẋd1(t)− (−1/λ−Dag)

Daz/x2(t)
.

Therefore we have xh(t) = x̂(t)− xd(t).

Step 4: Implement the controller

u(t) = β−1

{
ẋd2(t)−

r∑
i=1

µi(z(t))[Ai,2xd(t) + Adi,2xd(t− τ̄)]

}
+ uk(t).

For this simulation, the external disturbance and measured noise are chosen

as uniformly random noise with amplitude 0.01. The time-varying delay is

shown in Fig. 2. The simulation results of the H∞ control are shown in Figs.

23



3∼7 with desired controlled output sine wave xd1(t) = 0.5 + 0.2 sin(t). Note

that we consider the more complex case of mismatched premise variables for

all of the simulations. Figure 3 (a) shows x1(t), x̂1(t) and Fig. 3 (b) shows

estimation error e1(t). Figure 4 (a) shows x2(t), x̂2(t) and Fig. 4 (b) shows

estimation error e2(t). From Figs. 3 and 4, the result validate the proposed

observer design (20). Figure 5 (a) shows x1(t), xd1(t) and Fig. 5 (b) shows

tracking error xh1(t). Figure 6 (a) show x2(t), xd2(t) and Fig. 6 (b) shows

tracking error xh2(t). Figure 7 is the control input u(t). From Figs. 5 to 7,

the results validate the proposed controller design (24).

The results of the multi-step reference signal are shown in Fig. 8v12.

Figure 8 (a) shows x1(t), x̂1(t) and Fig. 8 (b) shows the estimation error

e1(t). Figure 9 (a) shows x2(t), x̂2(t) and Fig. 9 (b) shows estimation error

e2(t). From Figs. 3 and 4, the result validate the proposed observer design

(20). Figure 10 (a) shows x1(t), xd1(t) and Fig. 10 (b) shows tracking error

xh1(t). Figure 11 (a) shows x2(t), xd2(t) and Fig. 11 (b) shows tracking

error xh2(t). Figure 12 is the control signal. From Figs. 10 to 12, the results

validate the proposed controller design (24).

From the above simulation results, we can verify the proposed control

method achieve H∞ performance for nonlinear time-delay systems with dis-

turbance. This is aligned with the claims of Thm. 3.

6. Conclusions

This paper has presented an observer-based via VDV output control ap-

proach for a class of nonlinear systems with time-varying delay and distur-

bances where the advantages are: i) systematic approach to derive VDVs
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for controller can be design; ii) relaxes need for real reference model; iii)

drops need for information of equilibrium; iv) relaxed condition is provided

via three-step procedure is provided to find observer and controller gain. Fi-

nally, simulation results on a CSTR with sine-wave and multi-step reference

illustrate the expected performance.
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