

行政院國家科學委員會補助專題研究計畫成果報告

計畫名稱：HLA環境下電腦兵棋演訓系統所需之時間管理技

術研究

計畫類別：þ 個別型計畫 □ 整合型計畫
計畫編號：NSC 91-2623-7-032-003
執行期間：2002年 01月 01日至 2003年 12月 31日

計畫主持人：黃俊堯 教授
計畫參與人員：董明智
 李銘哲

執行單位：淡江大學資訊工程學系

中 華 民 國 92年 02月 17日

The Time Management Mechanism for the HLA-Based Wargame System
-- The Unified Time Management

Jiung-yao Huang1, Ming-Chih Tung2, Ming-Che Lee

Department of CS&IE, Tamkang University, Taiwan
1E-mail: jhuang@mail.tku.edu.tw, 2E-mail: mctung@tkgis.tku.edu.tw

摘要：本研究提出設計時間管理機制的中介層(稱為
STM)來整合以 HLA 為基礎的電腦兵棋系統的時間推
進方式，包括時間間隔方式及事件驅動方式。此 STM
簡化兵棋系統程式所須注意的時間標記動作、維護
Lookahead 值、及維持一致的時間推進動作。此外，
STM對 optimistic模擬增加了 time warp機制。此研究
所提出之 STM 使得系統設計者可以大大簡化其系統
設計時所遭遇的時間推進問題，使得設計者可以用一
致的方式來設計不同型態的電腦兵棋系統。
ABSTRACT: This research describes the addition of a
middle layer, called the smart time management (STM),
to unify the time management services of time-stepped,
event-driven and optimistic time advance approaches in
the High Level Architecture (HLA). The capabilities of
the STM include taking over event’s timestamp tagging
work, maintaining a lookahead value and unifying
different time advance approaches provided by the RTI.
In addition, it adopts the time warp mechanism for the
optimistic simulation. The STM proposes a unified and
scalable mechanism to allow the user to construct an
HLA federation with a consistent time management
interface when he is solving the synchronization issue.
That is, the proposed middle layer enables the user to
employ the conservative and optimistic synchronization
mechanisms in a consistent fashion. This paper starts
with exploring the fundamental of the time management
approaches. A unified, scalable and smart synchronizing
solution to design a time-based HLA federation is then
fully laid out.
1. Introduction

Modeling and analyzing the timing behavior of the
distributed simulation is of widely interest in various
fields of science and engineering. The parallel or
distributed simulation refers to the execution of
discrete-event simulation programs on a multiprocessor
system or network of workstations [1]. The research
activities of PADS focus on how to achieve high
performance distributed (or parallel) simulation while
ensuring that all events to be parallelly processed and
remained in causally constraint [2]. There have been two
main distributed synchronization approaches proposed
over the years. They are the conservative
synchronization [3] [4] and the optimistic
synchronization [5] [6].

The High Level Architecture (HLA) is initiated by the
Department of Defense, USA, to support the
interoperability among the distributed simulators. It
defines a standard architecture for modeling and

simulation of a complex system [7]. The time
management service of the HLA Run Time
Infrastructure (RTI) includes the synchronization
mechanism to ensure the attribute/event ordering among
distributed federates (distributed nodes of a simulation)
as required. The time management service provides
conservative and optimistic approaches to synchronize
different federates with the federation (a distributed
simulation) [8]. However, it is not an easy task to use
these synchronizing services to build parallel/distributed
federates. Even though the RTI provides some
synchronization interfaces for the distributed federates,
several critical design issues such as the time-stepped,
event-driven, federate time, logical time advancement,
rollback, fossil-collection and state-saving must be
carefully studied in the developing phase [9][10].
Different types of federates require distinct
synchronization schemes.

Furthermore, the application specific characteristics of a
time-based federate such as lookahead, communication
patterns among the model components, checkpoints, etc.,
may have profoundly affected the feasibility of using a
specific protocol to simulate a given model. For a given
federation, there may be a case that different federates
possess conflict characteristics. Hence, a federate can
only be effectively simulated by a conservative protocol
whereas others may be more amenable to the optimistic
method. When we are designing a synchronized
federation, there are many critical federates design
issues must be carefully studied and evaluated such as
the time policies (time-constrained or time-regulating),
message ordering definitions (TSO or RO) and logical
time advance strategies (time-stepped, event-driven, or
optimistic), etc.. Hence, correct design decisions often
require experiences in the RTI services and distributed
simulation technologies.

This paper describes a mechanism called Smart Time
Management (STM) which proposes a unified and
consistent synchronizing scheme for the time
management services that have been defined in the HLA.
Furthermore, the STM extends smart rollback,
state-saving and fossil-collection technologies for
optimistic federates. This paper first discusses an
approach to unify the use of conservative and optimistic
time management methods. The proposed approach
integrates the conservative and optimistic mechanisms
so that the federate developer can easily accomplish the
synchronization scheme regardless of the time policies,
message ordering methods and the logical time advance
strategies being used.

The unified middle layer (wrapper) for the time
management interface provided by the RTI is then
presented. This middle layer smartly provides the
rollback, state-saving and fossil-collection management
for the optimistic federates. It helps the programmer to
develop the optimistic synchronization mechanism like a
conservative one.

2. The Time Management in the HLA

The HLA time management service is concerned with
the mechanisms for the simulators to advance their
logical time through the simulation time. Time advance
of a synchronized federation is coordinated with the
object management service by the RTI so that
information is delivered to federates in a causally correct
and ordered fashion.

2.1 Messages Order and Timestamp

The HLA time management service is strongly related to
the services of the message exchange, such as attribute
updates and interaction exchange. There are two general
types for ordering messages under the HLA. They are
receive-order (RO) and timestamp-order (TSO). RO
messages are simply placed in an FIFO queue and are
immediately eligible for delivery to the federate on their
arrival. On the other hand, each TSO message is tagged
with a timestamp by the sending federate and is delivered
to the receiving federate in the order of non-decreasing
timestamps. The incoming TSO messages are placed in a
queue within the RTI and will not be delivered to the
federate until the RTI can guarantee that there will be no
TSO messages out of order for that federate.

To ensure the received TSO messages are in order, the
RTI must compute a Lower Bound of the Time Stamp
(LBTS) of the future messages that it may receive from
other federates. Several algorithms for the LBTS
computation have been proposed over the years [10]. To
compute the LBTS, the RTI must consider
l the smallest timestamp of any TSO message that any

federate might generate in the future, and
l the timestamps of messages within the RTIs and the

interconnecting network.
In order to allow the RTI to compute the LBTS, a
federate must use the time management services (as
appropriate for the internal time advance mechanism of
the federate) which will be described in the next section.

2.2 Advancing Logical Time

As mentioned previously, the RTI guarantees a federate
will not receive any TSO messages with timestamp less
than its current logical time. To realize this capability,

federates cannot autonomously advance their logical
times. They have to explicitly request for the
advancement of their logical times. This time
advancement is not allowed to take place before the RTI
explicitly grants it. The protocol for advancing logical
time is the core of the HLA Time Management services.
The complete the time management cycle consists of the
following three steps [8]:
1. A federate requests for advancement of its logical

time by calling the appropriate RTI service.
2. The federate receives zero or more messages from the

RTI (e.g., receives the Reflect Attribute Value or
Receive Interaction callback from the RTI)

3. The federate receives a timeAdvanceGrant callback
from the RTI to indicate that its logical time can been
advanced.

There are three different services to request the
advancing of logical time [11] [12]: timeAdvanceRequest
(TAR), nextEventRequest (NER), and
flushQueueRequest (FQR). TAR is well suited for the
federate that internally uses time-stepped mechanisms.
NER is the preferred alternative for the event-driven
federates. FQR can be used for the optimistically
synchronized federates to request the out-of-order
delivery of events.

3. Time Advancement Analysis

This paper proposes a middle layer, called Smart Time
Management (STM), to unify the time management
advance mechanisms used by event-driven, time-stepped
and optimistic federates. Under the STM, the
event-driven and time-stepped federates can use a
consistent conservative synchronization method to
process “safe” TSO events. Whereas, the STM
implements the time warp method for the optimistic
federate.

In this section, we first analyze the processing
procedure of three different types of the time advance
mechanism. The illustrations of how the STM unifies the
usage of time management mechanisms are then
elaborated in the next following sections. For the
following discussions, we symbolize the timestamp of an
event e as TS(e), an event e with a timestamp TS(e) as
e@TS, internal event j as iej, and external event i as eei.

l Event-driven. This type of federate processes both

internal events iej@TS and external events eei@TS
generated by other federates in the timestamp order.
The federate time is typically advanced to the
timestamp of the event that it is processed. Algorithm
1 [9] shows the event processing algorithm for the
event-driven federate. It merges external TSO events
with internal events so that all events can be
processed in the timestamp order.

While (simulation still in progress)
{

invoke Next Event Request(TS(iej))
The RTI delivers next external TSO event, if any exists, with TS(eei)<= TS(iej)
The RTI advances federate’s logical time by callback Time Advance Grant

if (any external event received from above Next Event Request service call)
process external event(s) delivered to the federate (eei@TS)

else
process next internal event (iej@TS)

}
Algorithm 1. The event processing algorithm for the event-driven federate.

While (simulation still in progress)
{

invoke Time Advance Request(Now+timestep)
The RTI delivers all TSO events with timestamp <=(Now+timestep) if any exist
The RTI advances federate’s logical time by callback Time Advance Grant
Merge and order the external event(s) (eei@TS) and internal events (iej@TS)
Process events with the timestamp order

}
Algorithm 2. The event processing algorithm for the time-stepped federate.

l Time-stepped. Each time advance made by the

federate is a fixed duration of simulation time, called
a time step. The simulator does not advance to the
next time step until all simulation activities associated
with the current time step have been completed.
Algorithm 2 [9] illustrates the event processing
algorithm for the time-stepped federate. It first
receives all external events with their timestamps no
greater than Now+timestep. These TSO events are
then merged with internal events so that all events are
processed in the timestamp order.

l Optimistic. This synchronization protocol allows the

federate to process the external events out of the
timestamp order and also provides a means to recover
from such errors, typically through using a roll-back
mechanism. As depicted in Algorithm 3 [8], the
optimistic synchronization allows each federate to
execute as fast as it can without concerning the
possibility of causal violations caused by the received

external events. If an event with a timestamp less than
the current federate time (simulation time) is received
(This late arriving event is referred as a “Straggler
Event”), the federate processes rollbacks to an earlier
saved state, called a checkpoint, with its time tag less
than the timestamp of this straggler event and sends
anti-messages to revoke the previously sent messages
[1] [13]. The rollback distance depends on the state
saving period. A short saving period reduces the
rollback overhead but increases the state saving
overhead. After restoring the checkpoint state, the
federate processes all reordered events and then
moves forward recklessly once more. For the time
warp mechanism, the GVT (Global Virtual Time) is
defined to be the timestamp of the smallest
unprocessed event in the federation. Hence, any
checkpoint states and anti-messages with their
timestamps less than GVT can be released from
memory [14] [15] [16].

while (simulation execution is still in progress)
{

Next_Event_Time = timestamp of next internal event
invoke Flush Queue Request (Next_Event_Time)
honor the RTI requests for Reflect Attribute Values, Receive Interaction or event retractions

(cancellations). Place these incoming messages to queues of the federate. Process any
rollbacks or annihilations. Use message retraction to cancel previously sent messages

the RTI advances federate’s GVT by callback Time Advance Grant
FossilCollect(GVT)
process the next smallest timestamped message(s) and advance the federate time

}
Algorithm 3. The event processing algorithm for the optimistic (time-warp) federate.

From the above studies, we notice that the differences
among these three time management services are the
ways in which they handle the internal and external
events in the timestamp order. Hence, in order to analyze
them, we need to formulate the internal and external
events first. Let the federate’s external event set as EE =
{ eei@TS, ∀ i} and its internal event set as IE =
{ iej@TS, ∀ j }. We can then define the merged and
ordered IE and EE event set of a federate as the set E.

E = { ex@TS | ex ∈ {eei U iej}, x =1,2,3,.....,i+j}
with the following property

TS(ea) <= TS(eb) when a <= b, ∀ ea , eb ∈{ex}

In a federate execution, all events of E are processed in
the same sequence, i.e. e1, e2, e3, … ei+j, no matter what
type of time advance mechanism is used. The difference
among distinct types of federates is the time advancing
method to request the RTI to callback the received
external events. Therefore, the key concept of the STM
is to track the internal events of a federate as well as the
received external events and regulate the time advancing
services in a unified method.

4. The STM Infrastructure

The STM provides not only a unified but also a smart
way to use the HLA time management services. The
capabilities of the STM include taking over event’s
timestamp tagging work, maintaining a lookahead value
and unifying different time advance approaches
provided by the RTI. The STM contains two time
advancing modes, the manual-mode and auto-mode, for
the developer to design a federate. In the manual-mode,
the STM proposes an approach to unify the interface of
time-stepped, event-driven and optimistic time advance
mechanisms provided by the RTI. The auto-mode, on
the other hand, provides an automatic time advancing
approach by autonomously requesting external events
from the RTI. Significantly, the synchronization among
these federates are consistent under the STM. Hence, the
STM can help the developer to design federates without
spending too much effort in the time synchronization
issue.

An abstract view of the STM infrastructure is provided
in Figure 1. The STM creates a middle layer to integrate
different HLA time management synchronization
mechanisms. Furthermore, its runtime contains the HLA
extensions to translate event notifications, to create an
RTIAmbassador object (see [12] for detail RTI
ambassador information), and to manage the time. The
major concept of the STM is to integrate and maintain
internal and external events of a federate. It aids the
federate to process all events with the timestamp order.
In order to achieve the goal of unified and smart usage
of the distinct time advance approaches, the STM
contains the HLA extensions to manage the event’s
timestamp, lookahead and federate time to track the
logical time advance situation of the federate time. It can
automatically tag the timestamp of outgoing TSO events
by maintaining the lookahead value. Furthermore, it can
detect and control the time advancement and the handle
rollback/recovery process for the optimistic approach by
managing the values of incoming/outgoing event’s
timestamp and the federate time.

Figure 1. The STM is the middle layer to unify and

use the RTI synchronization mechanisms
The basic model of the STM is to integrate all of the
time management information. It can be equated by
Eq.(1).

TMS = < SS, EE, d, OEã, TA, fout, fin, M, Now, L>… (1)
Where:

SS : a saved state variable (checkpoint) [S, Tss] where
S is a saved state that includes federate time,
Lookahead value and checkpointed eei, and Tss is
the checkpoint timestamp of S.

EE : a set of external events, i.e. EE = { eei@TS | Tss <
TS(eei) <= Now, ∀ i }

d : the function that generates the anti-messages for
the outgoing events. That is, d(oex@TS) = oex

ã@TS,
where oex@TS represents an outgoing event oex
sent out at time TS(oex)

OEã : a set of outgoing event anti-messages, i.e. OEã =
{ oex

ã@TS | Tss < TS(oex) <= Now, ∀ x }.
TA: the employed time advance mechanism, which

can be event-driven, time-stepped, or optimistic.
fout : the translation function to insert the timestamp

into output TSO events and to transform a time
advancing call into the method specified by TA.

fin : the translation function to extract timestamp from
external TSO events and to read the granted time
from the timeAdvanceGrant callback.

M: the flag of the STM mode, which is either
manual-mode or auto-mode.

Now: the current federate time which is updated by fin
when it has receives the timeAdvanceGrant
callback or external event.

L : the lookahead value.

4.1 Time Maintenance

The Eq.(1) shows that STM maintains the federate time
internally. In the HLA specification, notifications from
the RTI to the federate are implemented as callback
functions. Hence, each federate needs to implement a set
of predefined virtual functions and passes them to the
RTI via the FederateAmbassador object [12]. In the
discrete event simulation, each simulation time changed
in the system is the result of processing a timestamped
event. Therefore, the time-related callback functions
from the RTI must be intercepted by the STM translation
function fin to extract the timestamps. The callback
events must have an associated timestamp that indicates
the logical time at which they should be processed. As
illustrated in Figure 2, the STM records the largest
timestamp of external events that are received from the
RTI callback. These external events are then forwarded
to the federate. Notice that, the federate time of the
event-driven and time-stepped federates are advanced by
timeAdvanceGrant callback, yet the STM for the
optimistic federate advances its federate time according
to the timestamp of the processed external/internal
events. The GVT of an optimistic federate is the
minimum timestamp of the external events or
anti-messages that may later arrive. It’s the smallest time
point where a federate will not rollover.

Figure 2. The STM receive the external events from

the RTI and records its timestamp.
The federate time is the current simulation time of a
federate. It is defined as the earliest time that a
regulating federate will tag an outgoing message [11]. It
is possible for a regulating federate to send a message at
time Now+Lookahead. As depicted in Figure 3, the STM
translation function fout will check every outgoing TSO
event, oex, and insert the timestamp, Now+Lookahead, if
it has an empty timestamp. The STM then sends this
amended event to the RTI.

Figure 3. The STM inserts timestamp to the outgoing

events

4.2 Changing Lookahead Value

The Lookahead of a federate is the interval between the
current federate time and the earliest time that the
federate can use to timestamp a message. It is possible to
have a zero-lookahead value [10] [17] [18] such that the
effective lookahead of the federate can be an epsilon,
which is defined as the smallest possible value of a
timestamp, depending upon the employed method to
advance its federate time. A lookahead value is
necessary to maintain a deterministic causality. In the
absence of the lookahead value, it is possible for the
outcome of a sequence of events to be affected by other
factors such as the network propagation delay. However,
if the lookahead value is not mentioned, it is reasonable
to assume that the presence or absence of the lookahead
will not influent the causality of the received events..

The lookahead value can be changed dynamically during
the execution. If a federate increases the lookahead, it
can be changed immediately. On the contrary, the
lookahead value cannot be instantaneously reduced upon
request. At any instance, the lookahead L of a federate
indicates to the simulation executive that this federate
will not generate any new event with timestamp less
than Now+L. Notice that the federate time is also
maintained by the STM. Any outgoing event with its
timestamp less than Now+L will be rejected by the STM.
If the lookahead is reduced by X units, the STM will not
take this change into effect until the federate time
advance X units. In this way, no outgoing events will be
inserted timestamp less than Now+L.

5. The Manual-Mode STM

Figure 4 sketches the infrastructure of the STM in the
manual-mode operation.

Figure 4. The STM in the manual-mode

The STM provides a unified service, called eventRequest,
whether it is a time-stepped, event-driven or optimistic,
to request for the time advancement. When a federate
uses the eventRequest service call to request for the time
advancement, the fout first checks the TA value, then
translates the request into appropriate time advancement

service call to the RTI. This procedure is transparent to
the federate. The fout will intercept the outgoing TSO
events oex and insert timestamp Now+L, if required, into
oex first before send it out to the RTI. When the RTI calls
back any external event, fin will extract its timestamp and
read the timeAdvanceGrant value to updates the federate

time, Now. Notice that, the EE, OEã, SS and d are only
used when TA is optimistic, which will be elaborated in
section 5.3.

The question of how and when the different types of
federates can advance its federate time is then raised.
The interplay of the TMS model, Eq.(1), of a federate
with the STM affects the conditions of providing the
time advance mechanism and will be discussed in the
following sections 5.1, 5.2 and 5.3.

5.1 Time-Stepped Simulation

With the HLA specification, the most basic form of time
advancement is by calling the timeAdvanceRequest (TAR)
service [11]. This service can be considered as a time
stepping form of the time advancement. The
timeAdvanceRequest informs the RTI that the federate
intends to unconditionally move forward from its current
time to the requested time. When a TAR is completed,
the requesting federate will receive all timestamped
messages with timestamps less than or equal to the
requested time and its federate time will be adjusted as
requested. All messages received after the TAR will have
a timestamp greater than the TAR requested time.

Figure 5. The time diagram of the manual-mode STM for the time-stepped simulation.

Figure 5 illustrates the time diagram of the STM in the
manual-mode to transform the unified time advance
function eventRequest into the time-stepped advance
mechanism. In this case, the STM model of Eq.(1)
becomes :

TMS = < φ , φ , φ , φ , time-stepped, fout, fin,
manual-mode, Now, L>… ..(2)
Whereas:

SS = φ , since it is not used when TA = time-stepped.

EE = φ , since it is not used when TA = time-stepped.

d = φ , since it is not used when TA = time-stepped.

OEã = φ , since it is not used when TA =
time-stepped.

TA = time-stepped. It is initialized by the federate and
the federate must give the time step value, t△ ,
during the initialization.

M = manual-mode and it is initialized by the federate.
Now = the current simulation time and it is initialized

by the federate.
L = the lookahead value and it is initialized by the

federate.

In this TMS model, a federate invokes eventRequest() or
eventRequest(T) to the STM. The translation function fout
then checks the values of TA , Now and t△ first, and
then transforms this call into the time-stepped advancing
function, timeAdvanceRequest. fout also checks the
outgoing event oex to insert appropriate timestamp,
Now+L, if it is not timestamped.

The lookahead value L can be dynamically changed
during the federate execution. The STM supports
zero-lookahead transition as well. When fout detects L
becoming zero, it will transform eventRequest into the
timeAdvanceRequestAvailable function.

5.2 Event-Driven Simulation

The nextEventRequest (NER) tells the RTI that given the
current timing information, this federate wants to move
to the requested time unless there exists a received
external event with a smaller timestamp. If so, this
external event (and all other external events with the
same time) will be delivered to the federate and only
grant the federate time to the time of this event. The
requested time of NER call is used to limit how far ahead
in time that the federate can move. Hence, in the absence

of a new event in the TSO queue, an NER is treated like
a TAR. Upon the completion of the NER, the federate

will receive all messages with timestamps equal to or
less than the current federate time.

Figure 6. The time diagram of the manual-mode STM for the event-driven simulation.

Figure 6 is the time diagram of the STM in the
manual-mode for the event-driven simulation. In this
case, the STM model becomes Eq.(3) as follows:
TMS = < φ , φ , φ , φ , event-driven, fout, fin,
manual-mode, Now, L>… ..(3)
Where different from Eq.(2):

SS = φ , since it is not used when TA = event-driven.

EE = φ , since it is not used when TA = event-driven.

d = φ , since not used when TA = event-driven.

OE = φ , since it is not used when TA = event-driven.
TA = event-driven and it is initialized by the federate.

When the federate makes the eventRequest call to the
STM, the translation function fout checks the values of
TA, Now and L in TMS first, and then transforms this call
into the event-driven function, nextEventRequest. The fout
will also inspect every outgoing event oex and insert
appropriate timestamp into it if it is not timestamped.

Furthermore, when fout detects the value of L to be zero,
it will transform eventRequest into
nextEventRequestAvailable function to support the
zero-lookahead.

5.3 Optimistic Simulation

The final mechanism for the time advancement is the
optimistic approach, which will cause the RTI to deliver
all messages currently in its TSO queue to the requesting
federate, regardless of the relative LBTS and the
timestamp on the message. The federate will then
advance time to the timestamp of the last processed
internal/external event. Notice that, since the RTI will
deliver all queued messages to the federate, some of
them may have their timestamps lager than LBTS and

messages with smaller timestamps may arrive in the
subsequent time advancing step. This approach is often
useful for the loosely coupled federation where actual
interactions among federates are relatively infrequent.

An optimistic distributed simulation for the HLA was
proposed by [19], [20], [21]. They proposed an extra
mechanism, called the rollback manager, to implement
the state saving and the rollback management for the
optimistic federate in the HLA. This paper adapts and
extends this optimistic mechanism for the STM.

Figure 7 illustrates the time diagram of the manual-mode
STM for the optimistic simulation that transforms the
unified time advance function eventRequest into a smart
optimistic advance mechanism. In the case, the STM
model becomes Eq.(4).

TMS = < SS, EE, d, OEã, optimistic, fout, fin,
manual-mode, Now, L>… ..(4)
Where different from Eq.(1):

TA = optimistic.
M = manual-mode.

The eventRequest function is modified by the translation
function fout into flushQueueRequest to interact with the
RTI to obtain all of the external TSO events. The
receiving process of the external events is executed in
two phases. The fin first detects and extracts all external
events received from the RTI and saved in EE for which
its timestamp TS(eei) <= LBTS. The STM then sets Tss =
max{TS(eei) | TS(eei) <= LBTS, ∀ i}. At this point, the
STM receives all “safe” external events which have their
timestamp less than LBTS. The time Tss can be
considered as the checkpoint time which indicates a
point in the simulation time that the state of federate has

no risk of rollback. Therefore, the STM saves this state
and its current federate time in SS as a checkpoint.
Furthermore, the STM uses saveStateNotification(S, Tss)

to notify the federate that the STM has set a checkpoint
state S at federate time Tss.

Figure 7. The time diagram of the manual-mode STM for the optimistic simulation

The fin then begins to receive the rest of the external
events and insert these external events to EE. Since the
RTI does not guarantee that the external events with
smaller timestamps won’t be received in the future, these
events are considered unsafe and may suffer from
rollback. In this way, if a rollback occurs, the STM
contains all of the needed information to cancel the
scheduled events and restore the previously saved safe

state of the federate.

The STM also keeps tracking all of the anti-messages of
the outgoing events with Tss < TS(oex) <= Now so that
they can be cancelled. If fin receives a straggler event that
has a timestamp less than the current time, Now, or
receives requestRetraction callback, the STM then
begins to rollback as illustrated in Figure 8.

Figure 8. The time diagram of the STM rollback mechanism.

When fin detects a rollback situation, the STM interacts
with both the federate and the RTI to perform the
rollback. The STM sends rollbackNotification[S@Tss] to

notify the federate that it should rollback to the saved
state S at time Tss. The STM then draws out external
events recorded in EE and callback to the federate. In

this way, the STM can rollback to the saved state and
recover externally ordered events to the federate. If the
previous processing has resulted in sending some events
to other federates, the STM will check its OEã and send
out anti-messages (Retract) to the RTI to cancel outgoing
events. Therefore, the federate doesn’t need to worry
about the event cancellation, state saving, and fossil
collection. Figure 8 shows the time diagram of the STM
rollback mechanism when fin receives requestRetraction
anti-message. The rollback procedure of the STM is the
same as described above, except the STM must cancel
the corresponded external event and anti-message saved
in EE.

6. The Auto-Mode STM

In the manual-mode, the STM is triggered by the
federate to request receiving external events when the
federate invokes the eventRequest call. On the contrary,
the auto-mode allows the STM to automatically request
receiving external events. Figure 9 illustrates the

infrastructure of the STM in the auto-mode operation,
that is, M is set to auto-mode in TMS. In the auto-mode,
the STM agent will constantly monitor the timestamp of
unprocessed internal events TS(iej) in Local Event List.
The fout automatically invokes time advance service call
to the RTI when the STM detects the smallest timestamp
TS(iej) >= Now. Therefore, the federate can accomplish
the synchronization scheme without knowing how and
when it should call the time advance function to the STM.
In the auto-mode, the federate only needs to wait for the
external events to be callback and then processes them
accordingly.

The operation of the auto-mode model of TMS is similar
to its manual-mode, except that it will automatically
check the earliest timestamp TS(iej) in its Local Event
List on whether TS(iej) is greater than Now or not. If
TS(iej) >= Now, then fout will make an appropriate time
advance call to the RTI according to the TA mechanism
and receive external events correspondingly.

Figure 9. The infrastructure of the STM in the auto-mode

l Time-Stepped Simulation

The auto-mode STM for the time-stepped simulation will
automatically trigger the timeAdvanceRequest
time-stepped function to receive external events. Its TMS
model is basically the same as the manual-mode
time-stepped mechanism described in section 5.1, except
that fout will automatically make a timeAdvanceRequest
call to the RTI. In this case, the STM basic model
becomes Eq.(5) as follows:
TMS = < φ , φ , φ , φ , time-stepped, fout, fin,
auto-mode, Now, L>… ..(5)
Where different from Eq.(2):

M = auto-mode which is initialized by the federate.

The STM will monitor the earliest unprocessed internal
events in the Local Event List when a federate sets M =
auto-mode. When the STM detects that the earliest
unprocessed internal event has its timestamp TS(iej) >=
Now, fout then checks if TA is time-stepped to make a
timeAdvanceRequest call to receive external events eei.
The fin then extracts their timestamp TS(eei) before
delivers them to the federate through callback functions.

l Event-Driven Simulation

The process of the TMS translation function for the
event-driven simulation in the auto-mode is similar to the
manual-mode event-driven mechanism described in
section 5.2, except that fout will automatically make a

nextEventRequest call to the RTI for receiving external
events. In this case, the STM model becomes Eq.(6) as
follows:
TMS = < φ , φ , φ , φ , event-driven, fout, fin,
auto-mode, Now, L>… ..(6)
Where different from Eq.(3):

M = auto-mode which is initialized by the federate.

The STM will watch the earliest unprocessed internal
events in the Local Event List when a federate sets M =
auto-mode. When the STM detects that earliest
unprocessed internal event TS(iej) >= Now, fout then
checks if TA is event-driven to invoke a
nextEventRequest call to request for external events eei.
The fin extracts the timestamp TS(eei) of the external
events before delivers them to the federate with callback
functions.

l Optimistic Simulation (Time-Warp)

The process of the TMS function in this type of
simulation is similar to the manual-mode optimistic
approach described in section 5.3, except that fout will
automatically make a flushQueueRequest call to the RTI
for receiving external events. In this case, the STM
model becomes Eq.(7) as follows:
TMS = <SS, EE, d, OEã, optimistic, fout, fin, auto-mode,
Now, L>… ..(7)
Where different from Eq.(4):

M = auto-mode which is initialized by the federate.

The STM will watch the earliest unprocessed internal
events in the Local Event List when a federate sets M =
auto-mode. When the STM detects that the earliest
unprocessed internal event has its timestamp TS(iej) >=
Now, fout then checks if TA = optimistic to make a
flushQueuRequest call to the RTI. The STM will receive
all of the “safe” external events, that is, the set {eei |
TS(eei) <= LBTS, ∀ i}, first. The fin will extract the
timestamp TS(eei) of the received external events eei
before delivering them to the federate with callback
functions. The STM then saves checkpoint state SS,
where Tss = max{TS(eei) | TS(eei) <= LBTS, ∀ i},
before notifing the federate about this checkpoint time.
Finally, the fin begins to receive the rest of the “unsafe”
external events. The fin records these external events eei
in EE which have their timestamp Tss < TS(eei) <= Now.
Notice that, when it received these “unsafe” external
events from the RTI, the STM will advance its current
time to Now = TS(eei).

The STM will automatically perform the
rollback-detection operation. If any out of order external
event received or the anti-message callback detected, the
STM starts the rollback process. The rollback procedure
is the same as that is being described in section 5.3.

7. Conclusion

The STM integrates the conservative and optimistic

mechanisms provided by the HLA Time Management.
Therefore, that the federate developers can easily
employ the time management mechanism regardless of
the time policies, messages ordering definitions and the
logical time advance strategies of a federate.
Furthermore, the STM proposes a smart optimistic
synchronization method by creating a middle layer for
the time management interface provided by the RTI.
The proposed middle layer provides smart rollback,
state-saving and fossil-collection management used for
the optimistic federates.

Under the STM, distinct time advancement federates of
the distribution simulation (federation) can exchange
data by using a unified time advance function,
eventRequest, to communicate with the RTI. The STM
proposes a unified and scalable mechanism to allow the
user to construct the HLA federates with a consistent
time management interface when he is solving the
synchronization issue.

The unified and smart synchronizing technique in the
STM is very useful. It helps the developer to simplify
the process of building conservative and optimistic
federates. All the aspect related to the time management
issues of the RTI and extended optimistic time warp
functions are taken care of by the STM. It relieves the
simulation developer from complexity of the
synchronizing approach. The STM is capable of
identifying what time advancement approach is used by
a federate, as well as to taking all suitable actions to
ensure that the federate processes internal/external
events in the correct causality. The STM will accomplish
tasks that are common to every synchronized federate,
and does not depend on a specific federate behavior.
Hence, the federate program code becomes simpler,
because most of the control and management of
synchronizing approach are under the STM’s
responsibility.

References
[1] Alois. Ferscha: “Parallel and Distributed Simulation

of Discrete Event Systems.” Parallel and Distributed
Computing Handbook, McGraw-Hill, 1995.

[2] R. M. Fujimoto, “Parallel Discrete Event Simulation”,
ACM communication, No. 10, pp. 30-53, 1990.

[3] K. Chandy , J. Misra, “Distributed Simulation: a case
study in design and verification of distributed
programs”. IEEE Transactions on Software
Engineering. Vol. SE-5, No. 5, 440-452, 1979.

[4] R. Bryant, “A Switch-Level Model and Simulator for
MOS Digital Systems”. IEEE Transactions on
Computers, Feb. 1984, C-33 pp.160-177.

[5] D. Jefferson, “Virtual Time”. ACM Transaction on
Programming Languages and Systems, 7(3):
404-425, July 1985.

[6] H. Sowizral, D. Jefferson, “Fast concurrent
simulation using the time wrap mechanism”. In
Distributed Simulation, SCS, Simulation Councils,
pp. 63-69, La Jolla, California, 1985.

[7] Defense Modeling and Simulation Office (DMSO),
U.S. Department of Defense, “High Level
Architecture Overview”, 1997.

[8] R. M. Fujimoto, “Time Management in the High
Level Architecture”, In: SIMULATION, Vol. 71,
No. 6, pp. 388-400, 1998.

[9] R. M. Fujimoto, “HLA Time Management: Design
Document 1.0”, Defense Modeling and Simulation
Office, August 1996

[10] R. M. Fujimoto, “Parallel and Distributed
Simulation Systems”, John Wiley & Sons, inc. A
Wiley Interscience Publication, 1999.

[11] Frank Hodum, David Edwards, “Time Management
Services in the RTI-NG”, 2001 Fall Simulation
Interoperability Workshop.

[12] Defense Modeling and Simulation Office,
Department of Defense, “RTI 1.3 – Next Generation
Programer’s Guide Version 5”, High Level
Architecture, Runtime Infrastructure, Feb. 2002.

[13] Paul A. Fishwick, “Simulation Model Design and
Execution”, Prentice Hall, New Jersey, 1995.

[14] Jeff S. Steinman, “SPEEDES: A
multiple-synchronization environment for parallel
discrete event simulation”, The International Journal
for Computer Simulation, Vol. 2, No. 3, pp 251-286,
1992.

[15] Jeff S. Steinman, “Breathing Time Warp“,
Proceeding 7th Workshop an Parallel and
Distributed Simulation, Vol. 23, No. 1, pp 109-118,
1993.

[16] Bernard P. Zeilger, Herbert Praehofer, Tag Gon Kim,
“Theory of Modeling and Simulation”, 2nd edition,
Academic Press, New York, 2000.

[17] Page H. Ernest, “Zero Lookahead in a Distributed
Time-Stepped Simulation”, Simulation Digest, 26(2),
pp. 4-13, September, 1997.

[18] R. M. Fujimoto, “Zero Lookahead and Repeatability
in the High Level Architecture”, In Proceedings of
the 1997 Spring Simulation Interoperability
Workshop, Orlando, FL 307, March.

[19] F. Vardanega, C. Maziero, ”Using computational
reflection in optimistic distributed simulations”,
Computer Science Society, 1999. Proceedings.
SCCC '99. XIX International Conference of the
Chilean , 1999, Page(s): 1 -8

[20] F. Vardânega, C. Maziero., “Simplifying optimistic
distributed simulations in the High Level
Architecture”, XI IASTED International Conference
on Parallel and Distributed Computing and Systems.
Cambridge (MIT) - USA, Nov. 1999.

[21] F. Vardânega, C. Maziero., “A generic rollback
manager for optimistic HLA simulations”,
Distributed Simulation and Real-Time Applications,
2000. (DS-RT 2000). Proceedings. Fourth IEEE
International Workshop on , 2000, Page(s): 79 -85

