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一、中文摘要 

 

本計劃分為兩個相關部分。第一部份

擬將洪等人所發展之速度紊流 pdf 模式加
以擴展為可模擬具化學反應之紊流反應流

之 pdf 模式，此新模式之獨立變數除了時
間、空間及速度外，也包含標度(scalar)空
間。模式化(modeling)過程將結合 Chung與
Pope 之方法，並利用現象論雷諾應力模式
之推導技巧，將影響紊流之各效應分別模

式化，引入至模式中。第二部分將用此模

式來預測擴散火焰。數值方法擬用 Monte 
Carlo法及 Bimodal法 。 
關鍵詞：紊流、pdf模式、擴散火焰 

 

1. Abstract 
 

This project includes two parts. The fist 
part is to extend the probability density 
function (pdf) turbulence model developed 
by Hong et al. to a new pdf model which can 
describe the turbulent fluid elements 
containing the chemically reactive species. 
The examination of the pdf model, the 
second part of this project, will be performed 
in predicting the diffusion methane jet flames. 
The Monte Carlo method will be used to 
calculate the pdf of the diffusion flame and 
the one-point statistical quantities of 
diffusion flame will be constructed. 

 
Keywords: turbulence、pdf turbulence 

model、diffusion methane jet 
flames 

 
 
 

2. Introduction 
 

Turbulence is the most common, the most 
important and the most complicated kind of 
fluid motion [1]. The traditional solution is 
the phenomenological approach, directly 
modeling the high-order correlations in terms 
of the lower-order ones and determining the 
model constants with the aid of experimental 
data and mathematical analysis. This 
approach has some models such as 
two-equation and Reynolds-stress equation 
models [2-4]. An alternative approach, 
probability density function (pdf) methods, 
has been found to properly explain the 
featured turbulence structures due to the 
emphasis of probability density. Apart from 
being a solution for the pure turbulence field, 
the pdf methods are promising in the 
resolution of the turbulence issues 
complicated with chemical reactions. Over 
the last 20 years, a representative series of 
documents associated with pdf turbulence 
models have been published by Pope et al. 
[5-9]. 

In practice, the pdf turbulence models 
cannot be solved using conventional 
grid-based numerical methods because of 
their high dimensionality. This problem has 
been overcome using the Monte Carlo 
method developed by Pope [10]. Haworth 
and Pope [8] reported that every pdf 
turbulence model corresponded with a 
Reynolds-stress model (RSM). Furthermore, 
Pope [11] performed a detailed examination 
of the relationship between pdf models and 
RSMs. Because they are one-point closures, 
pdf models require external specification of 
scale information. To remedy this deficiency, 
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Pope and Chen [9] developed a pdf 
turbulence model based on the joint pdf of 
velocity and the instantaneous dissipation 
rate. Meanwhile, by combining the modeling 
methods of Chung [12] and Pope [5], Hong 
et al. developed a pdf model [13]. As 
compared with Pope's model [8-9], Hong et 
al.'s pdf model [13] is less complicated and 
includes viscous diffusion to deal with 
turbulence in the vicinity of a wall. Recently, 
Dreeben and Pops [14-15] also have included 
wall effects in their pdf models. Hong et al., 
subsequently, used their pdf model to predict 
the turbulent Couette flow [16] and the 
self-similar free shear layer flows [17-19].  
   It is well known that the conventional 
phenomenological approaches to turbulent 
shear flow chemical reaction problems have 
been developed to near their maximum 
capacities. These approaches have been very 
useful in analyzing non-equilibrium chemical 
reactions in various turbulent flow fields, in 
the absence of a more tractable method. It is 
known, however, that the correct description 
of a non-equilibrium chemical reaction in a 
turbulent flow field is outside the inherent 
limitations of the conventional 
phenomenological theories. Basically, it is 
because the rate of the chemical reaction in a 
turbulent flow field is coupled with the 
turbulent fluctuations so that the average 
chemical reaction rate at a given point is not 
equal to the rate based on the averaged 
properties, such as the averaged chemical 
species concentrations. As mentioned 
previously, pdf methods [7,9,12,13] can 
provide more statistical information than that 
provided by the conventional 
phenomenological models. This feature is 
attributed to the fact that once pdf is 
determined, any order mean can be 
constructed from the pdf. In addition, the pdf 
approach offers another advantage over the 
conventional phenomenological models: any 
one-point process such as convection, 
buoyancy and reaction can be treated without 
approximation. A thorough introduction to 
the pdf approach may be found in Ref. 1. 
    There are two major categories for 
which a pdf model equation is proposed for 
turbulent flows. One is to model those terms 
having additional dependent variables, such 

as f2, which causes the closure problem in 
Lundgren's equation, in terms of known 
dependent variables, such as f1, and other 
mean quantities (f1 and f2 represent the one 
point pdf and two point pdf, respectively). 
The typical closed pdf equation of this 
category can be found in Lundgren's [20], 
Pope's [5], and Dopazo's [21] works. 
Lundgren adopted the Krook model of 
molecular kinetic theory to approach the 
pressure term and assumed the two-point 
distribution is joint normal in his one-point 
pdf equation. It is widely accepted that 
turbulence fields evolve toward the 
dynamical state independent of the initial 
conditions of the velocity fields. Lundgren 
showed that the initial shape of the pdf is 
preserved in his closed pdf equation and, 
therefore, no relaxation was achieved. In 
Pope's work, the Curl's model was employed 
to simulate the viscous mixing which can 
produce an unrealistic shape for the pdf and 
does not lead to a Gaussian distribution as 
the limit of decaying fluctuations. Dopazo 
investigated the possibility of using a 
classical iteration method to generate a von 
Numann series for the pdf equation and 
thereby put some order into the closure 
approximations. The results are formal but 
not encouraging since the lowest terms in the 
approximation introduce unphysical features 
such as negative diffusivity. The modeling 
process for this category is straightforward, 
and the relations between the modeled results 
and unclosed terms are clear. The physical 
behavior of these terms are also distinct. As 
one can see from the above investigations, 
those models were proposed directly on the 
distribution function. It is hard to prevent 
generating unphysical behaviors in the  
distribution function. This is the major 
shortcoming of this category. 
    Chung's theory [12] is a typical work of 
the other category [6,8,12,22]. Chung 
avoided the closure problem using a 
thoroughly different approach. He assumed 
that the statistical property of a fluid element 
is entirely due to the lower non-equilibrium 
wave-number, and that the role of the higher 
equilibrium wave-number is to degenerate to 
a random state and dissipate this property by 
their interaction with lower wave-numbers. 
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When the Reynolds number is sufficiently 
large, a statistical separation exists between 
the higher and lower wave-numbers across 
an inertial sub-range. The dynamics of 
various wave-numbers in turbulence fields 
can be seen as closely related to Prigogine's 
description [23] of generalized Brownian 
motion. Thus Chung employed Langevin's 
stochastic equation of the generalized 
Brownian motion to describe the momentum 
change of a fluid element under the 
interaction of large and small size eddies at 
high Reynolds number flow. Then a 
transition pdf (tpdf) between two 
neighboring points in the phase space 
connected by the path of the fluid elements 
was constructed from the solution of the 
stochastic Langevin equation with the aid of 
Chandrasekhar's mathematical lemma [24] in 
Brownian motion. Finally Chung obtained a 
closed pdf equation by unfolding the tpdf in 
the phase space. It is worthwhile to mention 
that Chung used Langevin equation to 
describe the dynamic behavior of fluid 
elements to avoid the closure problem and 
introduced a characteristic relaxation rate to 
make this equation self-contained. It is newly 
introduced relaxation rate, β, the turbulent 
scale has to be prescribed. In Chung's work 
the Langevin equation was employed to 
propose a model for describing the fluid 
element dynamics. The pdf transport 
equation was then obtained based on the 
modeled dynamic equation of fluid elements. 
As mentioned by Chung himself that his 
equation could be seen as a Fokker-Planck 
type for Lundgren's pdf equation. 
    Pope proposed a generalized Langevin 
equation [6] to describe fluid element 
behaviors in a turbulent field. In his work, 
the generalized Langevin equation was just 
rewritten from the Navier-Stokes equation by 
analogy to the Langevin equation of 
Brownian motion. Obviously, this was based 
on the assumption that the Langevin equation, 
originally proposed to describe the Brownian 
motion of small particles resulting from 
collisions with Gaseous or liquid molecules, 
can be used to describe turbulent flows. 
Haworth and Pope [8,22] used this 
generalized Langevin equation to construct 
their generalized Langevin pdf model. The 

major difference between Haworth  & 
Pope's model and Chung's model is that the 
characteristic relaxation rate of energy 
containing eddies, β, of Chung's model was 
replaced by a more flexible, undetermined 
2nd order tensor Gij. With different choices 
for Gij, the Reynolds-stress equations 
degenerated from Haworth and Pope's model 
can be fitted to a variety of existing 
Reynolds-stress models. However, the above 
models can provide no information on length 
and time scales. To remedy this deficiency, 
Pope and Chen [9] recently developed a 
model based on the joint pdf of velocity and 
the instantaneous dissipation rate. This model 
was developed by reference to the known 
statistics of homogeneous turbulence, and in 
its original form it is restricted to 
homogeneous turbulence. Subsequently, 
Pope [25] extended the model to the general 
case of inhomogeneous flows, and 
calculations were made to demonstrate its 
performance. The major advantage of this 
approach is that no assumption was specified 
for pdf, therefore the unphysical behavior of 
pdf would not appear. 
    In this paper, the methods of the above 
two categories are employed to construct a 
new closed pdf equation for turbulent 
reactive flows [26]. First, the stochastic 
dynamics of a fluid element in turbulence 
fields is assumed to be a Markov process. At 
high Reynolds number flows, the fluctuating 
momentum change due to viscous force is 
controlled by the properties of large scale 
eddies. The fluctuating pressure forces acting 
on a fluid element are simulated by a Wiener 
process. The governing equation of fluid 
element velocity fluctuations are obtained 
from the fluctuation part of the Navier-Stokes 
equation. The fluctuation part of the 
stress-strain relation are reformulated under 
the above assumptions such that the length 
scale information is represented by the 
turbulent dissipation rate. The moment 
equations derived from the pdf equation are 
compared with the accurate and proven 
Reynolds stress model equation [27-30] to 
determine the modeling constants. Through 
this process, it is expected that the final pdf 
model can properly describe the pdf behavior 
of turbulent reactive flows. 
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3. Result 
 
Auxiliary Mathematical Lemma 

In this subsection, Chandrasekhar's 
lemma [24], which can construct the tpdf of 
two neighboring points in the phase space in 
Brownian motion theory, was extended to be 
employed later in this work to construct the 
tpdf. The auxiliary mathematical lemma is 
stated as follows. Let R be a random variable, 
R=R1i+R2j+R3k can be expressed as 

 
where A(ζ) is a Wiener process with a 
Gaussian distribution, ϕ(ζ) are any auxiliary 
functions. And R1, R2, and R3 are 
independent of each other. Then the 
probability distribution of R is 

 
Details about this auxiliary lemma are given 
in Ref. 31. 
 
PDF Transport Equation 

In this subsection, the processes in 
deriving and modeling the transport equation 
for the one-point velocity pdf of a reactive 
turbulent are described in great detail. For 
turbulent flow, the instantaneous velocity can 
be decomposed into mean and fluctuation 
parts as, ui=<ui>+Ui, where ui, <ui>, and Ui 
are the instantaneous, mean, and fluctuating 
velocities, respectively. Then the dynamic 
equation governing the change of fluctuating  
momentum of a fluid element can be 
obtained by subtracting the Reynolds average 
equation from the Navier-Stokes equation 
 

where d/dt denotes the instantaneous 
substantial derivative, P the fluctuating 
pressure, ρ and ν for density and kinematic 
viscosity, respectively, and the angle brackets 
represent an ensemble mean. The last two 
terms in the right-hand side of Eq. (3) 
represent the pressure force and viscous force 
acting on the fluid elements, respectively. 
These two terms lead towards the 
unavoidable closure problem in the pdf 
equation of Lundgren. These two terms are 
contributed mainly by the small eddies (high 
frequency). If the details regarding the 
dynamics of the smallest eddies are not 
desired, the smallest eddies can be generally 
regarded as being both very numerous and 
also very irregular as to their strength and 
direction. A turbulent flow should 
consequently be treated as a stochastic 
process and the pressure force and viscous 
force terms in Eq. (3) should be modeled. 
    The major effect of molecular viscosity 
in turbulent flows lies in dissipate turbulent 
energy. Additionally, the amount of energy 
dissipated at higher wave-numbers is 
indicated from the spectral analysis [32], to 
be dependent on the transfer rate of turbulent 
energy from lower wave-numbers to higher 
wave-numbers. The role of the fluctuation 
pressure can be divided into two parts: the 
rapid part and the slow part. This division is 
suggested by the solution of the Poisson 
equation for the fluctuating pressure field 
which contains two terms: one that is 
quadratic in the fluctuating velocity field and 
is responsible for the return to isotropy of 
an-isotropic homogeneous turbulence, the 
other is linear in the fluctuating velocity field 
and mean velocity gradient and responds 
immediately to applied mean strain fields. 
    Three assumptions are made in 
modeling the pressure force term and viscous 
force term of Eq. (3), i.e. 

1. The stochastic fluctuations in the 
momentum of fluid elements in turbulence 

∫= (1)    )()( ςςςϕ dAiiR

[ ] [ ]
[ ]

(2)      

0 )(2
34q

2
3R-

0 )(2
24q

2
2R-

0 )(2
14q

2
1R-

exp

5.0
0 )(2

34

5.0
0 )(2

24
5.0

0 )(2
14

)3,2,1(

























∫
+

∫
+

∫
•

−
∫×

−
∫

−
∫

=

t d

t dt d

t dq

t dqt dq

RRRW

ςςϕ

ςςϕςςϕ

ςςϕπ

ςςϕπςςϕπ

   (3)                  .2

2
1

jX
iU

iX
P

jX
jUiU

jU
jX
iu

dt
idU

∂

∂
+

∂
∂

−

∂

><∂
+

∂

><∂
−=

ν
ρ



 5

fields is a Markov process. 
2. For the stochastic process of high 

Reynolds number turbulence flows, the 
viscous force acting on the fluid elements is 
assumed in proportion to –Ui / τt where τt  is 
the characteristic time of the turbulent flow 
and is assumed in proportion to κ/ε.  κ and ε 
are the turbulent kinetic energy and its 
dissipation rate, respectively. 

3. The local fluctuating pressure acting 
on a fluid element can be treated as the sum 
of many small pressure forces. For high 
Reynolds number flows, it can be expected, 
from a rough use of the Central Limit 
Theorem, that the fluctuation of momentum 
due to the pressure force can be simulated as 
a Wiener process with a Gaussian 
distribution. 

According to Eq. (3) and assumptions 2 
and 3, in an infinitesimal time interval dt, the 
dynamic equations for the change of 
momentum fluctuations of fluid elements are 
proposed as 

 
where Ai(t) represents a Wiener process with 
Gaussian distribution. From assumption 1, 
there exists a tpdf function Tr(t,X,V) 
connecting two neighboring points in the 
phase space. The stochastic process is 
completely defined by this tpdf. Let f(t,X,V) 
be the Eulerian pdf of the velocity 
fluctuations in a turbulence field. Then 
f(t,X,V)dV is the probability of a fluid 
element falling between V and V+dV in the 
phase space. Next, we define n(t,X,V) as the 
mass fraction of the chemically reactive 
species which are contained in and carried by 
the fluid elements. With the foregoing 
definitions of f and n, we now define the 
distribution function of the chemical species 
as 

 
This quantity is defined such that F(t,X,V)dV 

denotes the mass fraction of the chemical 
species with velocities between V and V+dV 
at t and X. The probability average of n, <n> , 
is then 

 
The governing equation for F is formulated 
herein. By setting n=1, we then readily 
obtain the governing equation for f. The 
present study will be confined to the simple 
chemical reactions which proceed according 
to the equation, 

 
We assume that the molecular diffusion into 
and out of the fluid element takes place in 
accordance with the value of D∂2n/∂Xk∂Xk 
observed in that fluid element. With the 
above arguments, F(t+Δt, X+ΔX, V) can be 
related to F(t, X,V-ΔV) by means of the tpdf, 
Tr, in the following way, 
 

 
The above equation can be transformed into 
a differential equation by expanding the 
various functions in the Taylor series small 
value of ∆t. Once the tpdf, Tr, is found, the 
pdf governing the equation can be obtained. 
In order to evaluate the tpdf, one must solve 
Eq. (4) as Chung did [12]. 

In the present analysis, the time interval, 
∆t, is chosen to be much greater than the 
Kolmogorov's time scale, but less than the 
characteristic time of the large eddies. The 
tpdf are then constructed from the formal 
solution of Eq. (4) with the aid of the 
auxiliary lemma in previous subsection as 
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Then, after a considerable manipulation and 
discarding the terms of order (∆t)2 and higher, 
the pdf governing equation for F was 
obtained as 
 

 
where q is a undefined quantity generated 
from the transition moments. 

Kolmogorov's hypothesis of local 
isotropy states [33] that if the turbulence is 
locally isotropic one can express the 
following relation by properly choosing the 
time scale τ, 

 

 
where ∆Ui=Ui(t+τ)-Ui(t), τη is the 
Kolmogorov's time scale, TO is the 
characteristic time scale of mean turbulence 
fields, and CO is a universal constant. 

In deriving the tpdf, the time interval was 
carefully chosen to fall between the scales of 
small and large eddies. Therefore the time 
interval chosen should be of the same range 
as that in Kolmogorov's locally isotropic 
turbulence hypothesis. Then one can expect 
that, 

 

 
By substituting Eq. (12) into Eq. (10), a 
Fokker-Planck type pdf equation is obtained 
as 
 

 
Equation (13) is based on the aforementioned 
three assumptions which may miss some 
salient effects on turbulence. There several 
comments can be made. First, it should be 
seen that assumption 2 implies that the 
viscosity mainly plays the role of dissipating 
turbulent energy. However, when close to the 
wall, the viscosity diffusion become 
important. Accordingly, an additional term 
should be added to Eq. (13) to take care of 
this viscous effect more completely through 
the aid of Lundgren's pdf equation [20]. 
Second, in assumption 3, the Wiener process 
was proposed to simulate the effect of 
fluctuating pressure acting on the fluid 
elements. The pressure fluctuations, however, 
are partly affected by the mean strain rate 
which exhibits a strong directional character. 
If the mean strain rate is large, the 
distribution of the pressure force will become 
non-Gaussian. The Wiener process 
assumption would cause the loss of the 
non-Gaussian effect of the mean strain rate. 
Since the pressure effects were studied 
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extensively in Reynolds stress modeling 
[27,28,34-40], the lost non-Gaussian effect 
will be recovered  by comparing Equation 
(13) with the pdf equation developed by 
Hong et al. [13]. Additionally, the pressure 
diffusion effect was not considered in the 
above modeling process. With the assistance 
of Lundgren's pdf equation [20] and 
Lumley's suggestion [39] for the pressure 
diffusion effect, this effect will be proposed 
and added to Eq. (13). 

Equation (13) can be reduced to the 
governing equation for f by setting n=1 and 
ω=0 as follows. 

 
The above equation with the missed terms 
discussed in the foregoing paragraph can be 
re-expressed as 

 
where Dν, Dp and PSr stand for the effects of 
viscous diffusion, pressure diffusion and the 
rapid part of fluctuating pressure, 
respectively. The Lundgren's pdf equation 
[31] is 
 
 
 

 
 

 
or 
 

 
where f1 is the fine-grained density which is 
defined as 

 
and the ensemble average of the fine-grained 
density is the pdf f, i.e.  

)19(1ff ≡  

 
The last four terms of the RHS for Eq. (17) 
are obtained from the two unclosed terms in 
Eq. (16) which are due to the effects of the 
pressure and viscous forces, respectively. The 
first term involving derivatives of Xi and Vi  
indicates the pressure diffusion transport. 

(14)                                             2

2
2

1

iV

fC

f

iVC

jX
jUiU

jX
iu

jV

iV

iX
f

iu
t
f

∂

∂
+









































+

∂

><∂
−

∂

><∂

∂
∂

=
∂
∂

+
∂
∂

ε

ε
κ

(15)                 rPSpDD 2

2
2

1

+++
∂

∂
+









































+

∂

><∂
−

∂

><∂

∂
∂

=
∂
∂

+
∂
∂

νε

ε
κ

iV

fC

f

iVC

jX
jUiU

jX
iu

jV

iV

iX
f

iu
t
f

(18)                         );,(1    

)),((1
VXtf

VXtUf

=

−= δ

(16)         1
2

2
11

>
∂

∂

∂

∂
<−>

∂
∂

∂

∂
<+





























∂

><∂
−

∂

><∂

∂
∂

=
∂
∂

+
∂
∂

iV

f

jX
iU

iX
P

iV

f

f
jX

jUiU

jX
iu

jV
iV

iX
f

iu
t
f

ν
ρ

(17)                    1
2

1
2

1

2

2
1

2
1

>
∂∂

∂

∂

∂

∂

∂
<−

∂∂

>
∂

∂
<∂

+

∂

∂
+>

∂∂

><∂
<+





























∂

><∂
−

∂

><∂

∂
∂

=
∂
∂

+
∂
∂

kViV

f

jX
kU

jX
iU

jViV
iX
jU

Pf

jX

f

iXiV

Pf

f
jX

jUiU

jX
iu

jV
iV

iX
f

iu
t
f

ν

ρ

ν
ρ



 8

The second term involved a derivative with 
respect to Vi only denotes the pressure 
redistribution of f in V space. The third term 
is the molecular transport of f. The last term 
would result in viscous dissipation which can 
be obtained by multiplication by ViVj and 
integration over V space. The terms Dν, Dp 
and PSr appearing in Eq. (15) are obviously 
related to the last four terms of Eq. (17). 
From the previous analysis Eq. (13) keeps 
the effect of the last term of Eq. (17) under 
the condition of isotropic dissipation. In the 
present analysis, we let Dν take care of the 
molecular viscous effect on the transport of f 
which is significant in the near wall region. 
As mentioned previously, the Wiener process 
maintains the slow effect of fluctuating 
pressure only, thus the PSr term should 
contain the remaining rapid part. The PSr 
will be inquired through the aid of Hong et 
al.'s pdf equation. Hong et al.'s pdf equation 
[13] is 
 

 
From the argument by Hong et al. [13] in 
modeling Eq. (20), it is indicated that PSr in 
Eq. (15) corresponds to the terms involved in 
Cp in Eq. (20). 
     On the other hand, when Eq. (15) is 
compared with (17), it also shows that Dp is 
equal to the second term on the RHS of Eq. 
(17). With regard to this pressure diffusion 
term appearing in the Reynolds stress 
equation, Lumley [39] suggested a simple 

relation as, 
 

where the constant C* takes the value –0.2. 
Although the validity of Eq. (21) is unclear 
[41,42], it is expedient to use this relation for 
modeling the pressure diffusion term. It is 
readily seen from the second term on the 
RHS of Eq. (17) and Eq. (21) that the 
simplest possible model for Dp is  
 

With the above proposed models, the 
transport equation for f is 
 

    

The modeling constants C1 and C2 will 
be determined by comparison of the moment 
equations derived  from Eq. (23) and the 
corresponding equation derived from the  
Navier-Stokes equation. The moment 
equation for UkUk derived from Eq. (23) is 
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and the turbulent energy equation derived 
from the Navier-Stokes equation is 
 

 
When Eq. (24) is compared with Eq. (25) and 
using Eq. (21), one can obtain the 
relationship between C1 and C2. 
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The <UiUj > moment equation derived from 
Eq. (23) is 
  
 
 
 
 
 
 

 

When we compare Eq. (27) with the 
corresponding equations derived from the 
Navier-Stokes equation [43], it shows that 
the two are identical if 
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The last term on the RHS represents the 
viscous dissipation which is rationally 
presumed to be isotropic at a high Reynolds 
number. Hence this term is identical to the 
third term on the LHS. The second term on 
the RHS is 
the pressure diffusion, which can be equal to 
the last term on the LHS if Lumley's 
suggestion for Dp shown in Eq. (21) is 
accepted. The remaining terms in Eq. (28) 
are 

 
Equation (29) is identical to the relationship 
between the stress and the pressure-strain 
(P-S) cor-relations derived by Rotta [34] and 
Naot et al. [35], respectively, for modeling 
the slow and rapid parts of P-S cor-relations. 
Therefore, Eq. (27) is term-wise comparable 
with the proved Reynolds stress model 
except for the third order correlation terms. 
In the Reynolds-stress closure, a model for 
the third order cor-relations is required but, 
in the pdf equation, the corresponding term 
appears in closed form. Hence the pdf model 
can be expected to be reliable since it is 
compatible with proven Reynolds-stress 
closures. 
     Corresponding to the proven 
Reynolds-stress closures, the modeling 
constants C1 and Cp can be determined. 
Following Launder argument [44], the 
choices of C1 and Cp fit approximately the 
relationship 

 
Therefore, for various turbulent flows the 

constants C1 and Cp, and then C2 by virtue of 
Eq. (26), can be adopted to capture a much 
better flow structure. For more on this 
variation of choosing C1 and Cp, please refer 
to Launder's paper [44]. 
     A similar comparison can be made 
between the moment equation derived from 
the pdf equation including the variable n and 
the classically derived moment equations for 
the chemical species n. First, the pdf 
equation including n corresponding to Eq. 
(23) must be obtained. Equation (23) can be 
readily generalized to construct the 
governing equation of chemical species when 
following Chung's work [45]. The resulting 
pdf equation is 

 
The moment equation for the chemical 
species can be derived by taking the moment 
of Eq. (31) with respect to Ui. The resulting 
equation is 

 
which is the same as the standard species 
conservation equation. It is interesting to 
note that for the conservation equations of <n 
> derived from Eq. (31), the terms involving 
derivatives of Vi make no contribution: their 
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effect is on the second moments. 
     We have now shown that the moment 
equations for velocity cor-relations and n 
derived, respectively, from Eqs. (23) and (31) 
are equivalent to the corresponding equations 
derived from the Navier-Stokes equation and 
the standard species conservation equation. 
Therefore, solutions for Eqs. (23) and (31) 
give a complete description of the 
non-isotropic turbulent reactive flow field, at 
least to the extent that it satisfies these 
fundamental moment equations. 
 
4.Self-review 
 
      A pdf model equation has been 
constructed which describes the statistical 
behavior of fluid elements containing 
chemically reactive species. This pdf 
equation has been derived and adapted to 
govern the pdf of the fluid elements and, 
hence, of the chemical species. It is noted 

that the present model differs from that of 
treating the pdf for the chemical species, in 
which the species mass fraction is itself an 
independent variable. The dependent variable 
F appearing in Eq. (31) is defined such that 
the ensemble average of the species mass 
fraction is as shown in Eq. (6). As it is 
implicit in Eq. (6), the probability of finding 
a scalar quantity is closely related to that of 
finding a fluid element containing the scalar 
quantity, therefore, the distribution function 
of the scalar quantity is expressed in terms of 
the fluid element as 

 
Note that, without the above relationship, one 
must generate pdf equations for distribution 
functions of all possible combination of n's 
and u's, which would render the analysis 
intractable. The above fact enables us to limit 
the independent variables to t, X, and V, for 
both the pdf of fluid elements and the 
chemical species. This is a critical aspect of 
the present model in rendering the model 
tractable with little sacrifice in accuracy. The 
present model makes it possible to explore 
the behaviors of turbulent reactive flows by 
virtue of the velocity space dependence. 

      Subsequently, we will make a 
comparison of the fundamental aspects of the 
present pdf model with Chung's [12] and 
Pope's [5] models. We will briefly discuss the 
major differences among these models. Their 
differences can be seen clearly from the 
starting point and the final form of each 
model. The starting point of the present 
model and Pope's model is the Navier-Stokes 
equation, whereas Chung's model is a 
thoroughly different one. Chung assumed 
that the statistical property of a fluid element 
is entirely due to the lower non-equilibrium 
wave-number, and that the role of higher 
equilibrium wave-number is to degenerate to 
a random state and dissipate this property by 
their interaction with lower wave-numbers. 
When the Reynolds number is sufficiently 
large, a statistical separation exists between 
the higher and lower wave-numbers across 
an inertial sub-range. The dynamics of 
various wave-numbers in turbulence fields 
could be seen as closely related to 
Prigogine's description of generalized 
Brownian motion. Thus Chung employed 
Langevin's stochastic equation of the 
generalized Brownian motion to describe the 
momentum change of a fluid element under 
the interaction of large and small size eddies 
at high Reynolds number flow. 

      Concerning the final forms, term 
by term can be compared between the 
present model and Pope's and Chung's 
models except for two major differences. The 
first discrepancy is that the present and 
Chung models  are in a tractable manner 
without the terms involving the derivative 
and the integral with respective to the 
chemical species which appears in the Pope 
model. The second discrepancy is that the 
highest derivative order with respective to 
physical space in the present model is two 
and in the Pope's and Chung's models it is 
one.  The second order derivative term, 
although being negligible in most regions of 
the flow field, becomes important near a 
solid wall region and keeps the elliptic 
characteristic of the pdf equation. The 
moment equations were derived from the 
present model, and they were shown to be 
identical up to the term, to those derived 
from the Navier-Stokes equation, thus 

(33)      ),,(),,( dVVXtFnXtP →
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establishing the basic consistency of the 
present model. The relationship between the 
model constants appearing in the present pdf 
equation have been constructed, which would 
render the present model completely 
self-containing for chemically reactive flows. 
Future research efforts would aim at  
solving this pdf equation for appropriate 
turbulent flows for the sake of validating this 
new model. 
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