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一、中英文摘要 
中文摘要 
 基於個人隱私的保護，在 2005 年學者 Nguyen 首先提出非對稱式的同時簽章法，也是

第一個非採用環簽章設計的同步簽章法。除了正確性、不可偽造性和公平性之外，Nguyen
的方法也滿足匿名性與不可鍊結性。為了滿足匿名性，Nguyen 的同時簽章法具有身分識別

的缺失，也就是交換簽章的簽章者無法識別彼此的身分，會使攻擊者可以利用此一缺失，

藉由愚弄簽章者而耗盡簽章者的計算資源。然而具有簽章者模糊性的同時簽章法就不會有

此一缺失。因此為了匿名的同時簽章法，定義一個新的身分識別的特性。在此一計畫中，

提出一個改良的非對稱式的同時簽章法，可以同時滿足身分識別與匿名的特性；此外也滿

足不可鍊結性。身分識別性、匿名性與不可鍊結性，就可以保護同時簽章法的簽章者隱私。 
關鍵字: 同時簽章、匿名性、身分識別、隱私、數位簽章法 
英文摘要 

For the privacy protection, Nguyen first proposed an asymmetric concurrent signature 
scheme without adopting ring signatures in 2005.  Except correctness, unforgeability, and 
fairness, Nguyen’s scheme satisfies two new properties: Anonymity and unlinkability.  To 
satisfy the anonymity property, Nguyen’s scheme has identification flaw that signers cannot 
identify each other during the exchange protocol.  So an attacker makes use of this flaw to trick 
signers to exhaust signers’ computation resources.  However, the concurrent signature schemes 
with signer-ambiguity do not have the identification flaw.  A new property, identification, is 
defined for the concurrent signature scheme with anonymity.  In this project, an improved 
asymmetric concurrent scheme is proposed to provide both anonymity and identification.  Our 
improved scheme satisfies identification, anonymity, and unlinkability at the same time.  With 
identification, anonymity, and unlinkability, the signers’ privacy is protected well without flaws. 
 
關鍵字: Concurrent signatures, anonymity, identification, privacy, signature schemes 
 
二、前言與研究目的 

In 2004, Chen et al. first proposed the concurrent signature scheme by adopting the idea of 
ring signatures [2, 19].  The ring signature scheme is a signature scheme hiding the actual signer 
among all ring members.  When the number of ring members is reduced to two, the ring 
signature scheme has the singer-ambiguity.  For example, A signs a ring signature which only 
contains A and B’s identities.  After validating A’s ring signature, B is sure that the ring signature 
is generated by A because B doesn’t sign it.  Because there are two identities involved in this 
ring signature, B can’t convince the third party that this ring signature is generated by A.  Susilo 
et al. [21] point out that Chen et al.’s scheme adopts the same keystone fix to generate both 
commitments.  To cluster two ambiguous signatures with same keystone fix, the 
signer-ambiguity is removed.  To overcome this flaw, Susilo et al. adopt different keystone fix to 
generate the commitments to propose their scheme, the perfect concurrent signature scheme in 
2004 [21].  Wang et al.’s [22] points out that Susilo et al.’s scheme does not satisfy the fairness 
property in 2006.  Therefore, Wang et al. proposed two iperfect concurrent signature schemes 
satisfying the fairness property.   Wang et al.’s scheme also improve the performance.  Wang et 
al.’s scheme satisfies four security properties: correctness, unforgeability, fairness and 
signer-ambiguity. 

Nguyen [17] first proposed asymmetric concurrent signature schemes to provide privacy 
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protection in 2005.  Nguyen’s scheme not only satisfies three basic security properties but also 
two additional security properties: Anonymity and unlinkability.  Anonymity means that any 
third party cannot determine the generator of a commitment among all possible singers before the 
keystone is revealed.  So the anonymity property is used to protect the privacy of the transactors 
before the keystone is released.  The unlinkability property means that the relationship between 
two exchanged concurrent signatures does not exist, as long as the keystone is released.  The 
unlinkability property is used to protect the privacy of the transactors after the keystone is 
released. 

Nguyen’s scheme is the first concurrent signature scheme without using ring signature 
schemes.  However, two signature schemes with different structures are used to design Nguyen’s 
scheme.  In order to this disadvantage, Chen [8] proposed balanced concurrent signature scheme 
adopting the signature scheme with the same structure.  But Chen’s scheme does not satisfy 
anonymity although Chen’s scheme satisfies correctness, unforgeability, fairness, and unlikability. 

Anonymity is very important to protect the privacy.  However, in Nguyen’s scheme, the 
transactor cannot identify the generator of the commitments due to the anonymity property.  By 
utilizing this disadvantage, attackers trick transactors to exhaust their computation resources.  So 
Nguyen’s scheme is vulnerable against denial-of-service attack. 

The major flaw of Nguyen’s scheme is that the transactor cannot identify commitments’ 
generators.  If the concurrent signature satisfies not only anonymity but also identification, this 
flaw can be removed.  So a new property of identification is introduced.  Identification means 
that, during the commitment exchanging protocol, both the transactors are able to identify one 
another, through acquisition of corroborative evidence.  Due to the anonymity property, the third 
party cannot identify the generator of the commitments.  Transactors’ privacy is protected by the 
anonymity property.  But the anonymity property in Nguyen’s scheme causes identification 
problem.  That is anonymity and identification conflict with each other.  Our research goal is to 
design concurrent signature schemes that not only satisfy anonymity property but also have 
identification property at the same time.  An improved Nguyen’s scheme is proposed to satisfy 
anonymity and identification although these two properties are conflict.  Moreover, the 
improved scheme also satisfies unlinkability and three basic security properties. 
 
三、文獻探討 
Promise of Schnorr and Promise of Schnorr-like Signatures 

The Schnorr signature scheme is described below. 
System Construction: This algorithm selects two large primes p and q such that q|(p – 1).  Let 
g be a generator of the multiplicative subgroup of order q in Zp*.  This algorithm also selects a 
cryptographic hash functions h: {0, 1}* → Zq*.  Each participant’s private key x is chosen 
randomly from Zq*.  The corresponding public key is y= gx mod p.   
Signature Generation: The algorithm selects a random secret integer k from Zq*, and computes 
e= h(m||gk mod p) and b= xe + k mod q, where m is a message.  The algorithm outputs a Schnorr 
signature (e, b) on the message m using the private key x. 
Signature Verification: On the input <e, b, y, m>, this verification algorithm returns an 
accepting result if e= h(m||(gby-e mod p)) holds; otherwise, it returns a rejecting result. 

If (e, b) is a Schnorr signature on a message m for the public key y, then the tuple (e, β) is the 
promise of the signature (e, b), where β= gb mod p.  The equation e= h(m||(βy-e mod p)) is used 
to validate the promise of Schnorr signature (e, β) on the message m by using the public key y.  
However, anyone is able to use the public key y to forge promises of Schnorr signatures.  To 
prove that (e, β) is indeed a legal promises of Schnorr signature, the signer has to reveal the value 
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b.  Then the signer converts the promise of Schnorr signature (e, β) to a Schnorr signature (e, b) 
to show that (e, b) is a generated by the signer. 

The following shows why anyone can use the public key y to forge promises of Schnorr 
signatures.  On a message m', anyone randomly selects a secret integer k′ from Zq*, and 
computes e′= h(m′||(yk′ mod p)) and β= yk′+e′ mod p.  Then e′= h(m′||(β y-e′ mod p)) holds.  So 
the pair (e′, β) is a forged promise of Schnorr signature on m′ for the public key y. 

The Schnorr-like signature scheme proposed by Nguyen [17] is described below.   
System Construction: This algorithm selects two large primes p and q such that q|(p – 1).  Let 
g be a generator of the multiplicative subgroup of order q in Zp*.  This algorithm also selects a 
cryptographic hash functions h: {0, 1}* → Zq*.  Each participant’s private key x is chosen 
randomly from Zq*.  The corresponding public key is y= gx mod p.   
Signature Generation: The algorithm selects a random secret integer k from Zq*, and computes 
e= h(m||(gk mod p)) and b= (k- e)x-1 mod q.  The algorithm outputs a Schnorr-like signature (e, b) 
on the message m using the private key x for the public key y. 
Signature Verification: On input the tuple <e, b, y, m>, this algorithm returns an accepting result 
if the equation e= h(m||(geyb mod p)) holds; otherwise, it returns a rejecting result. 

If (e, b) is a Schnorr-like signature on the message m for the public key y, then the tuple (e, b1, 
β) is its promise, where β= yb-b1= yb2 mod p and b= b1+b2 mod q.  If e= h(m||(geyb1β mod p)) 
holds, then the promise of Schnorr-like signature (e, β) is valid on the message m for the public 
key y.  To convert the promise of Schnorr-like signature to a Schnorr-like signature, the signer 
reveals the value b2.  Hence (e, b1+b2 mod q) is indeed a legal Schnorr-like signature that 
generated by the owner of the public key y. 

Using the public key y, everyone can solely generate a valid promise of Schnorr-like 
signature at will.  On the message m′ from {0, 1}*, anyone randomly selects two integers k′ and 
b1′ from Zq*, and computes e′= h(m′||(gk′yb1′ mod p)) and β= gk′-e′ mod p.  Then the equation e′= 
h(m′||(ge′yb1′β mod p)) holds.  That is the tuple (e′, b1′, β) is a forged promise of Schnorr-like 
signature on message m′ without using the private key x. 

Asymmetric Concurrent Signature Scheme 

Nguyen’s concrete asymmetric concurrent signature scheme is described below. 

SETUP: For some security parameter l as input, this algorithm selects two large primes p and q 
such that q|(p – 1).  Let g be a generator of the multiplicative subgroup of order q in Zp*.  This 
algorithm also selects a cryptographic hash function h: {0, 1}*→ Zq*.  The function Hash is 
defined to be the hash function h.  The other functions is defined by KGEN(t)= gt mod p, 
KGENyi(t)= yi

t mod p, and KTRAN(t, xi)= txi mod p.  Each participant’s private key xi, 1≤ i≤ n is 
chosen randomly from Zq*.  The corresponding public key is yi= gxi mod p.  The public 
parameters are <p, q, g> along with the descriptions of the spaces F, K, and M, where F= Zp*, K= 
Zq* and M= {0, 1}*.   

ISIGN: On input the tuple <yi, xi, mi>, this algorithm chooses a random value ri∈Zq* and 
computes three values as follows: ei= h(mi||(gri mod p)), ki= xiei+ ri mod q, and si= gki mod p, 
where yi is a public key, xi is the private key corresponding to yi, and the message mi∈ M.  The 
algorithm outputs a promise of Schnorr signature σi= <ei, si> on mi, and a keystone ki, where ei, 
ki∈ K, and si∈ F. 

MSIGN: On input the tuple <yj, xj, sj, mj>, this algorithm chooses a random value rj∈ Zq* and 
computes two values as follows: ej= h(mj||(grjsj mod p)), and kj= (rj- ej)xj

-1 mod q, where yj is a 
public key, xj is the private key corresponding to yj, and the message mj∈M.  The algorithm 
outputs a promise of Schnorr-like signature σj= <ej, kj, sj> on mj, where ej, kj∈ K, and sj∈ F. 

IVERIFY: On the input <σi, yi, mi>, this algorithm returns an accepting result if the equation ei= 
h(mi||(siyi

-ei mod p)) holds; otherwise, it returns a rejecting result.  Here σi= <ei, si>, ei∈ K, si∈ F, 
a public key yi, and the message mi∈ M. 
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MVERIFY: On the input <σj, yj, mj>, this algorithm returns an accepting result if the equation 
ej= h(mj||(gejyj

kjsj mod p)) holds; otherwise, it returns a rejecting result.  Here σj= <ej, kj, sj>, ej, 
kj∈ K, sj∈ F, a public key yj, and the message mj∈ M. 

VERIFY: On the input <ki, Si> (or <ki, Sj>), this algorithm first checks whether or not 
KGEN(ki)= si (or KGENyj

(ki)= sj), where ki∈ K, Si= <σi, yi, mi>, σi= <ei, si> (or σj= <ej, kj, sj>), 
ei∈ K, si∈ F (or ej, kj∈ K, sj∈ F), yi (or yj) is a public key, and the message mi (or mj)∈ M.  If 
KGEN(ki)≠ si (or KGENyj

(ki) ≠ sj mod q), it outputs a rejecting result; otherwise, it produces its 
output by using the algorithm IVERIFY(Si) (or MVERIFY(Sj)). 

The asymmetric concurrent signature protocol is described in the following.  Initial signer 
A and matching signer B run SETUP first to set the public parameters and generate their 
private-public key pairs.  Assume that A’s key pair is <xA, yA> and B’s key pair is <xB, yB>. 
Step 1: A generates his/her promise of Schnorr signature and a keystone kA by performing the 

algorithm ISIGN on the message mA∈ M as follows: <kA, σA>= <kA, <eA, sA>>= 
ISIGN(yA, xA, mA).  Then A sends the pair <σA, mA> to B. 

Step 2: B performs IVERIFY(σA, yA, mA) to verify whether or not the promise of Schnorr 
signature σA is valid after receiving A’s promise of Schnorr signature σA on the message 
mA.  If IVERIFY(σA, yA, mA) outputs a rejecting result, then B aborts.  Otherwise, B 
computes sB= KTRAN(sA, xB).  Then B performs the algorithm MSIGN with the 
keystone fix sB to generate his/her promise of Schnorr-like signature on the message 
mB∈ M as follows: σB= <eB, kB, sB>= MSIGN(yB, xB, sB, mB).  Then B sends A the pair 
<σB, mB>. 

Step 3: A first computes sB= KGENyB
(kA) after receiving B’s promise of Schnorr-like signature 

σB on the message mB.  Then, A checks whether or not the computed sB is equal to the 
keystone fix sB from B.  If they are the different, then abort.  Otherwise, A validates 
the promise of Schnorr-like signature σB by performing MVERIFY(σB, yB, mB).  If 
MVERIFY(σB, yB, mB) rejects σB, then A aborts; otherwise, A sends the keystone kA to B. 

 

 
四、研究方法 

Nguyen’s asymmetric concurrent scheme is improved to satisfying not only anonymity 
property but also identification property at the same time in this project.  Due to the 
identification property, the denial-of-service attack on Nguyen’s scheme is removed.  However, 
the identification and anonymity properties are conflict.  Therefore, the identification property 
is satisfied only for the match signer and initial singer during the signature exchange.  For the 
other one, it is hard to identify who the match and initial signers are.  To achieve this research 
goal, a new identification way is proposed to improve Nguyen’s scheme. 
五、結果與討論 

In this section, our improved scheme is first proposed.  Then the related analysis and 
discussions are given.  Our improved scheme is proposed to remove the identification flaw in 
Nguyen’s scheme.  The generic algorithms of our scheme are stated first.  Then the protocol 
and concrete scheme are given. 
Generic Algorithms for Our Asymmetric Concurrent Signature Scheme 

The generic algorithms used to construct our scheme are specified below. 
SETUP: A probabilistic algorithm that, on input a security parameter l, outputs descriptions of 
the set of participants U, the message space M, the keystone space K, the keystone fix space F, 
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the Diffie-Hellman key space D, a function Hash: M→ K and a function KGEN: K→ F.  The 
algorithm also outputs the private-public key pairs {xi, yi} for all participants, the function 
families KGENyi

: K→ F, KGENyi,yj
: K→ D, a keystone transformation function KTRAN: F × 

{xi}→ F, and a public reducing function Reduce: F→ K. 
ISIGN: A probabilistic algorithm outputs a commitment ci= <ei, si> and a keystone ki on the 
input <yi, xi, b1, mi>, where yi is a public key, xi is the private key corresponding to yi, b1, ei, ki∈ K, 
si∈ F, the message mi∈ M, and si= KGEN(ki - b1). 
MSIGN: A probabilistic algorithm outputs a promise of Schnorr-like signature σj= <ej, kj, sj> on 
the input <yj, xj, sj, mj>, where yj is a public key, xj is the private key corresponding to yj, ej, kj∈ K, 
sj∈ F, and the message mj∈ M. 
IVERIFY: An algorithm takes Si= <σi, yi, mi> as its input and outputs an accepting or a rejecting 
result, where σi= <ei, siKGEN(b1)>, b1, ei∈ K, si∈ F, yi is a public keys, and the message mi∈ M. 

MVERIFY: An algorithm takes Sj= <σj, yj, mj> as its input and outputs an accepting or a 
rejecting result, where σj= <ej, kj, sj>, ej, kj∈ K, sj∈ F, yj is a public keys, and the message mj∈ M. 
VERIFY: An algorithm takes <ki, Si> (or <ki, Sj>) as its input, where ki ∈ K is a keystone and Si= 
<σi, yi, mi>, (or Sj= <σj, yj, mj>), σi= <ei, siKGEN(b1)>, (or σj= <ej, kj, sj>), b1, ei∈ K, si∈ F, mi∈ 
M (or ej, kj∈ K, sj∈ F, mj∈ M), and yi (or yj) is a public key.  This algorithm first checks whether 
or not KGEN(ki)= siKGEN(b1) (or KGENyj

(ki)= sj).  If the equation does not hold, then the 
algorithm outputs a rejecting result.  Otherwise, it produces its output by using the algorithm 
IVERIFY(Si) (or MVERIFY(Sj)).  If the algorithm VERIFY returns an accepting result, then <ki, 
ei> forms a valid signature on mi for yi or <ki+kj, ej> forms a valid signature on mj for yj. 

The output ci= <ei, si> of ISIGN is called a commitment while a tuple σi= <ei, siKGEN(b1)> 
is called a promise of a Schnorr signature.  If IVERIFY(σi, yi, mi) returns an accepting result, 
then σi is a valid promise of Schnorr signature on mi for yi.  The output σj= <ej, kj, sj> of MSIGN 
is called a promise of Schnorr-like signature.  If MVERIFY(σj, yj, mj) returns an accepting result, 
then σj is a valid promise of Schnorr-like signature on mj for yj.  A promise of Schnorr (or 
Schnorr-like) signature σi (or σj) on the message mi (or mj) for yi (or yj) together with a keystone 
ki is called a concurrent signature.  Therefore if VERIFY(ki, Si= <σi, yi, mi>) (or VERIFY(ki, Sj= 
<σj, yj, mj>)) returns an accepting result, then the tuple <ki, σi> (or the tuple <ki , σj>) is a valid 
concurrent signature on the message mi (or the message mj) using the public key yi (or yj).  That 
is <ki, ei> (or <ki+kj, ej>) is a valid concurrent signature on the message mi (or mj) using the 
public key yi (or yj). 

The commitment has the signer-anonymity property that any third part only guesses the 
identity of the real signer among n possible signers with probability 1/n.  Because the promise of 
Schnorr signature has the signer-anonymity property, after exposing b1, the commitment still 
possesses the signer-anonymity property.  After releasing the keystone, the promise signatures 
do not possess the signer-anonymity property anymore.  So anyone utilizes keystones to bind 
these promise of signatures to their actual signer, and uses the algorithm VERIFY to validate 
concurrent signatures. 
Generic Protocol for Our Asymmetric Concurrent Signature Scheme 

Suppose that the initial signer A and the matching signer B run SETUP first to set the public 
parameters and generate their private-public key pairs.  Assume that A’s key pair is <xA, yA> and 
B’s key pair is <xB, yB>.  Our asymmetric concurrent signature protocol works as follows: 
Step 1: A sends her identity IDA to B over secure channels. 
Step 2: B randomly chooses a value t ∈ K and computes KGENyA,yB

(t) and r= KGENyB
(t), 

where r∈ D.  B generates b1= Reduce(KGENyA,yB
(t)).  Then A sends r to B. 
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Step 3: A computes KGENr(xA) and recovers b1 = Reduce(KGENr(xA)).  Then A performs the 
algorithm ISIGN on the message mA ∈ M to generate his/her commitment as follows: 

<kA, cA>= <kA,<eA, sA>>= ISIGN(yA, xA, b1, mA)  
Then the keystone is kA.  Finally, A sends the pair <cA, mA> to B. 

Step 4: B performs IVERIFY(σA, yA, mA) to verify whether or not the promise of Schnorr 
signature σA= <eA, sAKGEN(b1)> is valid after receiving A’s commitment cA on the 
message mA.  If IVERIFY(σA, yA, mA) outputs a rejecting result, then B aborts.  
Otherwise, B computes sB= KTRAN(sAKGEN(b1), xB).  Then B performs the algorithm 
MSIGN with the keystone fix sB to generate his/her promise of Schnorr-like signature 

σB = <eB, kB, sB>= MSIGN(yB, xB, sB, mB) 
on the message mB∈ M.  Then B sends A the pair <σB, mB>. 

Step 5: A first computes sB= KGENyB
(kA) after receiving B’s promise of Schnorr-like signature 

σB on mB.  Then, A checks whether or not sB is equal to the keystone fix sB given by B.  
If the answer is not, then abort.  Otherwise, A validates the promise of Schnorr-like 
signature σB by performing MVERIFY(σB, yB, mB).  If MVERIFY(σB, yB, mB) rejects 
σB, then A aborts; otherwise, A sends the keystone kA to B. 

SA is accepted by algorithm IVERIFY after exposing the secret session key b1, where SA= 
<<eA, sAKGEN(b1)>, yA, mA>.  Note that, these two concurrent signatures <kA, SA> and <kA, SB> 
will be “concurrently” accepted by algorithm VERIFY after the keystone kA is revealed, where 
SA= <<eA, sAKGEN(b1)>, yA, mA> and SB= <<eB, kB, sB>, yB, mB>.  In other word, after revealing 
the keystones kA, these two promise of Schnorr and Schnorr-like signatures σA= <eA, 
sAKGEN(b1)> and σB= <eB, kB, sB> bind their real signers at the same time.  The reason why two 
concurrent signatures <kA, eA> and <kA+kB, eB> become valid is that the same keystone kA is used 

to generate σA and σB, where sA= KGEN(kA- b1) and sB= KGENyB
(kA). 

Our Concrete Asymmetric Concurrent Signature Scheme with Anonymity and 
Identification 

Our concrete asymmetric concurrent signature scheme with anonymity and identification 
is described in this section.  The algorithms, SETUP, ISIGN, MSIGN, IVERIFY, MVERIFY and 
VERIFY, are described below. 
SETUP: For some security parameter l as input, this algorithm selects two large primes p and q 
such that p= 2q + 1.  Let g be a generator of the multiplicative subgroup of order q in Zp*.  
This algorithm also selects a cryptographic hash function h: {0, 1}*→ Zq*.  The function Hash 
is defined to be the hash function h.  Then KGEN(t)= gt mod p, KGENyi

(t)= yi
t mod p, 

KGENyi,yj
(t)= yi

xjt mod p, and KTRAN(t, xi)= txi mod p.  The reducing function Reduce is defined 
to be Reduce(t)= t mod q.  Each participant’s private key xi, 1≤ i≤ n is chosen randomly from 
Zq*.  The corresponding public key is yi= gxi mod p.  The public parameters are <p, q, g> along 
with the descriptions of the spaces F, D, K and M, where F= D= Zp*, K= Zq*, and M= {0, 1}*.   
ISIGN: On input the tuple <yi, xi, b1, mi>, this algorithm chooses a random value ri∈ Zq* and 
computes three values as follows: ei= h(mi||(gri+b1 mod p)), ki= xiei+ ri+ b1 mod q, and si= gxiei+ri 
mod p, where yi is a public key, xi is the private key corresponding to yi, and the message mi∈ M.  
The algorithm outputs a keystone ki and a commitment ci= <ei, si> on mi, where ei, b1, ki∈ K, si∈ 
F. 
MSIGN: On the input tuple <yj, xj, sj, mj>, this algorithm chooses a random value rj∈ Zq* and 
computes two values as follows: ej= h(mj||(grjsj mod p)), and kj= (rj- ej)xj

-1 mod q, where yj is a 
public key, xj is the private key corresponding to yj, and the message mj∈ M.  The algorithm 
outputs a promise of Schnorr-like signature σj= <ej, kj, sj> on mj, where ej, kj∈ K, and sj∈ F. 
IVERIFY: On the input tuple <σi, yi, mi>, this algorithm returns an accepting result if the 
equation ei= h(mi||(siKGEN(b1)yi

-ei mod p)) holds; otherwise, it returns a rejecting result.  Here 
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σi= <ei, siKGEN(b1)>, ei, b1∈ K, si∈ F, a public key yi, and the message mi∈ M. 
MVERIFY: On the input <σj, yj, mj>, this algorithm returns an accepting result if the equation 
ej= h(mj||(gejyj

kjsj mod p)) holds; otherwise, it returns a rejecting result.  Here σj= <ej, kj, sj>, ej, 
kj∈ K, sj∈ F, a public key yj, and the message mj∈ M. 
VERIFY: On input the tuple <ki, Si> (or <ki, Sj>), this algorithm first checks whether or not 
KGEN(ki)= siKGEN(b1) (or KGENyj

(ki)= sj), where ki∈ K, Si= <σi, yi, mi>, σi= <ei, siKGEN(b1)> 
(or σj= <ej, kj, sj>), ei, b1∈ K, si∈ F (or ej, kj∈ K, sj∈ F), yi (or yj) is a public key, and the message 
mi (or mj)∈ M.  If KGEN(ki)≠ siKGEN(b1) (or KGENyj

(ki)≠ sj), it outputs a rejecting result; 
otherwise, it produces its output by using the algorithm IVERIFY(Si) (or MVERIFY(Sj)). 

These algorithms together with our proposed protocol described in Section 4.2 can realize the 
concrete asymmetric concurrent signature scheme.  After revealing the keystone ki, the property 
of the signer-anonymity would be broken by checking that the equation of KGEN(ki)= siKGEN(b1) 
or KGENyj

(ki)= sj.  That is, the asymmetric concurrent signature can be verified by the algorithm 

VERIFY. 

Performance Analysis and Discussions 
In Nguyens’s scheme, an attacker pays 2TE to forge a valid promise of Schnorr signature to 

the matching signer, where TE denotes the computational cost for one modular exponentation.  
Because Nguyen’s scheme does not have the identification property, the matching signer totally 
pays 3TE to confirm the promise of Schnorr signature is valid and produces the corresponding 
promise of Schnorr-like signature to initial signer.  Hence Nguyen’s protocol is vulnerable 
against the denial-of-service attack.  

Table 1 gives the security comparison between Nguyen’s scheme and our improved scheme.  
It is easily to find that our scheme satisfies identification property.  The identification property 
can be used to guard against the denial-of-service attack for the matching signer’s computational 
resource.  Therefore, our scheme removes the identification flaw in Nguyen’s scheme.  Our 
scheme satisfies both anonymity and identification at the same time.  By using the anonymity, 
unlinkability, and identification, our scheme provides a practical privacy protection for the initial 
and matching signer. 
Table 1: Security Property Comparison between Nguyen’s Scheme and Our Improvement 

           Schemes 
Properties 

Nguyen’s Scheme Our Improvement 

Correctness √ √ 

Unforgeability √ √ 

Fairness √ √ 

Signer-ambiguity × × 

Anonymity √ √ 

Unlinkability √ √ 

Identification × √ 
Table 2 gives the performance comparison between Nguyen’s scheme and our improved 

scheme.  Both Nguyen’s scheme and our improvement need multi-exponentiation.  The 
multi-exponentiation computational costs for a1

x1a2
x2 and a1

x1a2
x2a3

x3 are about 1.16 TE and 1.25TE, 
respectively [4].  The computational loads of the initial signer A and matching signer B are both 
4.16TE and 3TE in Nguyen’s scheme.  In our scheme, the computational loads of the initial 
signer A and matching signer B are 5.16TE and 5.32TE, respectively.  Our computation loads is a 
little larger than the loads of Nguyen’s scheme by 1or 2.32 exponentiations.  By paying a little 
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computational overhead, it is valuable to provide the identification property, which can be used to 
guard against the denial-of-service attack. 
 
Table 2: Performance Comparison between Nguyen’s Scheme and Our Improvement 

         Schemes 
Items 

Nguyen’s 
Scheme 

Our 
Improvement 

Computational Cost of A 4.16E 5.16E 

Computational Cost of B 3E 5.32E 

Computational Cost of Verifier 2.31E 2.31E 

Ambiguous Signature/Commitment Size 2|q| 2|q| 

Keystone Size |q| |q| 
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七、計畫成果自評 
In this project, our improved scheme is proposed to provide anonymity and identification at 

the same time.  Due to Table 1, our improved scheme satisfies not only the three basic security 
properties but also anonymity, unlinkability and identification.  Since our improved scheme 
satisfies anonymity and unlinkability, the privacy is protected well in the improved scheme.  
Even though our improved scheme satisfies anonymity, our scheme also satisfies the 
identification property to guard against denial of service attack on computational resource.  Our 
improved scheme is better than Nguyen’s scheme.  Since our improved schemes satisfy the 
identification property, our schemes are more practical in the real world.  The project goal is 
completed. 


