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Abstract

A state-of-the-art parallel programming environment called UPPER (User-interactive
Parallel Programming EnviRonment) is presented in this paper. Parallel machines which
execute programs concurrently on hundreds or thousands of processors provide far more
computational power than does a uniprocessor. However, designing parallel programs on
parallel machines manually is very difficult and error-prone. Due to these problems, many
tools which help programmers translate sequential programs into parallelized programs or
even help them design parallel programs have been developed. The proposed environment
also has the same purpose. The major components of this environment include a paralleliz-
ing compiler system and simulators of the given target machines. The parallelizing compiler
system introduces new and existing techniques for compiler-time analysis, and the simula-
tor can simulate execution of the translated parallelized program on the target machine and
show the simulated performance reports. This integrated environment attempts to provide
convenience for users or programmers who can easily design or write their desirable parallel
programs based on a variety of assertions and information generated by this environment.
Using our environment, programmers can avoid the necessity of designing parallel programs

and can obtain efficient parallelized programs from sequential programs easily.

Keywords: Distributed memory multicomputers, interprocessor communication, parallel

programming, parallelizing compilers, shared memory multiprocessors, simulators.

I. Introduction

Parallel processing is the most promising approach to designing and establishing high-
performance computers. Parallel computers with hundreds of moderate-sized processors or
thousands of simple processors are commercially available and are being used to solve various
practical problems. The programming environment, a collection of software tools and system
software, for parallel machines is more demanding than that for sequential machines. This
is because engineers spend much time concentrating on designing the hardware of parallel
computers instead of that on programming parallelism into programs running on parallel
computers. To reduce the gap between hardware and software, we need a parallel program-
ming environment, which offers better tools for users to extract parallelism and to debug
programs. The most important goal of a programming environment is to design excellent
compilers with user-defined parallel constructs (parallel languages) or to develop parallelizing
compilers which automatically translate a sequential program into a parallel executable form.

Therefore, several parallel programming environments, to be sure, have been designed and
implemented on a variety of parallel machines for the purpose of saving the effort involved in
developing parallel programs. The Parafrase-1T project (Polychronopoulos et al., 1989) was
one of the first attempts to design and implement a source to source multilingual restructur-

ing compiler which supports the C and FORTRAN languages. It is portable, easy to extend,
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and powerful due to its compiling capabilities. The Parallel TRANslator, PTRAN, (Allen
et al., 1988) is a research system used to develop technology for automatic exploitation of
parallelism. The Tiny research tool (Wolfe, 1991), which provides several elementary trans-
formations, allows a user to interactively restructure the loops in a program. The ParaScope
project (Kennedy et al., 1991) develops an integrated collection of tools to assist scientific
programmers in implementing correct and efficient parallel programs. This environment can
build dependences, provide expert advice, and perform complex transformations (Padua and
Wolfe, 1986) (Wolfe, 1989) while the programmer determines which dependences are valid
and chooses those transformations to be applied.

SUPERRB is a semi-automatic parallelization system which includes SIMD and MIMD par-
allelization for the SUPRENUM multiprocessor (Zima et al., 1988). This system is oriented
toward the parallelization of numerical programs which work in a mesh or mesh-like data do-
main where the computations at the mesh points are local. Rogers and Pingali (Rogers and
Pingali, 1989) worked on compilation of the data flow language 11 Nouveau for distributed
memory machines. They used a fixed domain decomposition method to assign data to pro-
cessors and to automatically generate individual send and receive pairs for passing of data
blocks among processors. The compiler of Fortran D (Hiranandani et al., 1992) is used to
compile a sequential program with specification of data alignment and data distribution. Tts
goals are to provide a machine-independent programming model for data-parallel applications
and to shift the burden of machine-dependent optimization to the compiler. As described in
(Koelbel et al., 1990) and (Koelbel and Mehrotra, 1991), KALI is a system which compiles
a functional language with a parallel construct into a language which includes constructs
for explicit process creation, data storage layout, and interprocessor communication. It is
the first compiler to support both regular and irregular computations on MIMD distributed
memory machines. However, KATI still leaves the tasks of parallelism extraction and data
partition to the programmer since it only removes the task of communication generation
from the programmer. CRYSTAL (I.i and Chen, 1991) is a high-level functional language
having a parallel construct compiled to distributed memory machines using both automatic
data decomposition and communication generation. This compiler tries to choose a data
decomposition so as to minimize the time spent on data communication. To achieve this
goal, a part of the data layout will match the combination of the program reference pattern
and communication aggregates.

Recently, the PARADIGM project (Gupta and Banerjee, 1992) (Su et al.; 1993) has
developed a fully automated technique for translating serial programs for efficient execution
on distributed memory multicomputers. In addition, the Stanford SUIF compiler system
(Tjiang et al., 1992) (Wolf and Lam, 1991) derives data and computation decomposition
automatically for distributed memory machines. It solves the problem of global optimization
for parallelism and data locality. Tt can also handle more flexible data decompositions and find
more opportunities for communication optimization (Amarasinghe and Lam, 1993) (Anderson

and Lam, 1993).



The parallel programming environment called UPPER (User-interactive Parallel Pro-
gramming EnviRonment) is another attempt in this area. To develop parallelized programs,
it records a given sequential program’s the data and control information and their relation-
ships for users, and indicates the effectiveness of various program transformations through
the user interface. Moreover, the programmer can give a few suggestions to enable the par-
allelizing compiler to look for more parallelism in programs. This environment also provides
convenience for programmers who can easily design desirable parallel programs. Tt differs
from the other interactive environments mentioned above in its new compilation techniques
(Chen and Sheu, 1994) (Sheu and Chen, 1995) and simulators of parallel computers. For dif-
ferent types of parallel machines, various program transformations have been deeply studied
and designed (Chu, 1993) (Ni, 1993). Based on the execution performance as analyzed by
simulators, programmers can decide whether to leave the parallelized codes as the final result
or to apply different parallelizing techniques to the programs.

The rest of this paper is organized as follows. An overview of UPPER is briefly given in
Section 2. In Section 3, we present the detailed implementation as well as the user interface
responsible for interaction and exhibition of various modules and graphics. The machine-
independent phase which deals with the preprocessing of a source program, dependence anal-
ysis, and our proposed compilation strategies, which have appeared in (Chen and Sheu, 1994)
(Sheu and Chen, 1995), is presented in Section 4. Section 5 states the implementation issues
of the machine-dependent phase of the parallelizing compiler. During the machine-dependent
phase, we handle mapping and scheduling of a transformed program onto target machines
specified by users. In section 6, we describe the simulators of shared memory multiproces-
sors and distributed memory multicomputers in which the resulting parallelized codes are

simulated and analyzed. We finally give conclusions in Section 7.

IT. An Overview of UPPER

In this section, an overview of our parallel programming environment, UPPER, is pre-
sented. The whole integrated system has been implemented and designed on DEC work-
stations with the MOTIFE environment. The interactive programming environment provides
users with all of the information which is available to the automatic environment. According
to the procedure for compiling a sequential program into a parallelized code, the description
of each module in this environment and relations among the modules are briefly stated as
follows.

The main configuration of the parallel programming environment is shown in Figure 1.
The flow of control and data among the modules are represented by solid and dashed lines,
respectively. In the remaining sections, we will only focus on descriptions of a parallelizing
compiler for multicomputers, excluding the vector compiler enclosed in the dashed line in
Figure 1. The major components of this environment include a parallelizing compiler sys-

tem and simulators of given target machines. The parallelizing compiler system consists of

- 3-



two phases: a machine-independent phase and a machine-dependent phase. The machine-
independent phase, including the preprocessing, dependence analysis, and program transfor-
mation modules, exploits the parallelism of a given sequential program, regardless of machine
topologies and properties. The next phase, the machine-dependent phase, including the data
distribution and program scheduling, and code generation modules, uses the input data and
information generated by the first phase to produce the parallel execution code according to
machine topologies, size, and architectures. In addition, the database module is designed for
all of the data and information generated or accessed by each module.

In this environment, the tasks of the user interface module are communication and in-
teraction between the environment and users. The user interface can be made not only to
easily use this environment such as by editing a sequential or parallel program, by showing
the dependence information and the output results, etc., but also to interactively modify
or restructure the sequential program into a parallelized or vectorized form so that better
execution code performance can be obtained.

The preprocessing module with input from the sequential program and the target machine
is used to scan, parse, and construct the program representation and the information on data
flow for later use. The language used is FORTRAN. Currently, only its subset has been
considered for implementing this environment since this parallelizing compiler is a research
tool. The grammars which we have considered are shown in Appendix A. The structure of
the procedures and function calls and complex constructions will be incorporated into this
parallelizing compiler in the future. The major tools used here for scanning and parsing of a
given program are lex and yace, respectively.

After preprocessing, some information is created for use by the dependence analysis mod-
ule. The control flow of a program is represented by a tree structure, which is referred as the
program representation (Ferrante et al., 1987). A basic block in the program is identified as a
basic structure in the corresponding program representation in order to clearly distinguish the
control flow and to easily manipulate this tree structure. For each statement in the sequential
program, its representation with one or several complex expressions is also incorporated into
the program representation. Based on this representation, information about analyzed data
dependence is also appended and is reported to users in a graphic manner. The data depen-
dence information is used to guide subsequent compiler analysis and optimization such as
by reporting bottlenecks in the program parallelization and opportunities for exploiting the
parallelism of program. The popular and well-known methods of data dependence testing,
including the GCD test and Banerjee-Wolfe test (Banerjee, 1988) (Wolfe and Banerjee, 1987)
(Wolfe, 1992), have been implemented in this system. Several more powerful methods of data
dependence testing such as the A test (Li et al., 1990), power test (Wolfe and Tseng, 1992),
and omega test (Pugh, 1992) will be studied and implemented in the future.

The program transformation module contains the submodules of program parallelization,
data parallelization, data and program parallelization, and program vectorization. This module

utilizes the results of dependence analysis to improve program performance and to transform
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the sequential program, based on the analyzed information about data dependence, into
its corresponding parallelized or vectorized form. The transformation techniques can be
incorporated into the program transformation module.

After program transformation, the transformed program is mapped and scheduled onto
the given target machine using the data distribution and program scheduling module. The
specifications of the target machine contain the topology, the number of processors, the
startup time of message transmission, buffer size, the status of links, and so forth, of dis-
tributed memory multicomputers, shared memory multiprocessors, or supercomputers.

After the data distribution and program scheduling module process, the intermediate
code and the parallelized or vectorized code are produced for different machines in the code
generation module. The intermediate code is simulated in the simulator of the target machine
module. The simulator plays two important roles here. First, the simulator evaluates the
parallelized or vectorized code and monitor the target machine. It may be difficult to carry
out, program parallelizing and optimizing without evaluating the performance of the compiled
code. Thus, the parallelizing compiler system performs parallelization based on evaluation of
the compiled codes running on the target machine. Second, the simulator is a testbed for the
development of this environment and a research tool for parallelizing techniques. The output
of simulators includes the behavior records of each processor and statistical results. Based
on the output results generated by the simulator of the target machine module, users can in
advance predict whether the transformed program on the target machine can produce better
performance or not. If the execution performance occurred from the transformed program is
poor, users can interactively turn on the other transformation techniques and apply them to
the original sequential program so that better execution performance can be generated.

For all information generated or accessed by modules, designing and implementing the
database module is desirable for this environment and programmers. This information and
data are stored in the main memory or on disk. In the main memory, there exist a symbol ta-
ble, program representation, internal information about data dependence, loop restructuring
information, and so on. On disk, there exist the source sequential program, parallelized or
vectorized program, intermediate code, reported information about data dependence, simu-
lation results, statistical results obtained after simulating the transformed program, a target
machine description, and so on.

More detailed implementations and their corresponding complex data structures will be
introduced in later sections for the parallelizing compiler on UPPER. In the next section,
we will first describe the design techniques and various modules of the machine-independent

phase of our parallelizing compiler.

ITI. User Interface

In this section, we will describe the user-interface module, the bridge which enables users to

communicate with this environment. By means of the user interface, users can easily edit and
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compile the sequential source program. Furthermore, several graphs and tables derived from
the analyzed results such as the program construction, the dependency relationship between
data and control, execution performance evaluation after simulation of parallel programs,
and so on, can be viewed by users. A snapshot of this environment is shown in Figure 2.

The main menu bar of this environment has six selection items: File, View, Compile,
Simulate, Options, and Help. All the functions of this environment which have hierarchical
structure are listed in Figure 3. For each function, some specifications are also depicted in
Figure 3.

The File selection item supports the functions of Open, Fditor, and Fxit. At any time,
users can open a file to be compiled by using the Open function key. When the Fzit function
key is chosen, all of the jobs stop, and the system halts. The environment also support an
editor which can be used to edit a program and can be selected by using the Fditor function
key.

Within the View function, a data dependence graph can be shown by selecting the
dependence graph selection subfunction. We can partition the sequential program into several
segments by relating a nested loop to a segment of the program. Each program segment
has its own data dependence graph. A snapshot of a data dependence graph is shown in
Figure 4. The main window, titled the Data Dependence Viewer, is in the top-left corner
of Figure 4. Fach node of the graph represents a statement in a program segment. The
arc between two nodes stands for the data dependence relationship. The number on the
arc is the number of data dependences between two statements. In the menu bar, we can
choose Next (Previous) to show the data dependence graph related to the next (previous)
program segment or choose Frit to quit. The window titled Information for Data Dependence
Graph is shown in the bottom-left corner. The dependence relations in the left hand table
include forward data dependences. The dependence relations in the right hand table include
backward data dependences. In each row of the table with five entries, there are numbers
of data dependences associated with some arc. The first entry indicates the arc number.
The last four entries indicate the number of true (flow) dependences, antidependences, input
dependences, and output dependences, respectively. The window titled Source Code on the
right-hand side shows the corresponding program segment and displays the line numbers on
the leftside. The data dependence information is depicted in a table below the source code.
Each row with four entries indicates a data dependence relation between two statements
whose line numbers are the first two entries. That is, a statement with the second line
number is data dependent on the statement with the first line number. The third entry is the
variable name, and the last entry indicates the dependence vector or the dependence distance.
For example, consider arc 1 shown in Figure 4. From the window titled Information for Data
Dependence Graph, we know that there is a true dependence from the 26-th line to the 27-th
line. From the data dependence information, we know that the 27-th line is true dependent
on the 26-th line at the variable VA and that its dependence distance is (0,1, —2).

When setting the machine environment and compilation techniques, the user can select
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Compile to compile the program. At the same time, the parallelized code will be shown
beside the sequential code. The user can learn how the sequential code will be translated
into parallelized code by comparing the parallelized code with the sequential code.

By Simulate selection item, the user can simulate execution of the parallelized code and
simulation results can be displayed in the mean while. According to the various types of
machine environments, the simulator will show different simulation results. For example, the
simulation results for shared memory multiprocessors are shown in Figure 5 and those for
distributed memory multicomputers are shown in Figure 6. In the simulation results, each
node represents a processing element. Fach processing element can be in an idle, working, or
communication state. We use different colors to represent the state of the processing element
to to let the user easily recognize the state of the processing element. The user can use the
Delay = 1 button to speed up or use the Delay = 10 button to slow down the simulation.
Using the rerun function, the user can rerun the simulation.

The Options selection item includes two subitems: Set Machine Environment and Com-
pilation Techniques. After selecting a program, the user can set some aspects of the machine
environment such as the topology of the target machine, the number of processors, and so on
by choosing the Set Machine Fnuvironment subitem. In distributed memory multicomputers,
the user can select Linear, Ring, Mesh, and Torus Mesh as the topology of the target ma-
chine. The user can also select the Compilation Techniquessubitem to choose the compilation
techniques. Presently, for distributed memory multicomputers, there exist three compilation
techniques: Communication-Free without Duplicate Data, Communication-Free with Dupli-
cate Data, and Non-Communication-Free Transformation, which have been described in detail
in (Chen and Sheu, 1994) (Sheu and Chen, 1995).

The most important point is that the system supports a Help function. Within each
menu, Help includes explanations of the selection items in the menu and can help the user
use the system. The user can get help immediately when it is needed. From the user’s point

of view, this is the most friendly part of the environment.

IV. Machine-Independent Phase of the Parallelizing Compiler

In this section, the machine-independent phase of our parallelizing compiler system is
described. The implementation issues and internal data structures are illustrated using the

following example.

Example: Consider the following TEST program "test.f”.

PROGRAM TEST
INTEGER I, J
REAL A(10,10), B(10,10), C€(10,10)
DO 10 I = 2, 5

DO 20 J = 2, 5



A(2xI,T)
B(J,I+1)
20 CONTINUE
10 CONTINUE
END

C(I,J) =7
A(2x¥I—-2,7-1) + C(I—-1,J-1)

1. Preprocessing and Dependence Analysis

In this subsection, the preprocessing and dependence analysis processes for a given se-
quential program are discussed. We use lex and yace, respectively, as tools to scan and parse
the sequential programs. After scanning and parsing the sequential program within the pre-
processing module, the symbol table and its program representation are constructed for easy
manipulation of subsequent modules.

For each declared variable established in the symbol table, its symbol table entry has
the following fields. Declaration type is a flag to indicate that this variable is declared to
be either INTEGER or REAIL. Variable name is a string to indicate the variable name.
Dimension indicates the array dimension; if dimension is zero, this means that the variable is
a scalar variable. Declaration bounds of arraysindicates the user-defined bounds of each array
dimension. For example, there are two scalar variables, T and J, with INTEGER type and
three two-dimensional array variables, A, B, and C, with REATL type in the TEST program.
The ranges of these three array variables in each dimension are declared from 1 to 10.

The program representation of a given program can not only preserve the meaning of the
original semantics but also indicate the control flow with DO and structured TF statements,
assignment statements and operations, and the relationship between the program and symbols
along with other information. There are three construction types of basic blocks within a
program representation: TF statements, DO statements, and other statements (assignment
statement, function call, and procedure call) whose graph constructions, regarded as IF nodes,
DO nodes, and statement list nodes, are, respectively, shown in Figure 7(a), (b), and (c).

To clearly demonstrate the concept of program representation, the following segmentation
code with complex structures is given. Its corresponding program representation is depicted

in Figure 8.

S1
S2
DO 10 I =1L, T
IF B THEN
S3
ELSE
S4
S5
ENDIF
S6
10 CONTINUE
s7



Within a given program, basic units consisting of the three basic blocks are assignment
statements, procedure calls, and function calls. The basic units consisting of an assignment
statement, a procedure call, or a function call are expressions. However, the smaller basic
units consisting of an expression are operators and operands. Detailed descriptions will be
given below. An assignment statement consists of two expression: the left one is a write
operand, and the right one consists of several operands and operators. A procedure call or
function call is composed of its name and several arguments and is also expressed by an
expression or a function call. An operand may be a scalar variable or an array variable
composed of its array name and several subscripts, which are also expressed by an expression
or a function call. Hence the entire sequential program can be recursively constructed and
represented by the three basic block constructions and the small constructions described
above. The program representation of the TEST program is shown in Figure 9 based on the
above descriptions.

After preprocessing an input program, each loop can be classified into one of the fol-
lowing four types. The ALLDOALL type indicates that there exists no dependence in this
loop. The UNIFORMILY_NESTED type indicates a nested loop with uniformly generated
references (Gannon et al., 1988). The STAND_NESTED type indicates a nested loop with
constant data dependence. Other loops are classified in OTHERS. In the dependence anal-
ysis module, applying the GCD test and Banerjee-Wolfe test produces the data dependence
information, including dependence or independence, the dependence type with input, output,
flow dependence and antidependence, and the direction or distance vectors for each pair of
variables. Within the dependence analysis module, the Banerjee-Wolfe test which extends
the Banerjee’s inequalities to find the dependence distance or direction vector (Wolfe, 1992)
is also implemented when the loop limits are triangular, meaning that the limits of the inner
loop depend on the outer loop indices. Tn addition, we also extend the work to manipulate
more complex non-perfect loops. Consider the TEST program again. There only exists one
nested loop, identified as the UNTFORMLY_NESTED type. The data dependence informa-
tion is generated in two files with the filenames "test.dep” and "test.var”.

The format of each line in a produced file with data dependence information is specified

as follows:

LT Loopm lines line, Varth line; j line; DT Flag n dy dy --- d,.
: N ——

VarPair d

The description and definition of each of the above terms are described below. The symbol
LT denotes one of the loop types classified above. Loop denotes the loop number arranged
in a given program, automatically produced by our compiler. The terms lineg,,+ and lineq, ,
respectively, denote the start and end line numbers within the given source program. Var'”
denotes the variable number in a given program, produced by our compiler. VarPair indi-

cates the variable pair which is tested using dependence tests. For the first variable, ¢ denotes
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the number of Var'” which is stored in the i-th variable of the file whose filename has the
extension "var”. The line number of i-th Var*" appearing in the source file is denoted as
line;. For the second variable, j denotes the number of Vart". line; denotes the line number
of j-th Vart”. The symbol DT represents the type of data dependence, whether flow, input,
output dependence, and antidependence. The term Flag is a flag to indicate either the de-
pendence vector or dependence direction for this data dependence relation. The dimension
of this dependence vector or direction is denoted by n. d with n-tuple is either a dependence
vector or direction depending on the flag Flag. If d is a direction vector, each d;, 1 < i <mn,
is one value depending on its direction specified within Table 1. Hence, a data dependence
viewer is designed in this system to establish the data dependence graph of each loop and
then to display it to programmers based on all of the information in these two files. To
illustrate, a snapshot of our developed data dependence viewer with a source loop, its data

dependence graph, and its information concerning data dependence is shown in Figure 4.

2. Program Transformation

By using the generated information about data dependence, we can apply to a program
various compilation techniques integrated into the program transformation module so as to
produce a parallelized or vectorized code. Within the program transformation module, we
implement the submodules of program parallelization, data parallelization, and data and pro-
gram parallelization. Within the program parallelization submodule, a compilation technique
aimed at partitioning for linear array multicomputers has been designed (Sheu and Chen,
1995). Within the data parallelization submodule, a compilation technique has been designed,
aimed at communication-free partitioning without duplicate data during parallel execution
(Chen and Sheu, 1994). Within the data and program parallelization submodule, a compila-
tion technique has been designed, aimed at communication-free partitioning with duplicate
data during parallel execution (Chen and Sheu, 1994). The three compilation techniques
were originally proposed and designed on distributed memory multicomputers to reduce the
communication overhead. However, they can be also applied to shared memory multiproces-
sors so as to eliminate as much as possible cache or local memory thrashing (Lu and Fang,
1992).

l.oops are the most time-consuming parts and implicitly provide a large amount, of par-
allelism in a program. Therefore, we currently only consider loop transformations within the
program transformation module. While a program is processed through the program trans-
formation module, a DO loop can be translated into one of three types: DOSER, DOALL,
and DOACR. The DOSER. type, which is not changed in the original program, means that
this loop via transformation is still performed sequentially. The DOATLIL type means that
each iteration of this loop via transformation is independently performed in parallel. The
DOACR type means that this loop can be performed in parallel but still needs communica-

tion or synchronization primitives to keep the relationship of data dependence and preserve
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the semantics of the original program.

For the program transformation module, an example shown below is given to illustrate
the designed flow and the change of internal structures depending on different compilation
methods. Through the compilation techniques of communication-free partitioning with or
without duplicate data, the DO loop within the TEST program is translated into the follow-
ing program segment with a parallel construct, DOALIL, written in the form of FORTRAN:

DOALL 10 I’ = -3, 3
DO 20 I = MAX(2, I’+2), MIN(5, I’+5)
J=1 - D

A(2+I,J) = C(I,J) * 7
B(J,I+1) = A(2+4I-2,]-1) + C(I—-1,J-1)
20 CONTINUE
10 CONTINUE

Within our parallelizing compiler, both the tree structure (program representation) and
the symbol table are the heart or kernel. This is because all the information such as the orig-
inal program semantics, the translated program representation, the mapped and scheduled
program representation, etc., are included for the process of each module. While applying
any analysis or compilation technique, the tree structure and internal structure of the symbol
table are adjusted. Fach adjustment may cause a drop, insertion, or movement of internal
structures, for example, movement of basic blocks, insertion of new basic blocks, modification
of expressions, or insertion of new symbols. Therefore, the corresponding program represen-
tation has to be modified and translated into another tree structure. By means of the above
program segmentation, an additional symbol, I’, must be incorporated into the symbol table.
Two induction variables, T and J, of DO constructs are changed to the new variable I and
the original variable I, respectively. Their loop lower bounds and upper bounds are also mod-
ified. An additional statement is appended to the original loop body. Hence, the program
representation is translated and is depicted in Figure 10. Depending on the different com-
pilation techniques within the program transformation module, the tree structure (program
representation) is, therefore, modified and changed to form another tree structure.

After transformation of a program, the most important work is scheduling of tasks for the
target machine according to the type of parallel machine, the architecture, and the number of
processors. In the next section, we will describe the implementation techniques and various

modules of the machine-dependent phase of this parallelizing compiler.

V. Machine-Dependent Phase of the Parallelizing Compiler

In this section, the implementation of each module within the machine-dependent phase
of our parallelizing compiler is described, with respect to the machine architecture, topology,

and size.
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1. Data Distribution and Program Scheduling

The data distribution and program scheduling module is described in this subsection. For
parallel machines, data distribution, program partitioning and scheduling significantly deter-
mine the execution behaviors and performance.

Now, we will discuss the approaches to partitioning on parallel computers. Because we
currently only consider the topology, mesh, for distributed memory multicomputers, program
scheduling for the communication-free partitioning and projection methods is simple. The
complex and optimal assignment algorithms were presented in (Chen and Sheu, 1994) (Sheu
and Chen, 1995). Generally speaking, the purpose of these strategies is to eliminate or reduce
as much as possible interprocessor communication. The communication-free data allocation
technique can totally eliminate interprocessor communication. Another strategy can reduce
interprocessor communication by allocating necessary data to the location where it is used
or involve only neighbor-to-neighbor communication. Hence, the methods we use can not
only reduce the communication overhead on distributed memory multicomputers, but also
increase the data locality and cache hit ratio on shared memory multiprocessors. Thus,
these methods are suitable for the two categories of parallel computers, distributed memory
multicomputers and shared memory multiprocessors. It should be pointed out that, during
program scheduling on shared memory multiprocessors, we adapt static partitioning.

When the process of compiling a sequential program into a parallel form, maintained
and represented in the program representation, has been completed, the program’s parallel

intermediate form will finally be produced by the code generation module.

2. Code Generation

In this subsection, the code generation module for simulators of distributed and shared
memory multiprocessors is described. By means of the intermediate parallel form, users
can easily understand the power of parallelism extraction and the capability of program
transformation.

By using the program representation of a transformed program, we can translate the
transformed program into an intermediate code written in the C language. In addition to
the constructs supported by the original C language, we integrate the parallel constructs and
synchronization primitives shown in Table 2 into our specified intermediate code for shared
memory multiprocessors. Table 3 shows a list of supported message-passing functions in the
C language for distributed memory multicomputers.

For more details, readers can refer to several examples in references (Chu, 1993), (Ni,
1993). In the following section, the simulators of parallel computers which simulate the

above mentioned intermediate parallel forms will be introduced.
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VI. Simulator

In this section, the simulator of the target machine module for evaluating and measuring
performance during execution of a parallel program is specified.

A simulator of shared memory multiprocessors presented in (Chu, 1993) is first discussed.
In this simulator, we integrate several parallel constructs and synchronization primitives
depicted in Table 2 into the DL.Xsim (Hennessy and Patterson, 1990). The DILXsim is a
simulator for DX which has a theoretical load/store architecture and is derived from RISC
architecture. There exists a C compiler supported by DLX for compiling a given program
with appropriate parallel constructs and synchronization primitives into DI.X assembly code.
After simulating a given intermediate code of shared memory multiprocessors, the executed
results include total execution cycles, processor utilization, the amount and cycle time of
communication, etc.

The framework of the simulator of shared memory multiprocessors is described below.
In designing it, many data structures are needed. The most important one is a tree which
is used to represent the relationship among processors and to capture the information and
status while running a program. We model the execution flow of the program coded in the
intermediate form for our simulator as follows. Each node in the tree indicates one processor.
At the beginning, only one processor executes the program, so it is modeled as the root
node in the tree. Once the processor deals with a DOALL(L,U,S) (or DOACR(L,U,S))
construct, the statements between DOALL(L, U, S) and ENDDOALL() (or DOACR(L, U, S5)
and ENDDOACR()) will be executed in parallel by [(U — L.+ 1)/S] processors. Hence, there
[(U—~ L+ 1)/S] nodes are generated as the children nodes of the root node. Then, these
processors begin to execute the statements between the two parallel constructs while the
parent node plays two roles; one is the root node and another is then one of the children.
Thus, each edge in the tree indicates the relation between two index instances (processors) in
the two contiguous parallel loop constructs (DOALL or DOACR). While processors execute
the communication primitives, some information and the status up to that point including
the total execution cycle time, the amount of synchronization, the synchronous cycle time,
and so on, have to be recorded. If one parallel construct is met, the actions described above
will be recursively applied to establish the tree. The detailed implementation can be found
in (Chu, 1993). A snapshot of the simulation results is shown in Figure 5. A shared memory
multiprocessor with 8 processors and the statistical results are shown in the table and in a
graphic manner.

Next, a simulator of distributed memory multicomputers presented in (Ni, 1993) will be
discussed. Because the simulator we have developed can simulate torus mesh architectures,
all of the mesh, linear array, and ring topologies can be simulated. The overall schema of our
simulator is illustrated in Figure 11. An oblong shape represents a data structure or a storage
unit that keeps a particular set of data. A rectangle represents a function, action, submodule,

or manipulation which executes some sort of operation on a related data structure (oblongs).
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The rectangles with shadows represent software modules of the simulator. An arrow indicates
the data flow and/or control flow among the modules of the data structures.

The primary input of this simulator is a set of programs running on each PE. The assembly
source programs are assembled by the assembler in the preprocessing module. After that, the
object codes are pre-coded and linked to the message-passing supporting library to generate
the simulator-executable object codes. The object code loader loads the executable codes
into the object module (PE objects) and generates initial events for the event-driven engine.
The object and event-driven engine modules perform the actual simulation tasks. The event-
driven engine maintains the ordered event list data structure, from which the module picks
out, the current event for the object module and the output generation module. The event-
driven engine also maintains a synchronizing object list which keeps a list of objects that need
to be synchronized. When the object module receives a current event, it simulates the actions
of the activated objects. The states of objects are updated. New events are generated and
sent to the event-driven engine, where the new events are scheduled for future simulation.

In addition to the object module, the current events (behaviors) are sent to the output
generation module. The current event is filtered by the event filter of the output generation
module to produce behavior records of the interested behaviors of the simulated system.
The object statistic extractor generates statistical results from objects after the simulation
is completed. The detailed implementation can be found in (Ni, 1993). A snapshot of a
simulation of a matrix multiplication program on a 4 x 4 torus is shown in Figure 6.

Our designed simulators not only simulate a parallelized code, but also evaluate and mea-
sure its execution performance. If the performance is not acceptable, the user can modify the
source program or apply other compilation techniques to produce more efficient parallelized

code.

VII. Conclusions

We have described the implementation and design issues of the parallel programming
environment UPPER, including the user-interface, the parallelizing compiler system with
machine-independent and machine-dependent phases, and the simulator. Playing the most
important role of communication between users and the environment is the user-interface.
The machine-independent phase of the parallelizing compiler system deals with the prepro-
cessing of a source program, dependence analysis, and our proposed compilation strategies.
During the machine-dependent phase, we first deal with the mapping and the scheduling of
a transformed program onto the target machine specified by the user. Then, the simulators
of shared memory multiprocessors and distributed memory multicomputers measure the exe-
cution performance of a resultant parallelized code. This environment enables programmers
to easily design parallelized programs by means of interaction between the programmer and
this system.

In order to implement our parallel programming environment, the following approaches
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to compilation and design aspects will be considered and adapted in the future. The first goal
will be to consider interprocedural analysis (Burke and Cytron, 1986) (Triolet et al.; 1986)
(li and Yew, 1988). We will construct a call graph to directly explore the parallelism of
procedure calls or functional parallelism in order to extract a large amount of parallelism in
a program. Second, we will consider the model of several nested loops together in a program.
For multiprocessor systems, we will design an approach which minimize parallel execution
time by analyzing data dependence and determining data layout. Third, due to the need
to manage data and information, the design of an efficient database system will become our
focus. Finally, we will improve and enhance the applicability of user interface by adding a
new graphical demonstration system and visualization system, and we will then integrate

each of these future works into UPPER so that it will have powerful compiling capability.
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Appendix A
In this Appendix, we list all of the grammars written in the Backus-Naur Form (BNF)

which we have used.

<program-start>
<program-front>
<program-end>
<newline()>
<statement-list>
<statement>

<var-declaration>
<varl>

<var2>
<do-stmt>

<step>
<if-stmt>

<else-part>
<assign-stmt >
<exp>

<array-var>
<var>
<expl>

RS 77

<program-front> <statement-list> <program-end> | ¢

: <newline()>> "PROGRAM” 1)
: "END” <newline()>>

¢ <newline()> NLINE
: <statement-list> NLINE <statement> | <statement>
: <var-declaration> | <do-stmt> | <if-stmt>

| <assign-stmt> | ¢

: "INTEGER” <varl> | "REAL” <varl>

D<varl> 7,7 <var2> | <var2>

D ID 7 <exp> <expl>")”

:"DO” INTLIT <var> "=" <exp> 7,” <exp> <step>

<statement-list> INTLIT "CONTINUE”
<exp> | €

: ”IF” <exp> "THEN” <statement-list> <else-part>

”ENDIF”

: "ELSE” <statement-list> | ¢
s <var> "=" <exp> | <array-var> "=" <exp>
: <exp> 7. EQR.” <exp>

| <exp> 7.LT.” <exp>
| <exp> ".LE.” <exp>

| 7 .NOT.” <exp>

| <exp> ".GE.” <exp>
| <exp> ".GT.” <exp>
| <exp> " .AND.” <exp>
| <exp> ".0R.” <exp>
| ” (77 <eXp> 77)77

| <exp> "4" <exp>

| <eXp> ”_ " <eXp>

| ”_ " <eXp>

| <exp> "x" <exp>

| <exp>"/" <exp>

| <exp> "xx” <exp>

| <exp> "MOD” <exp>

| "MAX” 7 (7 <exp> <exp2> ")
| TMIN” 7 (7 <exp> <exp2> 7)”
| "SQRT” 7 (" <exp> ")”

| "FLOOR™ 7 (" <exp> ")”

| "CEILING” " (" <exp> ")”

| <array-var>

| <var>

| INTLIT

| FLOATLIT

:<var> " (7 <exp> <expl>")”
1D
D <expl> 7,7 <exp> | €
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<exp2>

D <exp2> 7,7 <exp> | €

Note that the lower-case words between the symbols < and > are regarded as nonterminal

symbols; the upper-case words and the symbols between the symbols

as terminal symbols.

[1D)

NLINE
INTLIT
FLOATLIT

€

: A variable name with a legal string.
: A new line character.

: An integer number.

: A floating point number.

: An empty symbol.

90 -

”

and 7 are regarded



Table 1: The direction and its corresponding value of data dependence in each dimension.

direction

<= > <> F

value

011 (2134|516

Table 2: The parallel constructs and synchronization primitives supported in the parallel
intermediate code of shared memory multiprocessors.

Parallel Constructs and
Synchronization Primitives

The Description of Each Parallel Construct and
Synchronization Primitive.

ParBegin() The respective prologue and epilogue of a loop
ParEnd() which is to be performed in parallel.
DOALL(LY, Ub, S The respective prologue and epilogue of a loop
ENDDOATLL() without data dependence.

DOACR(L,U,S) The respective prologue and epilogue of a loop
ENDDOACR() with data dependence.

WAIT(from-node)

While a processor performs this statement,
it must wait for a signal from the from-node
processor within DOACR, loops.

SIGNAT(to-node)

While a processor performs this statement,
it must send a signal to the to-node
processor within DOACR, loops.

ENTRY() The entry and exit of a critical section
EXTT() within DOACR loops.
BARRIER() None of processors can perform the following

statements until this statement within DOATLL
loops is performed.

?An expression of the lower bound in this loop.
? An expression of the upper bound in this loop.
“An expression of the step in this loop.
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Table 3: A list of the message-passing functions supported in the parallel intermediate code
of distributed memory multicomputers.

Function Names and Arguments | The Descriptions of Function Results

After calling, r and ¢ contain the
GetNodelnfo(&r, &c, &mr, &mc) | respective row and column number of this
PE. mr and mc contain the respective
total numbers of rows and columns in this
mesh.

Perform circuit routing from this PE to the
CircuitStartup(r, ¢) PE at (r, ¢). The circuit will be built from
this PE to the PE at (r, c).

Send a message with size s at the

Send(r, ¢, s, p, t) address p to PE (r, ¢). t is the type
of message used as a message I1).
The action of Send(), but the circuit will

SendNC(r, ¢, s, p, 1) be not kept in the cache after the message is
sent.
Send the message through link d. Links 0, 1, 2,
SendDirection(d, s, p, t) and 3 are connected to the right, up, left, and

down neighboring PE, respectively.

Receive a message and place it at address p.
Receive(&r, &e, &s, p, &t) If this message can be accepted, the values
of r, ¢, and t compared to the incoming
message should be the same.

Non-blocked version of Receive(). If the
ReceiveNB(&r, &e, &s, p, &t) function returns a non-zero value, a matched

message has been received.

Broadcast the message at address p whose

Broadcast(s, p, t) size is s and type is t to all of other PEs.

- 99 -



Sequential Programs

y

\ A /

Preprocessing

lex|yacc
A4

Dependence
Analysis

GCD and
Banerjee-Wolfe
tests

Program Transformation

User Interface »| Database
v 4
| ¥_

15 -

R YR N
v

[
[
Program I
| Parallelization A\ A I
"| (Partitioning for Code Generation I !
Linear Arrays) - [ v
vV v Intermediate Code N
Dat | for Shared Memory Simulator
Data Parallelization | pala Multiprocessors ] of the
(Communication-Free Distribution Target Machine
»+P| Partitioning without > P and P T
; rogram -
Duplicate Data) Sche%uling Intermediate Code ' parallelized
N forl\]/)llstrlbuted —L>| Programs
Data and Program Multice(r)rrlr(l)rﬁters I
Parallelization P !
(Communication-Free !
Partitioning with ! !
Duplicate Data) : :
iiaiaiaiainiik (Efeielelelltette V- ¥y e ¥
o| Program Vectorized . |CONVEX or Cray_> Performance | 1
17| Vectorization Programs | FORTRAN Analyzer | |
: Compiler :
Machine-Independent Machine-Dependent L
Phase Ik Phase > data flow

— control flow

Figure 1: The configuration of the parallel programming environment.




= UPPER: User-interactive Parallel Programming EnviRonment

File View Compile Simulate Options Help

PROGRAM TestProgram

INTEGER i, j, k

REAL A(20,20), B(20,20), C(20,20), INIT(30)
REAL VA(30,30,30), VB(30,30,30), VC(30,30,30)

#include <stdio.h>

#include "math_h"

#include "/home/shi/project/upper/demo/par7.h"
int i;

VB(I+1,],k) = VA(LLk+2) / 11
VO, k) - 10 * VBG.j.k)

VD(L,j+1,K) = VO(i-1,1,K) / 3 + VE(L]-1,k+1)
VE(i,j,k) = vD(i,j,k+3) * 37 - 20

REAL vD(30,30,30), VE(30,30,30), VF(30,30,30) int j;
int k;
DO 10i=1, 10 20][20];
INIT( i) = 20 20](20];
s o wcompuer] & e 221
Alj)=2*B(i, p+10 i i k[30][30][30];
20 CONTINUE < SM Multiprocessors & Ring [20]130](30];
10 CONTINUE < Supercomputers < Mesh [30][30][30];
DI301[301(30];
DO 10 =1, 10 Rogicbsesh [30][30][30];
DO 20 =1, 10 [30][30][30];
DO 30 k=1, 10 Node number : |2 X IZ_ = |4
C(i.j) = (i, jy + A k) * Bk, j)
30 CONTINUE
20 CONTINUE
10 CONTINUE
DO 10i=3, 13 ParBegini); /* Parallel Begin */
DO 20 j=3, 13 DOALL 1, 10, 1);  /* <—— DOALL */
DO 30 k=3, 13 INIT[i]=20;
VA(L+1,K) = VB(i,j. k+2) * vTii,j k) + 2 for( j=1; j<=10; j+=1)

{
Clillj]=0.000000;
ALI1=((2*BLiILN+10);
3

=

VE(LJk+1) = 1 - VE(-1,].k-1) ENDDOALLO; /* <--— ENDDOALL */
30 CONTINUE ParEnd(); /% Parallel end */
20 CONTINUE
10 CONTINUE for{ i=1; 1<=10; i+=1)
{
DO 10 k=1, 10 for{ j=1; j<=10; j+=1)
DO 20 i=1, 10 {
ALK = al,k) / Atk k) for{ k=1; k<=10; k+=1)
DO 30 j=1, 10, BIE
AliL) = Al - Atk *ACLK) CLI=(COI+ALTKI*BIKIGD);
30 CONTINUE 3
20 CONTINUE I }
H ] H

Figure 2: A snapshot of the parallel programming environment.
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User Interface and Demonstration System

(Edit a file)

(Open an existing file)

_>Dependence Graph

Previous]

(Show the data dependence
information in a graphic manner)

(View the information
generated by this compiler)

Simulation of Shared
Memory Multiprocessors

BN S

Simulation of Distributed
Memory Multicomputers

—> (Compile a sequential program using our proposed compilation techniques)

(While simulating the parallelized code, the

demonstration system can show the status of
each processor by means of different colors.

Then, statistical results and some reports

are shown using the graphs and tables.)

(Simulate a resultant parallelized code on the simulator)

Linear
Ring

Mesh

Torus Mesh

—>[DM Multicomputers
(DM: Distributed Memory)

->[Set Machine Environment]——b[ SM Multiprocessors]

(Set the enyironment of the target machine
and compilation technique to be applied.)

-)(Compilation Techniques

(Help users use this environment)

Figure 3: A list of all the functions in the

(SM: Shared Memory)
—>[Supercomputers

Convex
Cray X-MP

Comm.-Free without Duplicate Data
Comm.-Free with Duplicate Data
Non-Comm.-Free Transformation

Vectorization Transformation

—» Display the sequential code and parallelized code

parallel programming environment.




) I.
#‘ SOURCE CODE -> /home/shi/project/upper/demo/par7.f | g |J|

||

I
— DATA DEPENDENCE VIEWER E
EXITXPHEVIOWEXq STANDARD NESTED LOOP I 3 th LOOP

[ 23] DO 10 =3, 13
[24] DO 20 js3, 13

28 [ 25] DO 30 k=3, 13
5 [ 26] VA(i,ji+ 1K) = VB{,jKk+2) * VC(ijk) + 2
57 29 [ 271 VB(+1,iK) = VAG,k+2) 7 11
[ 28] YC(i,jk) = 10 * VAG,ik)
[ 29] VDG, j+ 1K) = VCG-1,jK) 7 3 + VEGj-1k+1)
8 [ 30] VE(,ik) = VDG jk+3) * 37 = 20
[31] VF(i,ik+1) = 1 = VE(i-1,jk-1)
[ 32] 30 GONTINUE
26 9
a0 [ 33] 20 CONTINUE
[ 34] 10 GONTINUE
0
DATA DEPENDENGE INFORMATION :
Line Line| Variable (d1,d2,d3)
34 26| 27|vA o 1, -2)
27| 26|vB 1, 0 -2
26| 28|vB «C 0 0 2
27| 28|vB C 1, 0, 0
i | || 28] 28w (o 0 0
l. .
; : 26| 29|vC 1, 0 o
— INFORMATION FOR DATA DEPENDENCE GRAPH .
[-11] 28| 28|vG C 1, 0, 0
t TRUE DEPENDENGE a ANTI DEPENDENGE
29| 30|vD o 1, -3
i INPUT DEPENDENGE o OUTPUT DEPENDENGE
t a i o t a i 1] 30| 29)VE «c o 1, -1
1 1 2 (1 29| 31|vVE 1, -1, 2)
3 1 1] 8] 1
R 30| 31|vE 1, 0 10
5 1
6| 1
7| 1
9 1
10 ] 1
1

Figure 4: A snapshot of our developed data dependence viewer.
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CPU

utilizatio a 100

3.{1 7
‘L/?mfe

o
‘ ‘ e . gﬁw—f—ds.o
: : it it i el

1531

1 2 3 4 a B 7 a8 = 10

Processor number

1165 | [Delag=t |  [Delay=5 |  [Delay=1o |

Processor number

CPU

utilizatio

P=1 P=2 P=3 P=4 |P=5 |P=6 |P=7 |P=3 |P=3 |P=t0

L1 26,00 | 33,33 | 4167 | 60,00 | 53,33 | BE.EF [ FE.00 | 83,33 | S91.67 | 100.00
total 100,00 15,34 19,18 23,01 26,85 30,68 34,52 38,35 42,19 45,02

Figure 5: A snapshot of the simulation results of the shared memory multiprocessor simulator.

( ReRun ) Exit ) [Delau=1 | [Delau=s | [Delaw=10 | [ 28

mininininininis
i
l
l

oo OO0

- Eloclk - Stop

- Running Interprocessor Communication

Figure 6: A snapshot of the simulation results of the distributed memory multicomputer
simulator.
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left node right node

left node . right node
basic block  basic block }nduction variable
of of ower bound
true part false part upper lound
step
(a) IF node construction. (b) DO node construction.

assignment statement:

Statement

4| List Node| *
left node right node

left-hand  right-hand
side side

function or procedure call:

A

information of
name and
arguments

(c) Statement list node construction.

Figure 7: Three types of constructions of basic blocks.
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header of induction variable: |
lower bound: L

rogram representation
prog P upper bound: U

T: B is true.
F: B is false.

S-node: Statement List Node

Figure 8: The program representation of the given segmentation code.
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header of
program

representathg>

lower bound: 2
ode) loop 1 { upper lound: 5
step: 1

lower bound: 2

93
o

I?)g loop J {upper lound: 5
step: 1
Statement
List Node
/ assignment
assignment statement

statement
L R
%D<—E-
D
@D
left-hand side right-hand side LS o
of assighment of assignment
statement statement @ ©

a, b, c: operator or operand
L: left pointer from b to a
R: right pointer from b to ¢
1-dimensional 2-dimensional
subscript subscript
expression expression

Figure 9: The graph view of the program representation of the TEST program.




header of
program

representation
%, lower bound: -3

ode) POALL loop I' <{upper lound: 3

step: 1
50 lower bound: MAX(2,I'+2)
DOSER loop I { upper lound: MIN(5, I'+5)
step: 1
Statement
List Node

Figure 10: The graph view of the program representation of the transformed program.




Input of the simulator

Assembly source
programs for PEs »

 —

Assembler,
pre-decoder,
and linker

Pre-processing module

Simulator-executable
object codes

Object code
loader

Object module

PE objects
(CPU states, memories) ’

 —a S—

Object simulator
object simulation,

updating of states, and
generation of new events

) ()

Parameter file

To all modules

Initial events

New events

Ordered
event list

A 4 A 4

Event controls

Event-driven kernel

Router objects »

Synchronizing
object

event scheduling,
rescheduling,

Current event

Event-driven
engine
module

dispatching, and
object synchronizing

)
(—»Cl—»:l—»l:l—»)

Synchronizing object list

Output generation module

Object
statistics
extractor

Figure 11: The overall schema of the simulator of distributed memory multicomputers.
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Output of the simulator

Behavior records

- 32 -


https://www.researchgate.net/publication/2424928

