TRERARFELR AR EFY

H?'B?FM

s

PR CE RUNFE o FAUVE
4 %% 1 NSC 96-2221-E-032 -026
HEPF96E£82 1pi 97&77% 31p

FEAFAF R R AEFI L Bl
e E R

o ‘%"’% M %42

off

HF LR

VRSFEAR CARFMIAET AT A) A RIGULAET)
BEPHROGLLI AT AT) MGz A FF)

HEBOLL~FF1 P 2)

FRAFLFAURET P UFERTH) IHFFFLE oxp

AR T R 2
AL L S Y R -

DA A R RN EIAEY HE‘HQ’» N

M1 B B8 e g koo B4R 2 %%\ P
o % & 'FEH")J—%W FEH ip 2

ROLE SR AR B EE PR R AR 5T
E @R AN

oWz B FEMARE 0 £o- £

PREIE XL~ FF1 4

= i:: Y E‘:I ,L..L.: _&,\@_:_..L_B

/_EHW)J—% \}I oy

SR A

YiERFEL

TR
RS

FeEs TN

- 9 Q:}FQ
R 4

AT AR eniRE > B 2005 £ & Nguyen § L3t di2HHEN PR R 2 0 4 L
&—%%ﬁ?ﬁ?i&?ﬁkﬁ@i%o%?TﬁM~Z?V&MﬁQiM%H’N@wn

17 2L BREFLHEITREM T REE F o Nguyen shlR R F 2 B 2 A @Y
m&#i’yi}u{i#ﬁgiﬁv%i%ﬁzﬁwﬁ g;—;,s//,,\,g,g;(§dz uﬁ L N
IR ERES LRSS ES L S U ER LR LS8 =ty S N

ok o FP IR LR ERE) A - BATOEL S BN o A - F Y
Bdl- B AR e B R T R R L AN R Lo b
R RS AR R R TR L S R R Lt

=

MigZ: FREET F ol DAm EF kg R
EERE

For the privacy protection, Nguyen first proposed an asymmetric concurrent signature
scheme without adopting ring signatures in 2005. Except correctness, unforgeability, and
fairness, Nguyen’s scheme satisfies two new properties: Anonymity and unlinkability. To
satisfy the anonymity property, Nguyen’s scheme has identification flaw that signers cannot
identify each other during the exchange protocol. So an attacker makes use of this flaw to trick
signers to exhaust signers’ computation resources. However, the concurrent signature schemes
with signer-ambiguity do not have the identification flaw. A new property, identification, is
defined for the concurrent signature scheme with anonymity. In this project, an improved
asymmetric concurrent scheme is proposed to provide both anonymity and identification. Our
improved scheme satisfies identification, anonymity, and unlinkability at the same time. With

identification, anonymity, and unlinkability, the signers’ privacy is protected well without flaws.
B 4#£F . Concurrent signatures, anonymity, identification, privacy, signature schemes

S NWMTEPT P

In 2004, Chen et al. first proposed the concurrent signature scheme by adopting the idea of
ring signatures [2, 19]. The ring signature scheme is a signature scheme hiding the actual signer
among all ring members. When the number of ring members is reduced to two, the ring
signature scheme has the singer-ambiguity. For example, A signs a ring signature which only
contains A and B’s identities. ~After validating A’s ring signature, B is sure that the ring signature
is generated by A because B doesn’t sign it. Because there are two identities involved in this
ring signature, B can’t convince the third party that this ring signature is generated by A. Susilo
et al. [21] point out that Chen et al.’s scheme adopts the same keystone fix to generate both
commitments. To cluster two ambiguous signatures with same keystone fix, the
signer-ambiguity is removed. To overcome this flaw, Susilo et al. adopt different keystone fix to
generate the commitments to propose their scheme, the perfect concurrent signature scheme in
2004 [21]. Wang et al.’s [22] points out that Susilo et al.’s scheme does not satisfy the fairness
property in 2006. Therefore, Wang et al. proposed two iperfect concurrent signature schemes
satisfying the fairness property. Wang et al.’s scheme also improve the performance. Wang et
al.’s scheme satisfies four security properties: correctness, unforgeability, fairness and
signer-ambiguity.

Nguyen [17] first proposed asymmetric concurrent signature schemes to provide privacy
1

protection in 2005. Nguyen’s scheme not only satisfies three basic security properties but also
two additional security properties: Anonymity and unlinkability. Anonymity means that any
third party cannot determine the generator of a commitment among all possible singers before the
keystone is revealed. So the anonymity property is used to protect the privacy of the transactors
before the keystone is released. The unlinkability property means that the relationship between
two exchanged concurrent signatures does not exist, as long as the keystone is released. The
unlinkability property is used to protect the privacy of the transactors after the keystone is
released.

Nguyen’s scheme is the first concurrent signature scheme without using ring signature
schemes. However, two signature schemes with different structures are used to design Nguyen’s
scheme. In order to this disadvantage, Chen [8] proposed balanced concurrent signature scheme
adopting the signature scheme with the same structure. But Chen’s scheme does not satisfy
anonymity although Chen’s scheme satisfies correctness, unforgeability, fairness, and unlikability.

Anonymity is very important to protect the privacy. However, in Nguyen’s scheme, the
transactor cannot identify the generator of the commitments due to the anonymity property. By
utilizing this disadvantage, attackers trick transactors to exhaust their computation resources. So
Nguyen’s scheme is vulnerable against denial-of-service attack.

The major flaw of Nguyen’s scheme is that the transactor cannot identify commitments’
generators. If the concurrent signature satisfies not only anonymity but also identification, this
flaw can be removed. So a new property of identification is introduced. Identification means
that, during the commitment exchanging protocol, both the transactors are able to identify one
another, through acquisition of corroborative evidence. Due to the anonymity property, the third
party cannot identify the generator of the commitments. Transactors’ privacy is protected by the
anonymity property. But the anonymity property in Nguyen’s scheme causes identification
problem. That is anonymity and identification conflict with each other. Our research goal is to
design concurrent signature schemes that not only satisfy anonymity property but also have
identification property at the same time. An improved Nguyen’s scheme is proposed to satisfy
anonymity and identification although these two properties are conflict. Moreover, the

improved scheme also satisfies unlinkability and three basic security properties.

2~ TR
Promise of Schnorr and Promise of Schnorr-like Signatures

The Schnorr signature scheme is described below.

System Construction: This algorithm selects two large primes p and g such that q|(p — 1). Let
g be a generator of the multiplicative subgroup of order q in Zy*. This algorithm also selects a
cryptographic hash functions h: {0, 1}* — Z4*. Each participant’s private key X is chosen
randomly from Zq*. The corresponding public key is y= g*mod p.

Signature Generation: The algorithm selects a random secret integer k from Z4*, and computes
e=h(m||g*mod p) and b= xe + k mod g, where m is a message. The algorithm outputs a Schnorr
signature (€, b) on the message m using the private key X.

Signature Verification: On the input <e, b, y, m>, this verification algorithm returns an
accepting result if e= h(m||(gby‘e mod p)) holds; otherwise, it returns a rejecting result.

If (e, b) is a Schnorr signature on a message m for the public key Y, then the tuple (e, f) is the
promise of the signature (e, b), where = gb mod p. The equation e= h(m||(fy® mod p)) is used
to validate the promise of Schnorr signature (e, /) on the message m by using the public key Y.
However, anyone is able to use the public key y to forge promises of Schnorr signatures. To
prove that (e, f) is indeed a legal promises of Schnorr signature, the signer has to reveal the value

2

b. Then the signer converts the promise of Schnorr signature (e, £) to a Schnorr signature (e, b)
to show that (e, b) is a generated by the signer.

The following shows why anyone can use the public key y to forge promises of Schnorr
signatures. On a message M', anyone randomly selects a secret integer k' from Zy*, and
computes e'= h(m'||(y* mod p)) and A= y*** mod p. Then e'= h(m’||(8y* mod p)) holds. So
the pair (€', p) is a forged promise of Schnorr signature on m’ for the public key .

The Schnorr-like signature scheme proposed by Nguyen [17] is described below.

System Construction: This algorithm selects two large primes p and q such that g|(p — 1). Let

g be a generator of the multiplicative subgroup of order q in Zy*. This algorithm also selects a

cryptographic hash functions h: {0, 1}* — Zg*. Each participant’s private key X is chosen

randomly from Zg*. The corresponding public key is y= g*mod p.

Slgnature Generation: The algorlthm selects a random secret integer k from Z4*, and computes

e= h(mH(g mod p)) and b= (k- e)x' mod q. The algorithm outputs a Schnorr-like signature (e, b)
on the message m using the private key x for the public key y.

Signature Verification: On input the tuple <e, b, y, m>, this algorithm returns an accepting result

if the equation e= h(m||(g° y mod p)) holds; otherwise, it returns a rejecting result.

If (e, b) is a Schnorr-like 51gnature on the message m for the public key Y, then the tuple (e, by,
p) is its promise, where A= y*®'= y*?> mod p and b= b;+b, mod g. If e= h(m||(g®y"' 8 mod p))
holds, then the promise of Schnorr-like signature (e, f) is valid on the message m for the public
key y. To convert the promise of Schnorr-like signature to a Schnorr-like signature, the signer
reveals the value b,. Hence (e, bi+b, mod) is indeed a legal Schnorr-like signature that
generated by the owner of the public key y.

Using the public key Yy, everyone can solely generate a valid promise of Schnorr-like
signature at will. On the message m’ from {0, 1}*, anyone randomly selects two integers k' and
b, from Z4*, and computes e'= h(m’ 1(g¥y*" mod p)) and A= g“® mod p. Then the equation e'=
h(m'||(g°y bl S mod p)) holds. That is the tuple (¢', by’, f) is a forged promise of Schnorr-like
signature on message m’ without using the private key x.

Asymmetric Concurrent Signature Scheme

Nguyen’s concrete asymmetric concurrent signature scheme is described below.

SETUP: For some security parameter | as input, this algorithm selects two large primes p and ¢
such that q|(p — 1). Let g be a generator of the multiplicative subgroup of order q in Z,*. This
algorithm also selects a cryptographic hash function h: {0, 1}*— Zg*. The function Hash is
defined to be the hash function h. The other functions is defined by KGEN(t)= g' mod p,
KGENyi(t)=yi' mod p, and KTRAN(t, xi)= t“mod p. Each participant’s private key x;, 1< i< n is
chosen randomly from Zg*. The corresponding public key is yi= g" mod p. The public
parameters are <p, g, > along with the descriptions of the spaces F, K, and M, where F= Zp*, K=
Zy*and M= {0, 1}*.

ISIGN: On input the tuple <y;, Xj, m>, this algorithm chooses a random value l‘.eZq and
computes three values as follows: ei= h(mj||(g" mod p)), k= Xiei+ ri mod @, and s= g“ mod p,
where y;j is a public key, X;is the private key corresponding to Y;, and the message mje M. The
algorithm outputs a promise of Schnorr signature o= <e;j, $;> on m;, and a keystone k;, where €;,
kiE K, and sje F.

MSIGN:On input the tuple <y;, Xj, Sj, m;>, this algorithm chooses a random value rje Z4* and
computes two values as follows: ej= h(mj||(g JsJ mod p)), and k= (rj- eJ)XJ mod g, where yj is a
public key, Xjis the private key corresponding to Yj, and the message mjeM. The algorithm
outputs a promise of Schnorr-like signature oj= <ej, kj, Sp> on mj, where €j, kje K, and sje F.

IVERIFY: On the input <a, i, mi>, this algorithm returns an accepting result if the equation =
h(m;/|(siyi® mod p)) holds; otherwise, it returns a rejecting result. Here o= <ej, 5>, eje K, sie F,
a public key Yj, and the message mje M.

3

MVERIFY: On the input <gj, yj, m>, this algorithm returns an accepting result if the equation
e7= h(mjl|(g%;"s; mod p)) holds; otherwise, it returns a rejecting result. Here o= <}, kj, 5>, €;,
kie K, sje F, a public key Yj, and the message mje M.

VERIFY: On the input <kj, Si> (or <ki, Sj>), this algorithm first checks whether or not
KGEN(ki)= si (or KGENyj(ki)= Sj), where kic K, Si= <ai, Vi, m>, o= <ej, Si> (or o= <€j, kj, SP>),
eie K, sie F (or g, kie K, sje F), yi (or yj) is a public key, and the message m; (or mj)e M. If
KGEN(k;)# si (or KGENyj(ki) # Sj mod Q), it outputs a rejecting result; otherwise, it produces its
output by using the algorithm IVERIFY(S;) (or MVERIFY(S))).

The asymmetric concurrent signature protocol is described in the following. Initial signer

A and matching signer B run SETUP first to set the public parameters and generate their

private-public key pairs. Assume that A’s key pair is <Xa, Ya> and B’s key pair is <Xg, Yg>.

Step 1: A generates his/her promise of Schnorr signature and a keystone ka by performing the
algorithm ISIGN on the message mae M as follows: <ka, op>= <ka, <ea, Sp>>=
ISIGN(Ya, Xa, ma). Then A sends the pair <oa, ma> to B.

Step 2: B performs IVERIFY(oa, Ya, Ma) to verify whether or not the promise of Schnorr
signature op is valid after receiving A’s promise of Schnorr signature oaon the message
ma. If IVERIFY(op, Ya, Ma) outputs a rejecting result, then B aborts. Otherwise, B
computes Sg= KTRAN(Sa, Xg). Then B performs the algorithm MSIGN with the
keystone fix Sg to generate his/her promise of Schnorr-like signature on the message
mge M as follows: o= <eg, kg, Sg>= MSIGN(Ys, Xs, Sg, Mg). Then B sends A the pair
<oB, Mp>.

Step 3: A first computes Sg= KGENyB(kA) after receiving B’s promise of Schnorr-like signature
os on the message mg. Then, A checks whether or not the computed Sg is equal to the
keystone fix Sg from B. If they are the different, then abort. Otherwise, A validates
the promise of Schnorr-like signature og by performing MVERIFY(og, Ys, Mg). If
MVERIFY (o8, Y8, Mp) rejects os, then A aborts; otherwise, A sends the keystone ka to B.

Ny
Nguyen’s asymmetric concurrent scheme is improved to satisfying not only anonymity
property but also identification property at the same time in this project. Due to the
identification property, the denial-of-service attack on Nguyen’s scheme is removed. However,
the identification and anonymity properties are conflict. Therefore, the identification property
is satisfied only for the match signer and initial singer during the signature exchange. For the
other one, it is hard to identify who the match and initial signers are. To achieve this research
goal, a new identification way is proposed to improve Nguyen’s scheme.
I~ RBRaH
In this section, our improved scheme is first proposed. Then the related analysis and
discussions are given. Our improved scheme is proposed to remove the identification flaw in
Nguyen’s scheme. The generic algorithms of our scheme are stated first. Then the protocol
and concrete scheme are given.

Generic Algorithms for Our Asymmetric Concurrent Signature Scheme
The generic algorithms used to construct our scheme are specified below.

SETUP: A probabilistic algorithm that, on input a security parameter |, outputs descriptions of
the set of participants U, the message space M, the keystone space K, the keystone fix space F,

4

the Diffie-Hellman key space D, a function Hash: M— K and a function KGEN: K— F. The
algorithm also outputs the private-public key pairs {X;, yi} for all participants, the function
families KGENy.: K— F, KGENyi,yj: K— D, a keystone transformation function KTRAN: F x

{Xi}— F, and a public reducing function Reduce: F— K.

ISIGN: A probabilistic algorithm outputs a commitment Ci= <ej, S>> and a keystone K; on the
input <y;, X, by, mi>, where y; is a public key, X; is the private key corresponding to y;, by, €j, kie K,
sie F, the message mje M, and si= KGEN(k; - b;).

MSIGN: A probabilistic algorithm outputs a promise of Schnorr-like signature oj= <ej, Kj, S;> on
the input <yj, X;, Sj, M, where yj is a public key, X; is the private key corresponding to yj, €;, kje K,
sje F, and the message m;e M.

IVERIFY: An algorithm takes S;= <aj, Y;, m> as its input and outputs an accepting or a rejecting
result, where o= <ej, SSKGEN(b,)>, by, eie K, sie F, yj is a public keys, and the message mje M.

MVERIFY: An algorithm takes Sj= <gj, yj, M as its input and outputs an accepting or a
rejecting result, where oj= <ej, kj, S, €j, kje K, sje F, yj is a public keys, and the message m;e M.

VERIFY: An algorithm takes <ki, Si> (or <ki, Sp>) as its input, where k; € K is a keystone and Si=
<ai, Vi, M>, (or S= <gj, Yj, M), o= <ei, SSIKGEN(b;)>, (or o= <gj, kj, S), by, eie K, sie F, mje
M (or gj, kie K, sje F, mje M), and y;(or y;) is a public key. This algorithm first checks whether
or not KGEN(kj)= s;KGEN(b,) (or KGENyJ_(ki)= sj). If the equation does not hold, then the
algorithm outputs a rejecting result. Otherwise, it produces its output by using the algorithm
IVERIFY(Si) (or MVERIFY(S;)). If the algorithm VERIFY returns an accepting result, then <k;,
ei> forms a valid signature on m; for y; or <ki+k;, &> forms a valid signature on m; for y;.

The output ci= <ej, S>> of ISIGN is called a commitment while a tuple o= <e;j, SSKGEN(b,)>
is called a promise of a Schnorr signature. If IVERIFY(q;, Vi, M;) returns an accepting result,
then o; is a valid promise of Schnorr signature on m; for y;. The output oj= <gj, k;, Sp> of MSIGN
is called a promise of Schnorr-like signature. If MVERIFY(qj;, Yj, M;) returns an accepting result,
then o is a valid promise of Schnorr-like signature on m; for yj. A promise of Schnorr (or
Schnorr-like) signature o; (or oj) on the message m; (or m;) for y; (or y;) together with a keystone
ki is called a concurrent signature. Therefore if VERIFY (ki, Si= <a3, i, m>) (or VERIFY (k;, Sj=
<aj, Yj, Mj>)) returns an accepting result, then the tuple <ki, o> (or the tuple <ki, o7>) is a valid
concurrent signature on the message m; (or the message m;) using the public key y; (or yj). That
is <ki, &> (or <kj+kj, e>) is a valid concurrent signature on the message m; (or m;) using the
public key y; (or Yj).

The commitment has the signer-anonymity property that any third part only guesses the
identity of the real signer among n possible signers with probability 1/n. Because the promise of
Schnorr signature has the signer-anonymity property, after exposing b;, the commitment still
possesses the signer-anonymity property. After releasing the keystone, the promise signatures
do not possess the signer-anonymity property anymore. So anyone utilizes keystones to bind
these promise of signatures to their actual signer, and uses the algorithm VERIFY to validate
concurrent signatures.

Generic Protocol for Our Asymmetric Concurrent Signature Scheme

Suppose that the initial signer A and the matching signer B run SETUP first to set the public
parameters and generate their private-public key pairs. Assume that A’s key pair is <Xa, ya> and
B’s key pair is <Xg, yg>. Our asymmetric concurrent signature protocol works as follows:

Step 1: A sends her identity IDa to B over secure channels.
Step 2: B randomly chooses a value t € K and computes KGEN, A,yB(t) and r= KGENyB(t),

where re D. B generates b= Reduce(KGENyA’yB(t)). Then A sends r to B.

5

Step 3: A computes KGEN(xa) and recovers b; = Reduce(KGEN(xa)). Then A performs the

algorithm ISIGN on the message ma € M to generate his/her commitment as follows:
<ka, Ca>= <Kka,<€p, SA>>= ISIGN(Ya, Xa, b, ma)
Then the keystone is ka. Finally, A sends the pair <Ca, ma> to B.

Step 4: B performs IVERIFY(op, Ya, Ma) to verify whether or not the promise of Schnorr
signature op= <ea, SAKGEN(b,)> is valid after receiving A’s commitment Ca on the
message Ma. If IVERIFY(op, Ya, Ma) outputs a rejecting result, then B aborts.
Otherwise, B computes Sg= KTRAN(SAKGEN(b;), Xxg). Then B performs the algorithm
MSIGN with the keystone fix Sg to generate his/her promise of Schnorr-like signature

o= <€g, kB, SB~= MSIGN(yB, XB, SB, mB)
on the message mge M. Then B sends A the pair <og, Mg>.
Step S: A first computes Sg= KG ENyB(kA) after receiving B’s promise of Schnorr-like signature

og on mg. Then, A checks whether or not Sg is equal to the keystone fix Sg given by B.
If the answer is not, then abort. Otherwise, A validates the promise of Schnorr-like
signature og by performing MVERIFY(os, Yg, Mg). If MVERIFY(os, Ys, Mp) rejects
oB, then A aborts; otherwise, A sends the keystone ka to B.

Sa is accepted by algorithm IVERIFY after exposing the secret session key b;, where Sp=
<<ea, SAKGEN(by)>, ya, mpa>. Note that, these two concurrent signatures <Ka, Sp> and <ka, Sg>
will be “concurrently” accepted by algorithm VERIFY after the keystone ka is revealed, where
Sa= <<ep, SAKGEN(b;)>, ya, ma> and Sg= <<eg, kg, S>>, Y8, Mg>. In other word, after revealing
the keystones Kka, these two promise of Schnorr and Schnorr-like signatures op= <ea,
SaAKGEN(b;)> and o= <eg, kg, Sg> bind their real signers at the same time. The reason why two
concurrent signatures <Ka, ea> and <ka+kg, eg> become valid is that the same keystone ka is used

to generate op and op, where Sp= KGEN(Ka- b;) and Sg= KGENyB(kA).

Our Concrete Asymmetric Concurrent Signature Scheme with Anonymity and
Identification

Our concrete asymmetric concurrent signature scheme with anonymity and identification
is described in this section. The algorithms, SETUP, ISIGN, MSIGN, IVERIFY, MVERIFY and
VERIFY, are described below.
SETUP: For some security parameter | as input, this algorithm selects two large primes p and q
such that p= 2q + 1. Let g be a generator of the multiplicative subgroup of order g in Z,*.
This algorithm also selects a cryptographic hash function h: {0, 1}*— Zy*. The function Hash
is defined to be the hash function h. Then KGEN(t)= g' mod p, KGENy(t)= yi mod p,

KGENyi’yj(t): yixjt mod p, and KTRAN(t, ;)= ' mod p. The reducing function Reduce is defined

to be Reduce(t)= t mod q. Each participant’s private key X;, 1< i< n is chosen randomly from
Zy*. The corresponding public key is yi= g“mod p. The public parameters are <p, ¢, g> along
with the descriptions of the spaces F, D, K and M, where F= D= Z,*, K= Z*, and M= {0, 1}*.
ISIGN: On input the tuple <y;, X;, b;, m, this algorithm chooses a random value rie Zy* and
computes three values as follows: e= h(mj|(g"**" mod p)), ki= Xiei+ ri+ b; mod g, and si= gHe*"
mod p, where Y; is a public key, X;is the private key corresponding to Vi, and the message mje M.
The algorithm outputs a keystone ki and a commitment ci= <e;, $;> on m;, where €;, by, kie K, sje
F.

MSIGN:On the input tuple <yj, Xj, Sj, M, this algorithm chooses a random value rje Z3* and
computes two values as follows: = h(mj/|(g"s;jmod p)), and k= (rj- eJ-)XJ-'1 mod g, where yj is a
public key, X;is the private key corresponding to Yj, and the message mje M. The algorithm
outputs a promise of Schnorr-like signature oj= <gj, kj, S>> on m;, where ej, kje K, and sje F.
IVERIFY: On the input tuple <gj, yi, m>, this algorithm returns an accepting result if the
equation e= h(m;j||(siKGEN(b,)y;i® mod p)) holds; otherwise, it returns a rejecting result. Here

6

o= <ej, SSKGEN(b)>, e;, b, € K, sie F, a public key Y;, and the message mje M.

MVERIFY: On the input <gj, y;, M, this algorithm returns an accepting result if the equation
e= h(mj|(g%;%s; mod p)) holds; otherwise, it returns a rejecting result. Here o= <gj, ki, 5>, €;,
kie K, sje F, a public key Yj, and the message mje M.

VERIFY: On input the tuple <ki, S>> (or <k;, S;>), this algorithm first checks whether or not
KGEN(ki)= siKGEN(b;) (or KGENyj(ki)Z sj), where kie K, Si= <ai, Yi, m>, o= <ej, SKGEN(b,)>

(or o= <ej, ki,), e, b1€ K, sie F (or g;, kje K, sje F), yi (or yj) is a public key, and the message
mi (or mj)e M. If KGEN(k;)= siKGEN(b;) (or KGENyj(ki);t Sj), it outputs a rejecting result;
otherwise, it produces its output by using the algorithm IVERIFY(S;) (or MVERIFY (§))).

These algorithms together with our proposed protocol described in Section 4.2 can realize the

concrete asymmetric concurrent signature scheme. After revealing the keystone k;, the property

of the signer-anonymity would be broken by checking that the equation of KGEN(k;)= siKGEN(b;)
or KG ENyj(ki)Z sj. That is, the asymmetric concurrent signature can be verified by the algorithm

VERIFY.

Performance Analysis and Discussions

In Nguyens’s scheme, an attacker pays 2Tg to forge a valid promise of Schnorr signature to
the matching signer, where Tg denotes the computational cost for one modular exponentation.
Because Nguyen’s scheme does not have the identification property, the matching signer totally
pays 3Tg to confirm the promise of Schnorr signature is valid and produces the corresponding
promise of Schnorr-like signature to initial signer. Hence Nguyen’s protocol is vulnerable
against the denial-of-service attack.

Table 1 gives the security comparison between Nguyen’s scheme and our improved scheme.
It is easily to find that our scheme satisfies identification property. The identification property
can be used to guard against the denial-of-service attack for the matching signer’s computational
resource. Therefore, our scheme removes the identification flaw in Nguyen’s scheme. Our
scheme satisfies both anonymity and identification at the same time. By using the anonymity,
unlinkability, and identification, our scheme provides a practical privacy protection for the initial
and matching signer.

Table 1: Security Property Comparison between Nguyen’s Scheme and Our Improvement

Schemes Nguyen’s Scheme Our Improvement
Properties

Correctness \ V
Unforgeability \ \
Fairness \ v
Signer-ambiguity X X
Anonymity \ V
Unlinkability \ V
Identification x N

Table 2 gives the performance comparison between Nguyen’s scheme and our improved
scheme. Both Nguyen’s scheme and our improvement need multi-exponentiation. The
multi-exponentiation computational costs for a,a,™ and a;"'a,*a;™ are about 1.16 Tg and 1.25Tg,
respectively [4]. The computational loads of the initial signer A and matching signer B are both
4.16Tg and 3Tg in Nguyen’s scheme. In our scheme, the computational loads of the initial
signer A and matching signer B are 5.16Tg and 5.32Tg, respectively. Our computation loads is a
little larger than the loads of Nguyen’s scheme by lor 2.32 exponentiations. By paying a little

7

computational overhead, it is valuable to provide the identification property, which can be used to
guard against the denial-of-service attack.

Table 2: Performance Comparison between Nguyen’s Scheme and Our Improvement

Schemes Nguyen’s Our
Items Scheme Improvement
Computational Cost of A 4.16E 5.16E
Computational Cost of B 3E 5.32E
Computational Cost of Verifier 2.31E 231E
Ambiguous Signature/Commitment Size 2|(q] 2(q
Keystone Size [o] [o]

RS A

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

M. Abadi, N. Glew, B. Horne, and B. Pinkas, “Certified E-mail with a Light on-line trusted
third party: Design and implementation,” Proc. of the 11th International World Wide Web
Conference, WWW 2002, Honolulu, Hawaii, USA, May 7-11, 2002, pp. 387-395.

M. Abe, M. Ohkubo, and K. Suzuki, “l-out-of-n signatures from a variety of keys,”
Advances in Cryptology - ASIACRYPT 2002, LNCS, Vol. 2501, New York:
Springer-Verlag, 2002, pp. 415-432.

N. Asokan, V. Shoup, and M. Waidner, “Optimistic fair exchange of digital signatures,”
Advances in Cryptology - EUROCRYPT 1998, LNCS, Vol. 1403, New York:
Springer-Verlag, 1998, pp.591-606.

G. Ateniese. “Efficient verifiable encryption (and fair exchange) of digital signature,” Proc.
of AMC Conference on Computer and Communications Security (CCS’99), ACM Press,
New York, U.S.A ., 1999, pp. 138-146.

E. F. Brickell, D. Chaum, 1.B. Damgard, and J. van de Graaf, “Gradual and Verifiable
Release of a secret,” Advances in Cryptology - 1987, LNCS, Vol. 293, New York:
Springer-Verlag, 1987, pp.156-166.

C. Cachin and J. Camenisch, “Optimistic Fair secure computation,” Advances in
Cryptology - CRYPTO 2000, LNCS, Vol. 1880, New York: Springer-Verlag, 2000,
pp.94-112.

L. Chen, C. Kudla, and K. G. Paterson. “Concurrent signatures,” Advances in Cryptology —
EUROCRYPT 2004, LNCS, Vol. 3207, New York: Springer-Verlag, 2004, pp. 287-305.

Y.-C. Chen, On the research of fair exchange protocols and micropayment schemes, Master
Thesis, National Central University, Taiwan, R.O.C, 2006.

R. Cleve, “Controlled gradual disclosure schemes for random bits and their applications,”
Advances in Cryptology-CRYPTO 1989, LNCS, Vol. 435, New York: Springer-Verlag, 1990,
pp-573-588.

I. B. Damgard, “Practical and provably secure release of a secret and exchange of
signatures,” Advances in Cryptology - EUROCRYPT 1993, LNCS, Vol. 765, New York:
Springer-Verlag, 1994, pp. 200-217.

S. Even, O. Goldreich, and A. Lempel, “A randomized protocol for signing contracts,”
Communications of the ACM, 1985, Vol. 28(6), pp.637-647,.

M. K. Franlin and M. K. Reiter, “Fair exchange with a semi-trusted third party,” Proc. of
the 4th ACM Conference on Computer and Communications Security, Zurich, Switzerland,

8

1997, pp.1-5.

[13] M. K. Franlin and G Tsudik, “Secure group barter: Multi-party fair exchange with
semi-trusted neutral parties,” Proc. of Financial Cryptology - EUROCRYPT 1998, LNCS,
Vol. 1465, New York: Springer-Verlag, 1998, pp.90-102.

[14] J.A. Garay, M. Jakobsson, and P. MacKenzie, “Abuse-free optimistic contract signing,”
Advances in Cryptology - CRYPTO 1999, LNCS, Vol. 1666, New York: Springer-Verlag,
1999, pp.449-466.

[15] O. Goldreich, “Sending certified mail using oblivious transfer and a threshold scheme,”
Technical Report, Computer Science Department, Israel Institute of Technology, 1984.

[16] O. Goldreich, “A simple protocol for signing contracts,” Advances in Cryptology-CRYPTO
1983, New York: Springer-Verlag, 1984, pp.133-136.

[17] K. Nguyen, “Asymmetric concurrent signatures,” Proc. of Information and
Communications Security Conference, ICICS 2004, LNCS, Vol. 3783, New York:
Springer-Verlag, 2005, pp. 181-193.

[18] B. Pfitzmann, M. Schunter, and M. Waidner, “Optimal efficiency of optimistic contract
signing,” Proc. of the 7th Annual ACM Symposium on Principles of Distributed Computing,
New York, U.S.A., 1998, pp.113-122.

[19] R. L. Rivest, A. Shamir, and Y. Tauman. “How to leak a secret,” Asiacrypt’ 01, LNCS, Vol.
2248, New York: Springer-Verlag, 2001, pp.552-565.

[20] C. P. Schnorr, “Efficient Identification and Signatures for Smart Cards,” Advances in
Cryptology-CRYPTO 1989, LNCS, Vol. 435, New York: Springer-Verlag,1990, pp.239-252.

[21] W. Susilo, Y. Mu, and F. Zhang, “Perfect concurrent signature schemes,” Proc. of
Information and Communications Security Conference, ICICS 2004, LNCS Vol. 3269, New
York: Springer-Verlag, 2004, pp. 14-26.

[22] G. Wang, F. Bao, and J. Zhou, “The Fairness of Perfect Concurrent Signatures,” The 8th
International Conference on Information and Communications Security (ICICS 2006),
LNCS, Vol. 4307, New York: Springer-Verlag, 2006, pp. 435-451.

S P EARRE

In this project, our improved scheme is proposed to provide anonymity and identification at
the same time. Due to Table 1, our improved scheme satisfies not only the three basic security
properties but also anonymity, unlinkability and identification. Since our improved scheme
satisfies anonymity and unlinkability, the privacy is protected well in the improved scheme.
Even though our improved scheme satisfies anonymity, our scheme also satisfies the
identification property to guard against denial of service attack on computational resource. Our
improved scheme is better than Nguyen’s scheme. Since our improved schemes satisty the
identification property, our schemes are more practical in the real world. The project goal is
completed.

